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aDepartment of Business Administration, Universidad Carlos III de Madrid,
Av. Universidad Carlos III 22, 28270 Colmenarejo, Madrid, Spain

Abstract

The work presented here is part of the doctoral dissertation successfully defended
on 24th of September 2012 with professors Soren Asmussen nad Florin Avram as
part of the examining committee. Professor Soren Asmussen’s merits, besides his
vast investigation work, is John von Neumann Theory Prize (2012) and Sobolev
Gold Medal (2011).

Risk is inherent to the insurance business and so is the necessity to quantify
it. Insurance companies operating in a branch of insurance business need to cover
the claims resulting from a portfolio of the contracts. Since the amounts and the
timing of these claims is unknown in advance, the company needs to determine
some regular patterns in the uncertain quantities to accrue appropriate funds to
cover its liabilities. The decision on the volume of these funds, often called reserves,
is a trade-off between the solvency and the efficiency of the capital management.
Insufficient reserves will lead a company to bankruptcy, while excessive reserves
mean a waste of capital resources and loss of competitiveness in the market. The
problem of solvency is not only important for the insurance companies themselves
but also for the regulator of the insurance market. The requirement of a minimum
obligatory reserves that have to be withhold in a company operating in the insurance
industry is indeed one of the three pillars sustaining the new set of the regulatory
requirements being prepared for the European Union insurance market: Solvency II.
The reliable quantitative tools to assess the adequacy of the monetary requirements
are not only interesting on their own sake as a theoretical challenge but are also
essential for practical purposes, especially in view of recent international financial
crisis that, far from being exclusive to banking sector, may affect the insurance
industry as well.

In the first part of the work we develop a method to determine the level of min-
imum capital necessary to guarantee the solvency requirements (i.e. 99,5% capital
sufficiency). In the second part of the work, the optimal allocation of the required
capital is examined. Depending on the risk appetite of the particular insurance
company, this necessary capital may be invested in a varying bundle of conserva-
tive assets (bonds) or risky assets (stocks). This way, an answer to several crucial



questions is given: What is the reasonable level of capital necessary to guarantee
the solvency of a company? What is the optimal allocation of this capital? What is
the risk the company is undertaking at each moment as a function of its investment
strategy, capital availability, market situations and nature of its liabilities?

In this work, a solvency problem of an insurance company is treated in a short-
term and long-term horizon. The advantage of the long term horizon approach over
year to year basis is that ruin problems, being very unusual in short term, are more
difficult to grasp in one year horizon since the phenomena are extremely uncommon.
Consequently, the extrapolation approach to long term conclusions from short term
estimations could deliver misleading results.

It is important to realise that the model we use in order to obtain the desired
answers to the questions stated previously is general enough to reflect the com-
plexity of the real situation scenarios and yet tractable enough to obtain numerical
answers with high precision. On one hand, the collection of premiums is modelled by
a diffusion process without assuming any regularity pattern (”constant rate” or ”all
at the beginning of the period” assumptions). The evolution of the macroeconomic
variables, such as the inflation rate, interest rate, economic cycles, and others, are in-
cluded through a markovian environment determining the coefficients of the model.
The market investment environment is modelled by the most advanced techniques,
namely Lévy processes that go beyond usual geometric brownian motion setting,
overcoming its limitations. The additional advantage of Markov-modulated models
is that, due to their flexibility, they can adapt any alternative model arbitrarily well.
This is technically supported by the denseness property of this type of stochastic
models.

The risk associated with a particular portfolio is quantified using several criteria.
The most common one, is the probability that ruin happens within a given horizon.
Though being the principal quantity of interest, other important aspects related
to the reserve process have drawn continuous attention, most notably the deficit
at ruin and recovery time. One can argue that the bankruptcy does not really
occur until the deficit is important enough so that the company cannot recover
through a short term loan. The deficit at ruin is the amount of money the company
lacks to cover the claims when ruin occurs. It indicates the severity of the financial
insufficiency. Closely related to this is the concept of recovery time that represents
how long it takes until the company recovers to positive reserves, or even to required
minimum reserves levels. Other quantities that appear in ruin theory literature is
the distribution of the surplus just before the ruin, the deficit just after the ruin and
the time at which the ruin occurred. The joint distribution of these three events
gives detailed insight into how dangerous is a particular financial situation at a
given moment.

A general framework to analyse these indicators have been developed in a series
of papers by Gerber and Shiu (Gerber and Shiu (1997, 1998a,b)). A general utility
function dependent on time and severity of ruin or remaining surplus in case of the
survival of a given horizon is introduced and denoted as the penalty-reward function.
Its expected discounted present value is studied and the above mentioned quantities
(ruin and survival probabilities, time of ruin, etc.) are shown to be special cases.
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In this work we will focus our attention on characterisation and calculation of the
expected penalty-reward function in various scenarios.

The model that will be used in this work to describe the evolution of the reserves
in time is a Lévy diffusion process. It is general enough to accommodate the
realistic behaviour of the underlying phenomenon, as was argued by Morales (2007)
yet tractable, at least numerically, to obtain results relevant to possible practical
application.

Based on the model and the criteria indicators mentioned above, the insurance
company or the regulator body can adjust the controllable variables such as initial
reserves, premiums collected, and the investment decisions on the funds kept as
reserves, to assure sufficient financial resources to cover the liabilities corresponding
to a portfolio of its business. This dissertation sets up a theoretical framework to
analyse this decision process and provides quantitative tools to evaluate the impact
of possible decisions.

The evolution of the reserves is modelled by a stochastic differential equation

dUt = [c+ µt(σt, Yt, Ut)Ut] dt+
√
ρ2 + U2

t σ
2
t (Yt)dWt − dXt, U0 = u.

where the collection of premiums has two terms, the drift c and the volatility ρ, the
investment is made into an asset with drift µ and volatility σ, the claims are paid
according to a compound Poisson process Xt. The investment decision is governed
by the selection of the desired risk appetite σ, the drift µ is then implied by the
market investment possibilities assuming the maximum expected return at a given
volatility. All implied coefficients are subject to Markov process Yt that reflects the
state of all relevant macroeconomic variables.

The objective of risk control is expressed as the following quantity (a penalty-
reward function)

vσ (T, u, δi) = E
[
P (UT , YT ) · I{τ≥T} + L(Uτ , Yτ ) · I{τ<T}|U0 = u, Y0 = δi

]
.

This includes the probabilities of ruin (or survival), the deficit at ruin or the time
to ruin as special cases.

In order to determine the capital requirement the following equation needs to be
solved

For i = 1, . . . , n

1

2

(
σ2 + u2κ2 (u)

) d2

du2
Υi
α (u) + (c+ δiu)

d

du
Υi
α (u) +

+
n∑
j=1

qijΥ
j
α (u)− (α+ λ) Υi

α (u) + λ

u∫
0

Υi
α (u− x) f(x) dx+

+αP (u) + λ

∞∫
u

π (u− x) f(x) dx = 0.

where Υ is the Laplace-Carson transform of the penalty-reward function v. In our
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work we present a numerical method based on Chebyshev polynomial expansion to
obtain this solution.

For the optimal allocation problem, the following optimisation problem is solved

J(T, u, y) ≡ max
σ∈Π

vσ(T, u, y).

analyzing all the admissible investment opportunities Π.

In this work, we treat the problems related to risk theory and stochastic control
in the context of Lévy diffusion processes. It was argued that the Lévy diffusions
provide a fairly general framework covering varied modelisation paradigms from fi-
nance and insurance areas. In particular a compound Poisson process with Markov-
modulated parameters is analysed, nevertheless, general results include wider spec-
trum of stochastic models. The methods and the results obtained here are novel
and represent a pioneering work as discussed with leading investigators in the risk
theory field.

In the first part we present a new approximation procedure for the calculation
of the penalty-reward function in a risk theory context. The importance of the
contribution is underlined by the fact that previously no solution was available in
the general setting that has been proposed in this work.

The second part demonstrates the power of the approaches presented earlier by
solving a stochastic control problem of optimal investment of an insurer facing risk
management decisions in a context that has not been treated previously. An example
shows how maximum survival probability curve can be obtained for different levels
of initial conditions.

Besides the theoretical interest of the presented results we believe that these could
become relevant analytical tools in practical applications, in both regulatory bodies
and internal control processes within insurance companies. Sensible models that
are able to explain the behaviour and quantify the answers posed about solvency,
profitability or other nature of insurance business are needed in decision making
processes.

1 Introduction

The work presented here is part of the doctoral dissertation successfully de-
fended on 24th of September 2012 with professors Soren Asmussen nad Florin
Avram as part of the examining committee. Professor Soren Asmussen’s mer-
its, besides his vast investigation work, is John von Neumann Theory Prize
(2012) and Sobolev Gold Medal (2011).

