UNIVERSITÀ CATTOLICA DEL SACRO CUORE DI MILANO Interfacoltà di Economia/Scienze Bancarie Finanziarie e Assicurative Corso di Laurea in Scienze Statistiche Attuariali ed Economiche

LA VALUTAZIONE DELLA RISERVA SINISTRI NELLE ASSICURAZIONI DANNI: METODI ATTUARIALI DETERMINISTICI E STOCASTICI

Relatore: Chiar.mo Prof. Nino SAVELLI

Tesi di Laurea di: Isabella Maria Silvestri Matr. N° 3308790

Alla Vita, un dono meraviglioso...

Alla mia Famiglia, il mio orgoglio...

Indice

In	ntroduzione	pag. 4
C	apitolo Uno "Generalità sulla riserva sinistri"	
1.	La legislazione della riserva sinistri	pag. 7
2.	La riserva sinistri nella R.C.Auto	" 11
3.	Il triangolo di run-off	" 28
	3.1. La modulistica di vigilanza allegata al bilancio: il modulo 28	" 29
	3.1.1.L'allegato al modulo 28 dei sinistri tardivi	" 31
	3.2. La modulistica di vigilanza allegata al bilancio: il modulo 29	" 32
4.	Metodi di calcolo per la riserva sinistri	" 34
	4.1. Metodi deterministici	" 35
	4.2. Metodi stocastici	" 36
C	apitolo Due "I principali metodi deterministici"	
1.	Il metodo Chain Ladder	pag. 38
	1.1. Le ipotesi del metodo	" 40
	1.1.1. La stima dei fattori di sviluppo	" 41
	1.1.2. La stima della riserva sinistri	" 42
	1.2. Le varianti del metodo chain ladder classico	" 43
	1.2.1. Il metodo chain ladder con aggiustamento per inflazione	" 44
	1.2.2. Il metodo chain ladder a costo medio di generazione	" 45
	1.2.3. Il metodo chain ladder con gli incurred	" 49
	1.2.3.1.La logica del metodo	" 50
	1.2.3.2.La stima della riserva sinistri	" 50
	1.3. Applicazioni del basic chain ladder e delle sue varianti	" 52
	1.3.1. Il metodo chain ladder basato sui pagati	" 52
	1.3.2. Il metodo chain ladder con inflazione	" 60
	1.3.3. Il metodo chain ladder con costi medi di generazione	" 66
	1.3.4. Il metodo chain ladder con gli incurred	" 69
	1.4. Vantaggi e svantaggi del metodo chain ladder	" 78
2.	Il metodo Fisher-Lange	" 80
	2.1. Le assunzioni del metodo	" 81

	2.2. La stima della riserva sinistri	pag.	82
	2.3. Applicazioni del metodo Fisher-Lange	"	84
	2.4. Vantaggi e svantaggi del metodo Fisher-Lange	"	90
3.	Il metodo della separazione aritmetica di Taylor	"	92
	3.1. Le ipotesi del metodo	"	93
	3.1.1. La stima dei parametri	"	95
	3.1.2. La stima della riserva sinistri	"	97
	3.2. Applicazioni del metodo della separazione aritmetica di Taylor	"	97
	3.3. Vantaggi e svantaggi del metodo della separazione aritmetica di Taylor	" 1	101
4.	Sensitivity analysis	" 1	06
\mathbf{C}	apitolo Tre "I metodi stocastici"		
1.	Un passaggio graduale dai metodi deterministici ai metodi stocastici	pag.	122
2.	Il prediction error e lo standard error	"	124
	2.1. La versione stocastica del chain ladder	"	125
	2.2. Il Mean Squared Error of Prediction per il chain ladder	"	131
3.	La tecnica del Bootstrapping	"	133
	3.1. Il chain ladder secondo il bootstrapping	"	135
4.	La proposta di Mack e Quarg: il Munich Chain Ladder	"	137
	4.1. Introduzione al Munich Chain Ladder	"	137
	4.1.1. Il problema del basic chain ladder	"	138
	4.1.2. Un'idea per risolvere il problema del basic chain ladder e primo	confr	onto
	con il Munich Chain Ladder	"	140
	4.2. Il modello del Munich Chain Ladder	"	141
	4.2.1. Le assunzioni del modello	"	141
	4.2.2. La stima dei parametri	"	145
	4.2.3. La stima degli importi futuri	"	148
	4.3. Applicazione del metodo Munich Chain Ladder	"	148
\mathbf{C}	apitolo Quattro <i>"Distribuzioni della riserva sin</i>	istri	a
co	onfronto"		
1.	Introduzione ai modelli di simulazione	pag.	156
	La distribuzione di probabilità secondo il Bootstrapping	"	159
	La distribuzione di probabilità della Normale	"	172
	La distribuzione di probabilità della LogNormale	"	183

5. Il risk margin	pag. 196
Conclusioni	pag. 201
Bibliografia	pag. 205

Introduzione

Le imprese di assicurazione sono chiamate ogni anno a redigere il bilancio di fine esercizio. Una delle voci più importanti del passivo è senza dubbio la **riserva sinistri**.