Email addresses: Peter.Diko@uc3m.es (Peter Diko), usabel@emp.uc3m.es
(Miguel Usábel).
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Risk is inherent to the insurance business and so is the necessity to quantify it.
Insurance companies operating in a branch of insurance business need to cover
the claims resulting from a portfolio of the contracts. Since the amounts and
the timing of these claims is unknown in advance, the company needs to deter-
mine some regular patterns in the uncertain quantities to accrue appropriate
funds to cover its liabilities. The decision on the volume of these funds, often
called reserves, is a trade-off between the solvency and the efficiency of the
capital management. Insufficient reserves will lead a company to bankruptcy,
while excessive reserves mean a waste of capital resources and loss of com-
petitiveness in the market. The problem of solvency is not only important for
the insurance companies themselves but also for the regulator of the insurance
market. The requirement of a minimum obligatory reserves that have to be
withhold in a company operating in the insurance industry is indeed one of
the three pillars sustaining the new set of the regulatory requirements being
prepared for the European Union insurance market: Solvency II. The reliable
quantitative tools to assess the adequacy of the monetary requirements are
not only interesting on their own sake as a theoretical challenge but are also
essential for practical purposes, especially in view of recent international fi-
nancial crisis that, far from being exclusive to banking sector, may affect the
insurance industry as well.

In this work, a solvency problem of an insurance company is treated in a
long term horizon. We develop a method to determine the level of minimum
capital necessary to guarantee the solvency requirements (i.e. 99,5% capital
sufficiency). At the same time, we study the allocation of this capital. Depend-
ing on the risk appetite of the particular insurance company, this necessary
capital may be invested in a varying bundle of conservative assets (bonds) or
risky assets (stocks). This way, an answer to several crucial questions is given:
What is the reasonable level of capital necessary to guarantee the solvency of
a company? What is the optimal allocation of this capital? What is the risk
the company is undertaking at each moment as a function of its investment
strategy, capital availability, market situations and nature of its liabilities?

It is important to realise that the model we use in order to obtain the desired
answers to the questions stated previously is general enough to reflect the
complexity of the real situation scenarios and yet tractable enough to obtain
numerical answers with high precision.

The risk associated with a particular portfolio is quantified using several cri-
teria. The most common one, is the probability that ruin happens within a
given horizon. Though being the principal quantity of interest, other impor-
tant aspects related to the reserve process have drawn continuous attention,
most notably the deficit at ruin and recovery time. One can argue that the
bankruptcy does not really occur until the deficit is important enough so that
the company cannot recover through a short term loan. The deficit at ruin is
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the amount of money the company lacks to cover the claims when ruin occurs.
It indicates the severity of the financial insufficiency. Closely related to this
is the concept of recovery time that represents how long it takes until the
company recovers to positive reserves, or even to required minimum reserves
levels. Other quantities that appear in ruin theory literature is the distribu-
tion of the surplus just before the ruin, the deficit just after the ruin and the
time at which the ruin occurred. The joint distribution of these three events
gives detailed insight into how dangerous is a particular financial situation at
a given moment.

A general framework to analyse these indicators have been developed in a series
of papers by Gerber and Shiu (Gerber and Shiu (1997, 1998a,b)). A general
utility function dependent on time and severity of ruin or remaining surplus
in case of the survival of a given horizon is introduced and denoted as the
penalty-reward function. Its expected discounted present value is studied and
the above mentioned quantities (ruin and survival probabilities, time of ruin,
etc.) are shown to be special cases. In this work we will focus our attention
on characterisation and calculation of the expected penalty-reward function
in various scenarios.

The model that will be used in this work to describe the evolution of the
reserves in time is a Lévy diffusion process. It is general enough to accom-
modate the realistic behaviour of the underlying phenomenon, as was argued
by Morales (2007) yet tractable, at least numerically, to obtain results relevant
to possible practical application.

Based on the model and the criteria indicators mentioned above, the insurance
company or the regulator body can adjust the controllable variables such as
initial reserves, premiums collected, and the investment decisions on the funds
kept as reserves, to assure sufficient financial resources to cover the liabilities
corresponding to a portfolio of its business. This dissertation sets up a theo-
retical framework to analyse this decision process and provides quantitative
tools to evaluate the impact of possible decisions.

2 Establishing the capital requirement

In this section a problem of establishing the capital requirement necessary
to guarantee a given level of solvency is treated. We develop a method to
determine the capital necessary to cover the liabilities of an insurer as well as
answer some related questions mentioned above.
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2.1 Modelling framework

The evolution of the reserves is modelled by a stochastic differential equation

dUt = [c+ µt(σt, Yt, Ut)Ut] dt+
√
ρ2 + U2

t σ
2
t (Yt)dWt − dXt, U0 = u.

where the collection of premiums has two terms, the drift c and the volatil-
ity ρ, the investment is made into an asset with drift µ and volatility σ, the
claims are paid according to a compound Poisson process Xt. The investment
decision is governed by the selection of the desired risk appetite σ, the drift
µ is then implied by the market investment possibilities assuming the maxi-
mum expected return at a given volatility. All implied coefficients are subject
to Markov process Yt that reflects the state of all relevant macroeconomic
variables.

The objective of risk control is expressed as the following quantity (a penalty-
reward function)

vσ (T, u, δi) = E
[
P (UT , YT ) · I{τ≥T} + L(Uτ , Yτ ) · I{τ<T}|U0 = u, Y0 = δi

]
.

This includes the probabilities of ruin (or survival), the deficit at ruin or the
time to ruin as special cases.

In order to determine the capital requirement the following equation needs to
be solved

For i = 1, . . . , n

1

2

(
σ2 + u2κ2 (u)

) d2

du2
Υi
α (u) + (c+ δiu)

d

du
Υi
α (u) +

+
n∑
j=1

qijΥ
j
α (u)− (α + λ) Υi

α (u) + λ

u∫
0

Υi
α (u− x) f(x) dx+

+αP (u) + λ

∞∫
u

π (u− x) f(x) dx = 0.

where Υ is the Laplace-Carson transform of the penalty-reward function v.
In our work we present a numerical method based on Chebyshev polynomial
expansion to obtain this solution.

The details about the development of the numerical procedure is deferred to
the appendix. In the following section we present important examples that
illustrate the method.
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2.2 Applications of the method

Υi
t (u) is the Laplace-Carson transform in time of the expected penalty-reward

function in a jump-diffusion process. This function has a probabilistic interpre-
tation as the penalty-reward function in an exponentially killed time horizon
Hα. The ultimate case is also unveiled by a straightforward application of the
Tauberian theorem

lim
α→0

Υi
α = lim

α→0

∞∫
0

αe−αtφit (u) dt=−φi0 (u) + lim
α→0

∞∫
0

e−αt
d

dt
φit (u) dt (1)

=−φi0 (u) +

∞∫
0

d

dt
φit (u) dt = φi∞ (u) .

For the more challenging finite time horizon penalty-reward, a numerical inver-
sion of the Laplace transform recovers the original function φiα (u), see Usábel
(1999). The relationship C (s) = sL (s) between the Laplace transform L (s)
and the Laplace-Carson transform C (s) applies.

2.2.1 Ultimate Survival Probability

The survival probability is a special case of the function Υi
α (u). For π (x) ≡ 0

and P (x) ≡ 1

φi∞ (u) = E [I (τ =∞) | U0 = u,∆0 = δi] .

The premium collection rate is c = 11, the volatility of premium accruals
σ2 = 0.04, the intensity of claim arrivals λ = 4, and claims follow a Gamma
distribution Gamma (5; 2). The interest rate is assumed to be fixed at 3%
with no volatility (σ2

r = 0). The ultimate survival probability φi∞ (u) is con-
sidered in this context and thus α = 0 as motivated by (1). For the change
of variables, the function h (v) = − ln (1− v) was used. The following table
shows the approximations for various starting reserves and precision levels
(order of Chebyshev polynomials).
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N − precision level

u

200 250 300 350 400 450

1 0.318081594 0.318079845 0.318079373 0.318079219 0.318079161 0.318079137

2 0.435631392 0.43562899 0.435628343 0.435628132 0.435628053 0.43562802

5 0.753759689 0.753755453 0.753754322 0.753753953 0.753753813 0.753753756

10 0.987580029 0.987573342 0.987571486 0.98757086 0.987570616 0.987570511

15 0.999982762 0.999973643 0.99997087 0.999969864 0.999969447 0.999969256

2.2.2 Markov-modulated Interest Rate Structure

The second example presents an interest rate structure driven by a Markov
process and a reserve dependent volatility. Let us assume two regimes (high
interest rate and low interest rate) comprising several interest rate levels. The
intensity matrix Q, characterising the Markov process, governs the evolution
of the interest rate:

Q =

δi 1% 2% 7% 8% 9%

1%

2%

7%

8%

9%



−2 2 0 0 0

1.9 −2 0.1 0 0

0 0.1 −3 2.9 0

0 0 1 −3 2

0 0 0 3 −3



.

The low interest rate regime embeds two levels 1% and 2% while the high
interest rate regime considers three levels 7%, 8%, and 9%. Let the premium
collection rate be 1 with the volatility of premium accruals 0.25, the intensity
of claims arrival 1

3
(one claim every three time periods on average), the dis-

tribution of claim size lognormal lnN (0.5; 1). The volatility of the return on

investment, dependent on the reserves level, is κ2(u) = σ2
r

u
, as motivated in the

introduction, with σ2
r = 0.81. The probability of survival of a random horizon

of 20 years on average is approximated (α = 0.05, π (x) ≡ 0 and P (x) ≡ 1).
Regarding the change of variables, the function h (v) = − ln (1− v) was used
again. In the following table the survival probabilities conditional on various
initial interest rates and starting reserve levels are presented.
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N− number of polynomials used for the approximation

u δi 250 300 350 400 450

1

1%

2%

7%

8%

9%

0.144815222

0.146306443

0.188906830

0.190954404

0.191794388

0.144815829

0.146307016

0.188906028

0.190953560

0.191793534

0.144815469

0.146306644

0.188905174

0.190952690

0.191792659

0.144814893

0.146306063

0.188904470

0.190951981

0.191791949

0.144814330

0.146305499

0.188903928

0.190951439

0.191791406

10

1%

2%

7%

8%

9%

0.676382452

0.689328522

0.855051985

0.865060563

0.870653629

0.676390197

0.689335954

0.855051380

0.865059778

0.870652847

0.676389970

0.689335662

0.855048719

0.865057124

0.870650244

0.676387433

0.689333147

0.855045981

0.865054446

0.870647620

0.676384493

0.689330254

0.855043652

0.865052186

0.870645408

15

1%

2%

7%

8%

9%

0.845057051

0.864897819

0.977203365

0.981995614

0.984633935

0.845074744

0.864914116

0.977208141

0.981999965

0.984638092

0.845078953

0.864918001

0.977208683

0.982000462

0.984638607

0.845078338

0.864917442

0.977207860

0.981999717

0.984637937

0.845076134

0.864915420

0.977206693

0.981998658

0.984636962

20

1%

2%

7%

8%

9%

0.949938439

0.967826609

0.999402042

0.999715443

0.999823318

0.949967119

0.967849612

0.999408967

0.999721564

0.999828873

0.949978339

0.967858765

0.999411851

0.999724130

0.999831216

0.949982157

0.967861995

0.999412960

0.999725128

0.999832138

0.949982771

0.967862632

0.999413267

0.999725416

0, 999832412

25

1%

2%

7%

8%

9%

0.993079369

0.998186486

0.999986074

0.999988832

0.999990114

0.993110103

0.998205547

0.999991170

0.999993290

0.999994091

0.993125249

0.998215150

0.999993799

0.999995592

0.999996147

0.993132811

0.998220073

0.999995183

0.999996805

0.999997232

0.993136514

0.998222575

0.999995911

0.999997445

0.999997804

Figure 1 unveils the impact of the initial conditions on the survival proba-
bility. Each curve represents different initial interest rate, the lowest curve
corresponds to ∆0 = 1% and the uppermost to ∆0 = 9%. The horizontal axis
shows the initial reserves level U0, the vertical axis the survival probability
Υi
α (u).
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Fig. 1. Survival probability curves as a function of initial reserves. Each curve rep-
resents different initial interest level, the lowest curve corresponding to 1%, the
uppermost to 9%.

3 Capital allocation problem

Once the capital requirement has been established, the insurance company
needs to decide on its allocation. This itself depends on the risk apetite of
the insurer and affects the solvency level. Conservative decisions lead to more
stable situations, aggressive decissions (investments into risky assets) usually
reward higher investment returns but at higher risk.

3.1 The Model

The risk process driving the reserves of an insurance company is assumed to
evolve according to the following stochastic differential equation

dRt = cdt+ ρdW
(1)
t −Xt, R0 = u.

This represents premiums collected at constant rate c perturbed by a diffusion
with volatility ρ and claims payment that follows a compound Poisson Xt

process with intensity λ and jump density function f . W
(1)
t is a standard

Wiener process independent of Xt.

It is assumed that reserves are invested into a portfolio of assets with expected
return µ and volatility σ. The insurance company selects a combination of re-
turn and volatility amongst its investment possibilities. The investment pos-
sibilities for an insurer are modelled subject to two factors: the general state
of economic environment, and the level of funds available for investment. The

11



economic environment is represented by a homogeneous Markov process Yt
with finite state space {δ1, . . . , δn} and intensity matrix Q = {qij} and sum-
marises macroeconomic factors that determine investment options such as
risk-free rate, inflation rate or economic cycle. The level of funds available
for investment Ut conditions the investment options due to transaction costs,
divisibility constraints or as a consequence of rational behaviour of market
agents as argued by Berk and Green (2004).

Assuming rational behaviour of the investor only Pareto optimal pairs of (µ, σ)
will be considered. That is, for a given level of expected return the company
would choose the smallest possible level of volatility and, similarly, for a given
value of volatility the highest possible level of expected return. Therefore, we
can assume the existence of a function reflecting the efficient frontier of the
investment possibilities that relates the parameters µ and σ on one-to-one
basis. The natural point of view of an insurer is to control the level of risk or
the selection of its apetite for risk. For that reason, the volatility is assumed to
be chosen based on the parameters of the model and the economic environment
Yt. The value of the corresponding expected return µ is a function of the chosen
volatility and the investment opportunities of the insurer (Yt, Ut).

The stochastic differential equation representing the total reserves process Ut
including investment is expressed as

dUt = [c+ µt(σt, Yt, Ut)Ut] dt+
√
ρ2 + U2

t σ
2
t (Yt)dWt − dXt, U0 = u. (2)

In this work it is assumed that µt is a continuous function of time.

3.2 Stochastic Control

Once the insurer selects the desired level of volatility σt(Yt) the correspond-
ing expected return µt(σt, Yt, Ut) is implied. This way the control variable of
the optimisation problem has been reduced to the selection of σt. The objec-
tive function v to be maximised is expressed as an expected penalty-reward
function

vσ (T, u, δi) = E
[
P (UT , YT ) · I{τ≥T} + L(Uτ , Yτ ) · I{τ<T}|U0 = u, Y0 = δi

]
(3)

where τ = inf {t : Ut /∈ S} is the exit time of the process Ut form the solvency
region S (typically S = [0,∞))

The concept of the expected penalty-reward function presented in Gerber and
Shiu (1997) and Gerber and Shiu (1998a) is a general framework comprising
several quantities of interest as special cases, such as the time to ruin, the
amount at and immediately prior to ruin or survival probabilities. Let us
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denote J(T, u, y) the optimal value of the maximisation problem

J(T, u, y) ≡ max
σ∈Π

vσ(T, u, y). (4)

The set Π contains all admissible strategies σt, that is the strategies for which
a solution of (2) exists. We will focus only on Markov strategies, that is, σt
depends on the process {Us}0≤s≤∞ only through Ut. Suppose that σ∗ is the

maximising value for vσ(T, u, y) then J(T, u, y) = vσ
∗
(T, u, y).

The details about the development of the numerical procedure is deferred to
the appendix. In the following section we present important examples that
illustrate the method

Solving the problem (4) directly is not feasible since an explicit expression for
vσ(T, u, y) is not available in the most general case. However, in order to follow
the dynamic programming approach, one can introduce the starting time t an
write the value function as

J(t, T, u, y) ≡ max
σ∈Π

vσ(t, T, u, y).

where

vσ (t, T, u, δi) = E
[
P (UT , YT ) · I{τ≥T} + L(Uτ , Yτ ) · I{τ<T}|Ut = u, Yt = δi

]
.

Then the Hamilton-Jacobi-Bellman equation that the value function J(t, T, u, y)
satisfies is

sup
σ∈Π

−∂J∂t +
1

2
(ρ2 + σ2(δi)u

2)
∂2

∂u2
J + (c+ µ(σ(δi), δi, u)u)

∂

∂u
J

+
n∑
j=1

qijJ (t, T, u, δi) + λ

∞∫
0

(J (t, T, u− x, δi)− J (t, T, u, δi)) f (x) dx

 = 0.

(5)

This equation is too complex to be solved analytically in the most general
case. The optimal strategy σ∗(δi) is found for each δi differentiating (5) with
respect to σ(δi) as a solution to

σ(δi)u
2J

(uu)
1 +

d

dσ
µ (σ, δi, u)uJ

(u)
1 = 0,

where J
(u)
1 and J

(uu)
1 is the first and the second derivative with respect to u.