La riserva sinistri indica l'impegno futuro della compagnia nei confronti degli assicurati o danneggiati e come tale deve essere stimata. Tale stima è supervisionata al fine di evitare uno dei maggiori rischi per la solvibilità di un'impresa di assicurazione, ossia sottovalutare gli accantonamenti tecnici. Se infatti l'impresa non è in grado di far fronte agli impegni assunti, rischia di cadere in liquidazione coatta amministrativa. All'Isvap (Istituto per la Vigilanza Sulle Assicurazioni Private e di Interesse Collettivo), quindi, spetta il controllo delle procedure utilizzate per il calcolo della riserva sinistri.

I sinistri sono posti in riserva fino a quando non saranno risarciti totalmente, fanno eccezione i sinistri eliminati per senza seguito.

La valutazione della riserva sinistri è regolata dall'articolo 33 del decreto legislativo n.173 del 26 maggio 1997.

La stima della riserva sinistri è caratterizzata da un alto grado di incertezza dovuta alla scarsità di informazioni sui sinistri di cui dispone l'impresa all'atto di redigere il bilancio di fine esercizio; pertanto, meno informazioni si hanno più sarà difficile stimare il valore della riserva che avrà come tale un'instabilità maggiore. Contribuisce ad accrescere la variabilità, inoltre, la previsione dei fattori evolutivi di costo che incidono sull'esborso finale e di cui l'impresa deve tener conto coerentemente al principio di valutazione del costo ultimo. Tra i fattori evolutivi di costo sono presenti in modo particolare: l'inflazione economica generale o quella caratteristica della classe di rischio; le sentenze della magistratura in genere tendenzialmente favorevoli al rialzo dei risarcimenti in caso di lesioni alla persona; il mutare delle leggi e del comportamento degli assicurati definiti comunemente come inflazione sociale².

Gli accantonamenti per i sinistri riservati devono essere valutati a costo ultimo perché più affine al principio di prudenza in base al quale le imprese devono valutare la riserva sinistri. Oltre al suddetto principio le imprese, secondo la normativa vigente, sono tenute a rispettare altri principi di cui si dirà meglio nel primo capitolo. Un tempo si dava la

² Risultato ottenuto dal gruppo di lavoro istituito in occasione della conferenza europea delle autorità di vigilanza svoltasi nel 2001. Per ulteriori approfondimenti si rimanda all'opera menzionata in bibliografia.

¹ Tali procedure devono essere "prudenziali" per far sì che l'impresa non si trovi insolvente nel momento in cui dovrà risarcire il sinistro.

possibilità di attualizzare il valore della riserva sinistri facendo in ogni caso riferimento, come valore base, a quello della stessa a costo ultimo.

I sinistri del ramo R.C.Auto sono, in genere, molto complessi e necessitano di lunghi periodi di liquidazione (*long-tail*). Pertanto il metodo dell'inventario richiede particolare attenzione e massima prudenza nel calcolo del costo di tali sinistri. Invece per i sinistri caratterizzati da un'elevata velocità di liquidazione (*short-tail*), come possono essere i sinistri dello stesso ramo che hanno riportato danni a cose, il metodo dell'inventario porta, con più certezza, ad un valore a costo ultimo del sinistro.

I metodi di stima per la riserva sinistri sono molteplici, in questo contesto verranno esaminati alcuni tra i metodi deterministici e stocastici.

Nei capitoli successivi, e più precisamente nel secondo saranno illustrati tre criteri deterministi; in particolar modo, come esempio di metodo concatenato s'illustrerà il *chain ladder* con le sue varianti, come tipo di metodi a costo medio, il *metodo Fisher-Lange*, e tra i possibili metodi della separazione si analizzerà il *metodo della separazione aritmetica di Taylor*. Nel terzo capitolo saranno introdotti i metodi stocastici e le misure di variabilità che permettono di calcolare, nonché le differenze che intercorrono tra le stesse. Nello stesso capitolo si cercherà di superare gli svantaggi del chain ladder ai fini di determinare la riserva per i sinistri tardivi, presentando un nuovo metodo di calcolo, il *Munich Chain Ladder*. Nel quarto capitolo saranno presentate tre possibili distribuzioni di probabilità predittive, ottenute, rispettivamente, con la tecnica del *Bootstrapping*, ipotizzando per i pagamenti futuri una distribuzione *Normale* e *LogNormale*.