In case of a linear relationship between volatility σ and expected return µ, as
for example in the case of CAPM efficient frontier, this reduces to

σ(δi)u
2J

(uu)
1 + µ (δi, u)uJ

(u)
1 = 0 (6)

13



whence

σ∗(δi) = −µ (δi, u)
J

(u)
1

uJ
(uu)
1

.

In particular, assuming that the investment possibilities do not depend on
available capital one gets

σ∗(δi) = −µ (δi)
J

(u)
1

uJ
(uu)
1

a solution found in Hipp and Plum (2000) and Bauerle and Rieder (2004). The
latter authors realise that the optimal strategy is constant for CRRA utility
functions and linear specification of the underlying risk process. In general,
however, the solution is hard to find. Irgens and Paulsen (2004) study the
optimal investment (and other solvency variables) under exponential utility,
Yang and Zhang (2005) give an explicit solution for exponential utility under
simplified market model.

In this work we present a numerical method to approximate the value function
J(T, x, y) ≡ J(0, T, x, y). The idea of Carr (1998) to approximate a fixed
horizon T by a series of consecutive exponential intervals (random horizon
with Erlang-n distribution) will be applied assuming that the strategy σ∗n is
constant on each interval. It will be shown that this solution converges to the
optimal solution as the number of intervals n approaches infinity.

The details about the development of the numerical procedure is deferred to
the appendix. In the following section we present the example that illustrates
the method.

3.3 Example

In this section we will illustrate the application of the theorems proved above.
The risk process considered follows

dRt = cdt+ ρdWt − dXt, R0 = u (7)

where Xt is a compound Poisson process with intensity λ = 1
3

and lognormal
claim size distribution LN (1, 2). This process represents claims collected at a
constant rate c = 3 perturbed by a diffusion with volatility ρ2 = 0.25 that can
be interpreted as aggregate small claims and claims collection accruals. The
Poisson process then represents catastrophic claims (with average occurrence
once every 3 periods) with lognormal (heavy-tail) severity distribution. The

investment opportunities will be represented by a riskless asset dS
(1)
t = rdt

and a risky asset dS
(2)
t = νdt + ξdWt. The proportion invested into a risky

asset will be denoted as π. No short-selling is allowed, therefore π ∈ [0, 1].
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The parameters of available assets are taken as follows r = 1, ν = 2, ξ = 1.
Altogether, the reserve process, including investment, can be written as

dUt = [c+ (r + π(ν − r))Ut] dt+
√
ρ2 + π2ξ2U2

t dWt − dXt U0 = u (8)

In the view of the equation (2) this implies the following linear relationship
between the volatility σ = πξ and expected return on investment µσ

µ(σ) = r + π(ν − r) = r + σ
ν − r
ξ

. (9)

Notice that no Markov modulation is considered in this example (what is
equivalent to taking Yt = constant) as no further insight would be added
besides more complex notation. The penalty-reward function considered is
P (u) = 1, L(u) = 0

vσ (T, u) = E
[
I{τ≥T}|U0 = u

]
= P [τ ≥ T |U0 = u] ≡ ϕ(u, T ) (10)

what represents the survival probability. The optimisation problem (4) then
turns to maximisation of survival probability in a fixed horizon T . Similar
problems have been treated in Hipp and Plum (2003) and others but no closed
form solution exist. Following the development presented above, in order to
be able to apply the iterative scheme from Theorem 6.3, the fixed horizon T
will be approximated by a series of n exponential horizons with parameter n

T

ϕ∗(u, α) =

∞∫
0

ϕ(u, T )αe−αTdt. (11)

The fixed horizon T will be approximated by a series of n exponential horizons
with parameter n

T
, whereas in each of the horizons the problem to be solved

is
Ji(

n

T
, u) ≡ max

π∈Π
Υσ(α, u, Ji−1). (12)

with J0 = P = 1. As proved in the theorem 6.4, to achieve convergence, it is
sufficient to consider strategies π constant on each exponential interval. The
function Υ for a constant π satisfies satisfies the following integro-differential
equation

1

2
(ρ2 + π2ξ2u2)

∂2

∂u2
Υ + (c+ (r + π(ν − r))u)

∂

∂u
Υ

− (λ+ α)Υ + λ

u∫
0

Υ(α, u− x)f(x)dx+ αJi−1(u) = 0. (13)

as derived in section 2 where we also propose an approximation method by
chebyshev polynomials to calculate the solution to this problem. Since feasible
strategies are bounded it is possible to evaluate Υ for a grid of possible values
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of π ∈ [0, 1] and take the maximum value as an approximation to the solution
of (12). In this example we took equidistant grid of granularity 0.1. The table
1 shows the results of approximated value function J(u, T ) for various values
of initial reserves u and number of exponential intervals n that approximate
the fixed horizon T = 10. The convergence is achieved to up to 3 decimal
places for as few as 100 intervals.

n− number of intervals

u

1 2 5 10 20 50 100

0.1 0.354370 0.306438 0.287529 0.288241 0.291537 0.295415 0.297638

0.5 0.413865 0.361477 0.341409 0.341409 0.346224 0.349630 0.350752

1 0.427487 0.377567 0.359446 0.361308 0.365365 0.369168 0.370406

2 0.456898 0.412100 0.397678 0.400614 0.405446 0.410055 0.411589

5 0.570571 0.542250 0.536840 0.541189 0.547234 0.554050 0.556663

10 0.886121 0.882775 0.883860 0.885951 0.888517 0.891156 0.891655

15 0.999024 0.998997 0.999008 0.999027 0.999049 0.999072 0.999074

Figure 2 depicts J(u, T ) (maximal survival probability in horizon T = 10) as a
function of u for n = 1, 2, 5, 10, 20, 50, 100. The optimal strategy that leads to
the value function can be recovered using the relationship between the value
function and the optimal strategy given by (6).

4 Conclusions

In this work, we have treated the problems related to risk theory and stochastic
control in the context of Lévy diffusion processes. It was argued that the
Lévy diffusions provide a fairly general framework covering varied modelisation
paradigms from finance and insurance areas. In particular a compound Poisson
process with Markov-modulated parameters has been analysed, nevertheless,
general results include wider spectrum of stochastic models.

In the first part we have presented a new approximation procedure for the
calculation of the penalty-reward function in a risk theory context. The impor-
tance of the contribution is underlined by the fact that previously no solution
was available in the general setting that has been proposed in this work.

The second part demonstrates the power of the approaches presented earlier by
solving a stochastic control problem of optimal investment of an insurer facing
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Fig. 2. Convergence of the maximal survival probability in the horizon T = 10 as a
function of the initial reserve.

risk management decisions in a context that has not been treated previously.
An example shows how maximum survival probability curve can be obtained
for different levels of initial conditions.

Besides the theoretical interest of the presented results we believe that these
could become relevant analytical tools in practical applications, in both regu-
latory bodies and internal control processes within insurance companies. Sen-
sible models that are able to explain the behaviour and quantify the answers
posed about solvency, profitability or other nature of insurance business are
needed in decision making processes.
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6 Appendix

6.1 Capital Requirement Calculation

The risk process presented by Gerber (1970) extends the classical model of risk
theory introducing a Brownian diffusion. The total claims follow a compound
Poisson process {Xt, t ≥ 0} with Lévy measure λf (x) dx, λ being the intensity
of arrivals and f the density of jumps. The collection of premiums is driven
by a Wiener process W c

t independent of Xt with drift c and volatility σ, thus
the perturbed risk process with initial surplus u is given by

dRt = cdt+ σdW c
t − dXt, R0 = u. (14)

This process has been considered by Dufresne and Gerber (1991) where a
defective renewal equation was derived for the probability of ruin ψ (u) =
Pr (τ <∞) where τ = inf {t ≥ 0 : Rt < 0}. A review of the research on this
type of processes can be found in Asmussen and Albrecher (2010), Chapter 11.
Generalisation of the model are treated in Li and Garrido (2005), Sarkar and
Sen (2005), and Morales (2007), whereas Ren (2005) gives explicit formulae to
calculate the ruin probability and related quantities for phase-type distributed
claims.

Let us now allow the insurer to invest the reserves Ut into an asset with time-
dependent Markov modulated return rate (drift) ∆t and volatility κ (Ut), that
possibly depends on the amount invested Ut, driven by a Wiener process W I

t

independent of the risk process Rt

dUt =
(
∆tdt+ κ (Ut) dW I

t

)
Ut + dRt, U0 = R0 = u (15)

The drift parameter ∆t is governed by a finite state homogeneous Markov
process with state space {δ1, . . . , δn}, intensity matrix Q = (qij)n×n and initial
state δi. For example, ∆t can be used to model the risk free rate announced by
a central bank that evolves according to the Markov process by, for instance,
25 basis points jumps. The state space would be in this case e.g.,

1.00%, 1.25%, 1.50%, 1.75%, 2.00%, . . . , 9.00%.

This environment offers considerable versatility in capturing the evolution of
interest rates since any diffusion model to forecast the yield curve can be
approximated arbitrarily well by continuous time Markov chains, see Kushner
and Dupuis (1992). Variation of the volatility according to the size of the funds
invested is justified, for example, by Berk and Green (2004) as an implication of
their study of the performance of mutual funds and resulting rational capital

flows. A particular shape of κ suggested in the cited paper, κ (u) =
σr√
u

,
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yields a surplus process in the form of an affine diffusion that was studied
by Avram and Usábel (2008) in this context. Many practical ideas support a
fund-dependent volatility, for instance the possibility to obtain more efficient
portfolios, due to transaction costs, when more money is available. Model (15)
is a generalisation of the process considered most frequently in the literature
where the return rate and the volatility are constant in time, ∆t = δ, κ(·) = σr,
like in Paulsen (1993), Paulsen and Gjessing (1997), Wang (2001), Ma and Sun
(2003), Gaier and Grandits (2004), Grandits (2005), Cai and Yang (2005),
Wang and Wu (2008).

The stochastic differential equation (15) can be arranged into

dUt = (c+ ∆tUt) dt+
√
σ2 + κ2 (Ut)U2

t dWt − dXt (16)

with initial condition (U0,∆0) = (u, δi). The expected penalty-reward func-
tion, see Gerber and Landry (1998), is introduced

φit (u) = E [π (Uτ ) I (τ ≤ t) + P (Ut) I (τ > t) | U0 = u,∆0 = δi] (17)

where τ = inf {s ≥ 0 : Us < 0}. If ruin occurs before the time horizon t, the
penalty π (Uτ ) applies to the overshoot Uτ at the ruin. Otherwise, the reward
function P (Ut) applies to the reserves at time t. The concept of the expected
penalty-reward function presented in Gerber and Shiu (1997) and Gerber and
Shiu (1998a) is a quite general framework comprising several quantities of
interest as a special case, such as the time to ruin, the amount at and imme-
diately prior to ruin or survival probabilities.

For further analysis the smoothed version of the function φit(u) will be con-
sidered, namely its Laplace-Carson transform in time defined as

Υi
α (u) =

∞∫
0

αe−αtφit (u) dt.

Further, letting Hα be an exponentially distributed random variable with pa-
rameter α, the former expression may be viewed as a penalty-reward function
with an exponentially killed time horizon, see expression (6) in Avram and
Usábel (2008),

Υi
α (u) =

∞∫
0

αe−αtφit (u) dt = E
(
φiHα (u)

)
(18)

= E (π (Uτ ) I (τ ≤ Hα) + P (UHα) I (τ > Hα) | U0 = u,∆0 = δi)

where the last equality comes from substituting the definition of φit (u), in
(17).
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The function Υi
α (u) is analytically more tractable than the original function

while, at the same time, retains a probabilistic interpretation as a penalty-
reward function considering an exponential random time horizon Hα.

6.1.1 Integro-differential System

This section presents further treatment of the transformed expected penalty-
reward function defined by (18). The function Υi

α (u) is dependent on the
initial reserves U0 = u and the starting return rate ∆0 = δi. Since the pro-
cess driving the return rate ∆t has a finite state space, the number of ini-
tial conditions is also finite. Therefore, one can consider the set of functions
Υα (u) = (Υ1

α (u) ,Υ2
α (u) , . . .Υn

α (u)), each corresponding to different start-
ing return rate from the state space {δ1, . . . , δn}. Below, a Volterra integro-
differential system of equations for the functions Υ1

α (u) ,Υ2
α (u) , . . .Υn

α (u) is
derived and, applying the result of Le and Pascali (2009), sufficient conditions
for the existence of the solution are established.

Theorem 6.1 For all α ≥ 0, functions Υi
α : [0,∞) → R defined in (18)

satisfy the following system of integro-differential equations

For i = 1, . . . , n

1

2

(
σ2 + u2κ2 (u)

) d2

du2
Υi
α (u) + (c+ δiu)

d

du
Υi
α (u) +

+
n∑
j=1

qijΥ
j
α (u)− (α + λ) Υi

α (u) + λ

u∫
0

Υi
α (u− x) f(x) dx+

+αP (u) + λ

∞∫
u

π (u− x) f(x) dx = 0. (19)

Given that lim
u→∞

P (u) exists, σ > 0 and assuming positive security loading for

the reserve process (15), the boundary conditions of the system are

Υi
α (0) =π (0−) (20)

lim
u→∞

Υi
α (u) = lim

u→∞
P (u) ≡ P (∞)

Moreover, if f ∈ C2 [0,∞), P (u) and κ (u) are continuous for u ≥ 0 and π (u)
integrable, then the system of equations (19) has a solution Υi

α ∈ C2 [0,∞),
i = 1, . . . , n.

Proof First, a straightforward application of Ito’s lemma yields the infinites-
imal generator of the process Ut, which applied to the functions φit (u), i =
1, ..., n defined by (17), yields
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Aφit (u) =
1

2

(
σ2 + u2κ2 (u)

) d2

du2
φit (u) + (c+ δiu)

d

du
φit (u) +

n∑
j=1

qijφ
j
t (u) +

+λ

∞∫
0

(
φit (u− x) − φit (u)

)
f(x) dx.

Functions φit (u) satisfy the Fokker-Planck equation, see e.g. Risken (1996),

Aφit (u)− ∂φit (u)

∂t
= 0 (21)

with boundary conditions

φi0 (u) =P (u) u > 0 (22a)

φit (u) =π (u) u < 0 and t ≥ 0 (22b)

for each i = 1, 2 . . . , n. Using (22b) the following holds

∞∫
0

φit (u− x) f(x) dx =

u∫
0

φit (u− x) f(x) dx+

∞∫
u

π (u− x) f(x) dx. (23)

Substituting the infinitesimal generator and (23) into the Fokker-Planck equa-
tion yields

1

2

(
σ2 + u2κ2 (u)

) d2

du2
φit (u) + (c+ δiu)

d

du
φit (u) +

n∑
j=1

qijφ
j
t (u)− λφit (u) +

+λ

u∫
0

φit (u− x) f(x) dx+ λ

∞∫
u

π (u− x) f(x) dx− ∂φit (u)

∂t
= 0.

The system (19) is obtained taking the Laplace-Carson transform with respect
to t on both sides and expanding the last term integrating by parts

∞∫
0

αe−αt
∂φit (u)

∂t
dt = −αP (u) + α

∞∫
0

αe−αtφit (u) dt = −αP (u) + αΥi
α (u)

where the first boundary condition (22a) of the Fokker-Planck equation was
used.

Concerning the boundary conditions of the integro-differential system, when
the initial reserves are 0 and σ > 0, the presence of the Wiener fluctuation
in premiums causes immediate crossing of 0 level – see for example the proof
of Theorem 2.1 in Paulsen and Gjessing (1997). The second condition is the
asymptotic case u→∞ when under the assumption of positive security load-
ing lim

u→∞
Υi
α (u) = lim

u→∞
P (u) <∞.
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To prove the existence of the solution, an equivalent system will be considered.
A change of variable is now introduced in the System (19), h (v) = u, where
h : [0, 1] → [0,∞) is an arbitrary strictly monotone, twice continuously dif-
ferentiable function. The system can now be written in terms of the functions
Γiα (v) = Υi

α (h (v)).

For i = 1, . . . , n

A (v)
d2

dv2
Γiα (v) +Bi (v)

d

dv
Γiα (v) +

n∑
j=1

qijΓ
j
α (v)−

− (α + λ) Γiα (v) + λ

v∫
0

Γiα (y) f (h (v)− h (y))h′ (y) dy +

+λS (v) + αP (h (v)) = 0 (24)

where

A (v) =
σ2 + h2 (v)κ2 (h (v))

2 [h′ (v)]2

Bi (v) =
c+ δih (v)

h′ (v)
− [σ2 + h2 (v)κ2 (h (v))]h′′ (v)

2 [h′ (v)]3

S (v) =

1∫
v

π (h (v)− h (y)) f (h (y))h′ (y) dy

with boundary conditions

Γiα (0) =π (0−) (25)

Γiα (1) = lim
u→∞

P (u) .