Per tutti i metodi sono state eseguite delle applicazioni ai dati di una generica compagnia di medie dimensioni. I risultati conseguiti sono stati successivamente confrontati in modo da comprendere meglio le analogie e le diversità tra i metodi.

La chiusura di un sinistro, e quindi la sua "permanenza" in riserva, dipende dal danno causato: se il sinistro ha causato solo danni a cose verrà chiuso in tempi abbastanza brevi, qualora vengano riscontrati danni a persona il processo di liquidazione sarà più lungo e il risarcimento richiesto alla compagnia di assicurazione nettamente maggiore di quello richiesto in caso di danni a beni. Negli esempi riportati all'interno dei diversi capitoli, il periodo di sviluppo è stato posto pari a dodici anni, dunque si farà riferimento ad un ramo long-tail con tempi di liquidazione abbastanza lunghi.

In tutte le analisi operative svolte non si è fatta alcuna differenza rispetto alla tipologia di sinistri coinvolta nella valutazione della riserva, vale a dire, per ogni anno di differimento si sono considerati gli importi pagati e/o riservati, includendo in tali dati sinistri riaperti o denunciati, qualora ci fossero stati.

Esistono infatti diversi tipi di sinistri che l'impresa deve sempre analizzare affinché il valore della riserva non si discosti tanto dal valore "vero" che l'impresa non conosce.

CAPITOLO UNO

Generalità sulla riserva sinistri

1. La legislazione della riserva sinistri

Tutte le imprese autorizzate ad esercitare l'attività di assicurazione contro i danni sono obbligate a costituire le riserve tecniche secondo quanto prescritto dall'articolo 23 del decreto legislativo 175/1995. Con il termine riserve tecniche si intende l'accantonamento necessario che l'impresa deve disporre per far fronte agli impegni assunti nei confronti degli assicurati, e come tali sono determinate sommando alla riserva premi la riserva sinistri. La riserva premi è regolamentata dall'articolo 32 del decreto legislativo 173/1997 che prevede l'utilizzo del metodo "pro rata temporis" per il calcolo della stessa, o in alternativa si permette alle imprese di impiegare il metodo forfettario qualora sia probabile che dia approssimativamente il medesimo risultato del pro rata temporis.

La valutazione della riserva sinistri richiede un'attenzione maggiore a causa del suo importo complessivo. Infatti, tale riserva costituisce circa il 150% dei premi emessi nell'anno³. L'articolo 33 dello stesso decreto n.173 ribadisce la definizione di riserva sinistri precisando come la sua entità debba essere il risultato di una prudente valutazione dell'ammontare complessivo degli importi da iscrivere in bilancio⁴. La riserva sinistri è intesa come l'accantonamento necessario per far fronte sia al costo di quei sinistri avvenuti nello stesso esercizio o in quelli precedenti e non ancora pagati alla data di chiusura del bilancio⁵, sia all'onere relativo alle spese di liquidazione. Nel calcolo della riserva sinistri sono considerati sia i sinistri di cui l'impresa è a conoscenza, sia i cosiddetti IBNR (incurred but not reported), intendendo con ciò i sinistri avvenuti in un dato anno di esercizio ma di cui l'impresa non è ancora al corrente al momento della stesura del bilancio. Si tratta infatti dei sinistri tardivi, ossia di quei sinistri denunciati con un certo

 ³ La riserva premi è circa il 40% dei premi emessi.
 ⁴ Circolare Isvap n.360 D. del 21 Gennaio 1999.

⁵ Questi sono anche chiamati "sinistri aperti" per i quali l'impresa è chiamata ad un esborso totale o parziale.

ritardo ma che l'impresa deve considerare per la valutazione della riserva poiché si è assunta l'impegno di intervenire laddove l'evento avverso si fosse verificato. Nell'articolo 5 del provvedimento Isvap n.1059-G del 4 dicembre 1998 è fornita la disposizione in materia di sinistri tardivi e attinente alla riserva sinistri. L'accantonamento da porre in bilancio per i sinistri tardivi deve essere valutato sulla base dell'esperienza passata in merito alla frequenza e al costo medio dei sinistri denunciati tardivamente. Se i sinistri hanno il carattere dell'eccezionalità o sono particolarmente onerosi, e pertanto non è possibile far ricorso al passato, l'impresa deve segnalare queste eccezioni in nota integrativa indicando la procedura che intende seguire al fine di costituire la riserva per questi particolari sinistri tardivi. In ogni caso le compagnie di assicurazione terranno conto della compatibilità tra i dati storici in loro possesso e quanto previsto per lo sviluppo degli IBNR.