Here h′ and h′′ denote the first and the second derivative of function h. Finally,
by integration

Γiα (s) = Γiα (0) +

s∫
0

h′ (v)

Bi (v)

H (v)− λ
v∫

0

f (h (v)− h (y))
h′ (y)

h′ (v)
Γiα (y) dy

 dv

H (v) =
−1

h′ (v)
[A (v)

d2

dv2
Γiα (v) +

n∑
j=1

qijΓ
i
α (v)−

− (α + λ) Γiα (v) + αP (h (v)) + λS (v)].

The existence of the solution Γiα ∈ C2 [0, 1] is guaranteed by Theorem 2 in Le

and Pascali (2009), as H(v) is a continuous function and f (h (v)− h (y)) h′(y)
h′(v)

is integrable. The integrability is immediate as f is a density function and
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h′(y)
h′(v)

is a bounded function of y on [0, v] for all v. This implies that Υi
α (u) =

Γiα (h−1 (u)) , a solution to (19), exists and Υi
α ∈ C2 [0,∞). 2

6.1.2 Numerical Solution

The second order system of integro-differential equations (19) that charac-
terises the Laplace-Carson transform of the expected penalty-reward function
(18) does not have an explicit solution. In Akyuz-Dascioglu and Sezer (2005)
and Akyuz-Dascioglu (2007) a numerical method was proposed for fairly gen-
eral families of Fredholm-Volterra integro-differential systems of higher order
which include the system treated in this chapter as a special case. The authors
approximate the solution to the system by shifted Chebyshev polynomials on
the interval [0, 1]. A collocation method is used to fit the Chebyshev expan-
sion of the solution. In order to adapt the procedure to system (19), we need
to transform the domain of the unknown functions Υi

α, as was done in the
proof of Theorem 6.1, from the interval [0,∞) to [0, 1]. First, the solution Γiα
of the transformed system is found and then, applying the inverse transform,
the functions of interest Υi

α are recovered. The convergence of the method is
treated in the original article along with the illustrative examples that compare
the approximation and the exact solutions showing outstanding performance.
The following section describes the method adapted to the setting of this
chapter to keep it self-contained. The presentation follows the development in
Akyuz-Dascioglu and Sezer (2005).

6.1.3 Approximation by Chebyshev Polynomials

In matrix notation the transformed system is given by

P2 (v)
d2

dv2
Γα (v) +P1 (v)

d

dv
Γα (v) + P0 (v) Γα (v) =

= g (v) +

v∫
0

K (v, y) Γα (y) dy (26)

where Γα (v) is the column vector of unknown functions

Γα (v) = (Γ1
α (v) ,Γ2

α (v) , . . . ,Γnα (v))
>

. Coefficient matrices are as follows
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P2 (v) =
A (v)

h′ (v)
· In

P1 (v) =h′ (v)−1 diag (Bi (v))

P0 (v) =h′ (v)−1 [Q− (α + λ) · In]

K (v, y) =−λf (h (v)− h (y))
h′ (y)

h′ (v)
· In

g (v) =−h′ (v)−1 [αP (h (v)) + λS (v)] · 1n

S (v) =

1∫
v

π (h (v)− h (y)) f (h (y))h′ (y) dy,

where In is the identity matrix of order n × n and 1n is the column vector
of ones of order n× 1. The transform is performed with an arbitrary strictly
monotone, twice continuously differentiable function h : [0, 1]→ [0,∞).

The aim of the method is to approximate the solution by a truncated Cheby-
shev expansion

Γiα (v) =
N∑
r=0

a∗irT
∗
r (v) i = 1, . . . , n

on the interval [0, 1], where T ∗r (v) are shifted Chebyshev polynomials of the
first kind (see, for example, Boyd (2001)) and a∗ir are the unknown coefficients
to be determined. In matrix notation

Γiα (v) = T ∗ (v)A∗i ,

where T ∗ (v) = (T ∗0 (v) , T ∗1 (v) , . . . , T ∗N (v)) is a row vector of shifted Cheby-
shev polynomials up to degree N and A∗i = (a∗i0, a

∗
i1, . . . a

∗
iN)> is a column

vector of the corresponding coefficients. Similarly, the n − th derivative of
Γiα (v) can be expanded into

dn

dvn
Γiα (v) = T ∗ (v)A

∗(n)
i . (27)

The link between coefficients A
∗(n)
i and A∗i from Sezer and Kaynak (1996) is

A
∗(n)
i = 4nMnA∗i , (28)

where
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M =



0 1
2

0 3
2

0 5
2
· · · N

2

0 0 2 0 4 0 · · · 0

0 0 0 3 0 5 · · · N
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · N

0 0 0 0 0 0 · · · 0


(N+1)×(N+1)

for odd N

M =



0 1
2

0 3
2

0 5
2
· · · 0

0 0 2 0 4 0 · · · N

0 0 0 3 0 5 · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · N


(N+1)×(N+1)

for even N

yields the expansion of the n− th derivative dn

dvn
Γiα (v) in terms of Chebyshev

coefficients A∗i .

On the other hand, functions Kij (v, y) can be expanded in variable y into a
Chebyshev series

Kij (v, y) =
N∑
r=0

k∗ijr (v)T ∗r (y)

where the Chebyshev coefficients k∗ijr are functions of v. Using matrix notation
for convenience

Kij (v, y) = k∗ij (v)T ∗ (y)> , (29)

where k∗ij is the row vector of coefficients determined by Clenshaw-Curtis
quadrature, see Clenshaw and Curtis (1960).

Substituting (27), (28) and (29), the i − th equation (i = 1, . . . , n) of the
system (26) is finally obtained:

h′ (v)−1A (v) 16M2T ∗ (v)A∗i + h′ (v)−1Bi (v) 4MT ∗ (v)A∗i +

+h′ (v)−1

 n∑
j=1

qij − (α + λ)

T ∗ (v)A∗i = gi (v)−
v∫

0

k∗ij (v)T ∗ (y)> T ∗ (y)A∗idy.

The matrix of the inner product of Chebyshev polynomials
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Z∗ (v) =
(
z∗ij (v)

)
≡

v∫
0

T ∗ (y)> T ∗ (y) dy =

=
1

2

2v−1∫
−1

T (x)> T (x) dx =
1

2
(zij (2v − 1)) =

1

2
Z (2v − 1)

can be computed as shown in Akyuz-Dascioglu (2007), where

zij (v) =
1

4



2v2 − 2 for i+ j = 1

Ti+j+1(v)

i+j+1
− Ti+j−1(v)

i+j−1
− 1

i+j+1
+ 1

i+j−1
+ v2 − 1 for |i− j| = 1

Ti+j+1(v)

i+j+1
+ T1−i−j(v)

1−i−j + T1+i−j(v)

1+i−j + T1−i+j(v)

1−i+j + 2
(

1
1−(i+j)2

+ 1
1−(i−j)2

)
for even i+ j

Ti+j+1(v)

i+j+1
+ T1−i−j(v)

1−i−j + T1+i−j(v)

1+i−j + T1−i+j(v)

1−i+j − 2
(

1
1−(i+j)2

+ 1
1−(i−j)2

)
for odd i+ j

,

which yields the system

h ′ (v)−1A (v) 8M2T ∗ (v)A∗i + h′ (v)−1Bi (v) 4MT ∗ (v)A∗i + (30)

+h′ (v)−1

 n∑
j=1

qij − (α + λ)

T ∗ (v)A∗i = gi (v)− k∗ij (v)Z∗ (v)A∗i ,

for all i = 1, . . . , n. The only unknown values are Chebyshev expansion coef-
ficients A∗i . The collocation method proposed by the authors fits the solution
through the collocation points

xs =
1

2

(
1 + cos

(
s

N
π
))

, s = 1, 2, . . . , (N − 1).

Each of the N−1 collocation points xs is substituted into the system (30) and
yields n linear equations of unknown variable A∗i , whence n(N − 1) equations
are obtained. The boundary conditions (25) for i = 1, . . . , n,

T ∗ (0)A∗i =π (0−)

T ∗ (1)A∗i =P (∞) ,

yield another 2n equations. A linear system of n (N + 1) equations is con-
structed and solved for the Chebyshev coefficients A∗i . Once the approxima-

tion Γ̃iα (v) =
N∑
r=0

a∗irT
∗
r (v) is obtained, the relationship between the solution

of the transformed and the original system from the Theorem 6.1 yields the
approximation of the expected penalty-reward function Υ̃i

α (u) = Γ̃iα (h−1 (u)).
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6.2 Capital allocation problem

6.2.1 Exponential horizon

As a first step, the maximisation problem (4) will be considered in a hypo-
thetical exponential random horizon Hα instead of a fixed horizon T . Let Hα

be an exponentially distributed random variable with parameter α. If one lets
α = 1

T
then E (Hα) = T , that is, in expected terms, the random horizon Hα

and the fixed horizon T coincide.

Let us denote Υ the objective expected penalty-reward function that is to be
maximised in a random horizon Hα, that is

Υσ (α, u, y)≡E [vσ (Hα, u, y)] =

= E
[
P (UHα , YHα) · I{τ≥Hα} + L(Uτ , Yτ ) · I{τ<Hα}|U0 = u, Y0 = y

]
.

Notice that the second expectation is taken with respect to random horizon
Hα and the stochastic process Ut. The optimisation problem is similar to (4),
J1 will represent the optimal value

J1 (α, u, y) ≡ max
σ∈Π

Υσ (α, u, y) . (31)

The objective function Υ can be seen as a Laplace-Carson transform in time
of v defined in (3), indeed

Υσ (α, u, y) = E [vσ (Hα, u, y)] =

∞∫
0

vσ (t, u, y)αe−αtdt. (32)

Laplace-Carson transform C (s) of an integrable function is closely related
to its Laplace transform L (s) by the relationship C (s) = sL (s). This fact
can be exploited to obtain the solution of the problem (31) since the Laplace
transform of the function v is more easily obtained in many scenarios.

6.2.2 Erlangian horizon

The next step is to approximate the fixed horizon T in the problem (4) by
a series of consecutive exponential horizons. The distribution of a sum of k
independent variables with identical exponential distribution of parameter α
is the Erlang (α, k) distribution. Its density function is given by

p (x) =
αk

(k − 1)!
xk−1e−αx.

Its mean is k
λ

and variance k
λ2

.
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Let Hn
α be a random variable with Erlang(α, n) distribution. Let us consider

a series of random variables

Hn
n
T
∼ Er(

n

T
, n). (33)

One can observe that E(Hn
n
T

) = T and

E(Hn
n
T
− T )2 =

T 2

n
→ 0 as n→∞

that is Hn
n
T

indeed converges to T in L2 and therefore in probability.

Let us state the optimisation problem similar to (31) with a horizon that has
Erlang distribution Hn

α . It is assumed that the termination of the exponential
horizons composing Hn

α is observable. For that purpose a Poisson process Ht,
independent of (Ut, Yt), with jump intensity α is introduced. Then Hn

α =
inf{t : Ht ≥ n} is a stopping time. The expected penalty-reward function to
be maximised in the horizon Hn

α is

Υσ
n (α, u, y) ≡ E [vσ (Hn

α , u, y)] =

= E
[
P (UHn

α
, YHn

α
) · I{τ≥Hn

α} + L(Uτ , Yτ ) · I{τ<Hn
α}|U0 = u, Y0 = y

]
.

Taking into account the density function of Erlang distribution, one can write

Υσ
n (α, u, y) = E [vσ (Hn

α , u, y)] =

=

∞∫
0

vσ (t, u, y)
αn

(n− 1)!
tn−1e−αtdt

The optimisation problem is

Jn (α, u, y) ≡ max
σ∈Π

Υσ
n (α, u, y) (34)

where Jn represents the optimal value. Only markovian strategies with respect
to (Ut, Yt, Ht) are considered. The next theorem establishes the relationship
between the value function Jn (α, u, y) and the value function J (T, u, y) de-
fined by (4).

Theorem 6.2 Let J (T, u, y) be the value function of the problem (4) and
Jn (α, u, y) the value function of the problem (34) then

lim
n→∞

Jn

(
n

T
, u, y

)
= J (T, u, y) .

28



Proof (Following the proof of Theorem 2 in Liu and Loewenstein (2002).)
Let σ be any feasible strategy in Π such that vσ (t, u, y) is continuous in t on
[0,∞). Then

E [vσ (Hn
α , u, y)] = Υσ

n (α, u, y) ≤ Jn (α, u, y) ,

in particular for α = n
T
, taking limit n→∞

vσ (T, u, y) = lim
n→∞

E
[
vσ
(
Hn

n
T
, u, y

)]
≤ lim

n→∞
Jn

(
n

T
, u, y

)
(35)

where the first equality comes from a variant of Helly-Bray Theorem (see Chow
and Teicher (2003, Corollary 8.1.6)). Taking maximum over all admissible
strategies on the left side of (35) yields

J (T, u, y) ≤ lim
n→∞

Jn

(
n

T
, u, y

)
. (36)

On the other hand, notice that

Jn (α, u, y) ≡ max
σ∈Π

Υσ
n (α, u, y) = max

σ∈Π

∞∫
0

vσ (t, u, y)
αn

(n− 1)!
tn−1e−αtdt

≤
∞∫
0

max
σ∈Π

vσ (t, u, y)
αn

(n− 1)!
tn−1e−αtdt

=

∞∫
0

J (t, u, y)
αn

(n− 1)!
tn−1e−αtdt.

The inequality comes from the fact that the optimal σ∗ that maximises the
whole integral in the first line is a feasible strategy in the maximisation prob-
lem under the integral in the second line for each t. Letting α = n

T
, taking the

limit on both sides of the inequality, and applying the Helly-Bray Theorem
again the complementary inequality to (36) follows

lim
n→∞

Jn

(
n

T
, u, y

)
≤ J (T, u, y)

thus completing the proof.

Theorem 6.2 provides a tool to approximate the fixed horizon by a series of
consecutive exponential horizons. As will be shown in the next Theorem, this
translates the original problem of maximisation in a fixed horizon T into a
series of optimisation problems in exponential horizon. If Hn

n
T

is an Erlangian

random horizon as defined in (33) it can be expressed as

Hn
n
T

=
n∑
i=1

T ni (37)

29



where T n1 , T
n
2 , . . . , T

n
n are independent random variables with common expo-

nential distribution with parameter n
T

. Variables T ni can be interpreted as
consecutive random exponential horizons that compose the Erlangian horizon
Hn

n
T

. This in limit converges to the fixed horizon T . In order to state the next

theorem formally we need to introduce the following notation

Jn(α, u, y, P ) ≡ Jn(α, u, y)

Υσ
n(α, u, y, P ) ≡ Υσ

n(α, u, y)

when the reward function P needs to be specified explicitly.

Theorem 6.3 Let P be a reward function, u and y the initial conditions,
α > 0 a real parameter. For every natural k ≥ 2 we have

Jk(α, u, y, P ) = J1(α, u, y, Pk−1) (38)

where Pk−1(w, z) ≡ Jk−1(α,w, z, P ).

Proof Let σ∗t be the optimal strategy for Jk(α, u, y, P ). Conditioning vσ(Hn
α , u, y)

on the instant of the first jump of the process Ht, which will be denoted T1,
the value of (Ut, Yt) at T1 and occurrence of the ruin one can write

Jk(α, u, y, P ) = Υσ∗

n (α, u, y) = E
[
vσ
∗
(Hn

α , u, y, P )
]

= (39)

= E
[
E
[
vσ
∗
(Hn

α , u, y) | T1, (UT1 , YT1), τ
]]

(40)

= E
[
E
[
vσ
∗
(Hn−1

α , UT1 , YT1)
]
I{τ≥T1}

]
+ E

[
L(Uτ , Yτ )I{τ<T1} | U0 = u, Y0 = y

]
(41)

where the first term of (41) comes from the Markovian nature of the process
(Ut, Yt). Given that the ruin did not occur before T1 the future is independent
of the past of the process conditional on the current state UT1 , YT1 . Moreover,
the horizon Hn

α ∼ Er(α, n) is reduced by T1 ∼ Exp(α) what yields a new
horizon Hn−1

α ∼ Er(α, n−1). In the second term, given that the ruin occurred
before T1, the expected loss L(Uτ , Yτ ) is incurred given the initial state of the
process. Developing the first term yields

E
[
vσ
∗
(Hn−1

α , UT1 , YT1)
]

= Υσ∗

n−1(α, UT1 , YT1) = Jk−1(α, UT1 , YT1 , P ) (42)
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where for the last equality remember that the optimisation is made on Marko-
vian strategies, that is σ∗ depends on process (Us, Ys, Hs) only through (Ut, Yt, Ht).
Therefore σ∗ is the optimal the strategy for Υσ

n−1. Substituting into (41) one
gets

Jk(α, u, y, P ) = E
[
Jk−1(α, UT1 , YT1 , P )I{τ≥T1}
+ L(Uτ , Yτ )I{τ<T1} | U0 = u, Y0 = y

]
= Υσ∗

1 (α, u, y, Pk−1) ≤ J1(α, u, y, Pk−1). (43)

Notice that in the first line term Jk−1(α, UT1 , YT1 , P ) can be included in the
conditioning since it is independent of U0, Y0.

On the other hand, assume that σ1 is the optimal strategy for J1. Let us
consider a strategy

σ∗1 =

σ1 if Ht = 0

σ∗ if Ht > 0
. (44)

Since σ∗1 is admissible for Υn, applying (43) one can write

J1(α, u, y, Pk−1) = Υ
σ∗1
1 (α, u, y, Pk−1)

= Υσ∗1
n (α, u, y, P ) ≤ Jk(α, u, y, P )

what completes the proof.

Previous theorems provide an approximation method for cases when the so-
lution to the stochastic control problem in exponential time is available. The-
orem 6.3 presents a recursive procedure to approximate the value function in
Erlangian time by iterating through n exponential horizons. The value func-
tion Jk is updated in each step until the final Jn is calculated. Theorem 6.2
guarantees the convergence of value function Jn to its fixed horizon counter-
part J as n goes to infinity.

6.2.3 Value function approximation

Since the exponential horizon can be seen as a Laplace transform of time, as
illustrated by (32), the solution of the stochastic control in that case tends
to be more tractable, since the dependence on time is eliminated (Avram
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et al. (2002)). Nevertheless, for complex models, in particular for the model
defined by (2) that is treated in this chapter, the explicit solution to the
stochastic control problem is not available even in exponential horizon. In the
next section we present a tool to treat this cases by approximating not only
the fixed horizon by a convergent series of Erlangian distributions but also
approximating admissible optimal controls σ by a class of controls that are
piecewise constant.

For an Erlangian horizon Hn
α determined as hitting time of {n} by a Pois-

son process Ht and a control σ we define piecewise constant control σn that
changes only with jumps of Ht. In theorem 6.4 it will be shown that the value
function of the stochastic control problem in exponential horizon constrained
to the class of controls σn converges to the value function of the unconstrained
problem. Let us denote Jn(α, u, y) the solution to the problem (34) constrained
to the piecewise constant strategies defined as admissible strategies in Π that
remain constant unless a jump of the process Hn

t occurs.

Theorem 6.4 Let J(T, u, y) be the solution to the problem (3) then

lim
n→∞

Jn(α, u, y) = J(T, u, y) (45)

Before we prove Theorem 6.4 some notation is introduced. Let us consider the
Erlangian horizon Hn

α as a sum of n independent exponential distributions
with parameter α = n

T
. Let V n

t be a Poisson process independent of (Wt, Xt)
with intensity n

T
, let T n1 , . . . , T

n
n be the first n jump times of V n

t and define
process Gn

t = YTn
k

where k = max{i : T ni < t}. That is Gn
t is a process that

remains constant on exponential horizon intervals
[
T ni , T

n
i−1

)
. If we consider

the stochastic differential equation

dUn
t = (µtU

n
t + c) dt+

√
(Un

t )2σ2
t (G

n
t , Yt) + ρ2dWt − dXt, Un

0 = u (46)

then the optimisation problem (4) of the expected penalty reward function
(3) under the process Un

t in an Erlangian horizon yields the value function
limn→∞ Jn(α, u, y).

Let us state the following Lemma

Lemma 6.1 Let Un
t be the solution to (46) and Ut the solution to (2) then

Un
t converges in Law to Ut.

Proof of Lemma 6.1 Process Gn
t can be written as Gn

t = U0 + (Un
t−−Gn

t−) ·
V n
t . Since

V nt
n

converges in Law to t
T

and the equation

Gn
t = U0 +

n

T

∫ t

0
(Un

t− −Gn
t−)dt (47)
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has the solution

Gn
t = e

nt
T Un

t − e−
nt
T

∫ t

0
e
nt
T Un

t dt→ Un
t as n→∞ (48)

applying the Theorem 6.9 from Jacod and Shiryaev (2002, pg. 578) the result
follows.

Proof of Theorem 6.4 Since P and L are continuous functions of Un
t or Ut,

by Proposition 3.8 Jacod and Shiryaev (2002, pg. 348) yields the convergence
of the expectation of continuous functionals Jn to J .
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Avram, F. and M. Usábel (2008). The Gerber-Shiu Expected Discounted
Penalty-Reward Function under an Affine Jump-Diffusion Model. Astin
Bulletin 38 (2), 461–481.

Bauerle, N. and U. Rieder (2004). Portfolio optimization with markov-
modulated stock prices and interest rates. IEEE Trans. Automat. Con-
trol 49 (3), 442 – 447.

Berk, J. and R. Green (2004). Mutual fund flows and performance in rational
markets. Journal of Political Economy 112 (6), 1269–1295.

Boyd, J. (2001). Chebyshev and Fourier spectral methods. Dover Pubns.
Cai, J. and H. Yang (2005). Ruin in the perturbed compound Poisson risk

process under interest force. Advances in Applied Probability 37 (3), 819–
835.

Chow, Y. and H. Teicher (2003). Probability Theory: Independence, Inter-
changeability, Martingales. Springer Verlag, New York.

Clenshaw, C. and A. Curtis (1960). A method for numerical integration on
an automatic computer. Numerische Mathematik 2 (1), 197–205.

Dufresne, F. and H. Gerber (1991). Risk theory for the compound Poisson
process that is perturbed by diffusion. Insurance Mathematics and Eco-
nomics 10 (1), 51–59.

33



Gaier, J. and P. Grandits (2004). Ruin probabilities and investment under in-
terest force in the presence of regularly varying tails. Scandinavian Actuarial
Journal 2004 (4), 256–278.

Gerber, H. (1970). An extension of the renewal equation and its application
in the collective theory of risk. Skandinavisk Aktuarietidskrift 53, 205–210.

Gerber, H. and B. Landry (1998). On the discounted penalty at ruin in a
jump-diffusion and the perpetual put option. Insurance Mathematics and
Economics 22 (3), 263–276.

Gerber, H. and E. Shiu (1997). The joint distribution of the time of ruin,
the surplus immediately before ruin, and the deficit at ruin. Insurance:
Mathematics and Economics 21 (2), 129–137.

Gerber, H. and E. Shiu (1998a). On the time value of ruin. North American
Actuarial Journal 2, 48–71.

Gerber, H. and E. Shiu (1998b). Pricing perpetual options for jump processes.
North American Actuarial Journal 2, 101–112.

Grandits, P. (2005). Minimal ruin probabilities and investment under interest
force for a class of subexponential distributions. Scandinavian Actuarial
Journal 2005 (6), 401–416.

Hipp, C. and M. Plum (2000). Optimal investment for insurers. Insurance:
Mathematics and Economics 27 (2), 215–228.

Hipp, C. and M. Plum (2003). Optimal investment for investors with state
dependent income, and for insurers. Finance and Stochastics 7 (3), 299–321.

Irgens, C. and J. Paulsen (2004). Optimal control of risk exposure, reinsur-
ance and investments for insurance portfolios. Insurance: Mathematics and
Economics 35 (1), 21–51.

Jacod, J. and A. N. Shiryaev (2002). Limit Theorems for Stochastic Processes,
2nd ed. Springer, Heidelberg.

Kushner, H. J. J. and P. Dupuis (1992). Numerical methods for stochastic
control problems in continuous time. New York: Springer-Verlag.

Le, U. and E. Pascali (2009). Existence theorems for systems of nonlinear
integro-differential equations. Ricerche di matematica 58 (1), 91–101.

Li, S. and J. Garrido (2005). Ruin probabilities for two classes of risk processes.
ASTIN Bulletin 35 (1), 61–77.

Liu, H. and M. Loewenstein (2002). Optimal portfolio selection with transac-
tion costs and finite horizons. Review of Financial Studies 15 (3), 805–835.

Ma, J. and X. Sun (2003). Ruin probabilities for insurance models involving
investments. Scandinavian actuarial journal 2003 (3), 217–237.

Morales, M. (2007). On the expected discounted penalty function for a per-
turbed risk process driven by a subordinator. Insurance Mathematics and
Economics 40 (2), 293–301.

Paulsen, J. (1993). Risk theory in a stochastic economic environment. Stochas-
tic Processes and their Applications 46 (2), 327–361.

Paulsen, J. and H. Gjessing (1997). Optimal choice of dividend barriers for a
risk process with stochastic return on investments. Insurance Mathematics
and Economics 20 (3), 215–223.

34



Ren, J. (2005). The expected value of the time of ruin and the moments of the
discounted deficit at ruin in the perturbed classical risk process. Insurance
Mathematics and Economics 37 (3), 505–521.

Risken, H. (1996). The Fokker-Planck Equation: Methods of Solution and
Applications, Volume 18. Springer Verlag.

Sarkar, J. and A. Sen (2005). Weak convergence approach to compound Pois-
son risk processes perturbed by diffusion. Insurance Mathematics and Eco-
nomics 36 (3), 421–432.

Sezer, M. and M. Kaynak (1996). Chebyshev polynomial solutions of linear
differential equations. International Journal of Mathematical Education in
Science and Technology 27 (4), 607–618.
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