Il legislatore ha previsto l'obbligo della valutazione a "costo ultimo", così come si legge al comma 2 dell'articolo 33 dove sono contenuti la tipologia dei dati da considerare e il motivo del ricorso a tale criterio.

Il concetto di costo ultimo prevedibile, che per costruzione comprende anche le spese di liquidazione, può essere riferito ad un singolo sinistro come la somma complessiva corrisposta al beneficiario, se riferito ad un'intera generazione significa considerare l'ammontare totale necessario per pagare tutti i sinistri ed estinguere così la generazione stessa.

E' importante ricordare che la direttiva comunitaria sui conti annuali e consolidati del 1991 consentiva la valutazione delle riserve sinistri sia a costo ultimo che a costo attualizzato, seppure con certi vincoli, rinviando la scelta all'autorità di vigilanza di ciascuno Stato membro.

Il passaggio da costo attualizzato a costo ultimo nasce dall'esigenza di non considerare, durante la fase di stima delle riserve, eventuali rendimenti finanziari derivanti dagli investimenti a copertura della riserva sinistri, ma di proiettare il costo al futuro, appunto costo ultimo, al fine di evitare che l'impresa sia esposta al rischio di run-off per lo smontamento della stessa. Pertanto il valore della riserva sinistri calcolata a costo ultimo è maggiore della stessa calcolato a costo attualizzato, dovendo, tale differenza, coprire il rischio di avere eventuali perdite dallo smontamento della riserva. Nella circolare n.360/D del 1999, l'Isvap afferma di ritenere che *il valore della riserva sinistri a costo ultimo debba essere il risultato di una valutazione tecnica complessa multifase*, indicando le diverse fasi che l'impresa deve seguire per ottenere un ammontare della riserva sinistri che

sia ragionevolmente più prossimo al costo ultimo. Al fine di pervenire al costo ultimo, le compagnie di assicurazione devono tener conto delle spese di liquidazione⁶, che nel caso fossero comuni a più rami, sarà l'impresa a procedere alla giusta attribuzione mediante criteri di ripartizione.

Da un'attenta lettura del decreto di riferimento, il n.173 del 1997, si nota come il legislatore non abbia dettato quale metodo impiegare per la determinazione della riserva sinistri, ma, semplicemente, ha definito indirettamente quali sono i principi che le imprese devono rispettare nel valutare la somma da riservare e da apporre in bilancio. Tra questi si ricorda il principio dell'analiticità che impone alle imprese di procedere alla determinazione delle somme da accantonare per ogni singolo sinistro. Si tratta in realtà del cosiddetto metodo dell'inventario⁷ che richiede una valutazione separata per ogni singolo sinistro in quanto viene maggiormente rispettato il principio di una prudente valutazione. Ai fini della stima della riserva, in deroga a tale principio, il legislatore ammette la possibilità di far ricorso al costo medio⁸ per gruppi di sinistri omogenei, sufficientemente numerosi e per la generazione corrente, cioè la generazione di bilancio. Non bisogna dimenticare che anche in quest'ultimo caso il criterio da seguire è comunque quello del costo ultimo. Per i rami credito e cauzione non è possibile l'impiego del costo medio⁹. La possibilità di poter far ricorso al costo medio presuppone che l'impresa di assicurazione abbia a disposizione un affidabile metodo di rilevazione dei dati storici in modo da poter identificare quali sono i sinistri, della generazione di bilancio, che soddisfano le caratteristiche di numerosità sufficiente oltre che di omogeneità quantitativa e qualitativa, e ai quali è possibile applicare il costo medio. Una volta concluso il processo identificativo verrà impiegato il criterio del costo medio ai sinistri idonei, lasciando la valutazione secondo il metodo dell'inventario agli altri sinistri. Nella pratica l'utilizzo di stime d'inventario non consente di norma di pervenire alla migliore stima se non sotto l'ipotesi che tutti i sinistri riservati vengano liquidati e pagati al più tardi entro la fine dell'esercizio successivo. Di contro l'impiego di metodologie statistico-attuariali e di coefficienti di proiezione della passata esperienza consentono con buona approssimazione di pervenire ad

_

⁶ Nella circolare n.360/D del 1999 si bipartiscono le spese di liquidazione in interne ed esterne.

⁷ La circolare Isvap n.360/D del 21 gennaio 1999 sottolinea che l'articolo 33, comma 3 del decreto n.173, assegna al metodo dell'inventario un ruolo preminente nella quantificazione dell'importo da riservare poiché ritenuto maggiormente aderente al principio della prudente valutazione in base ad elementi obiettivi, in alternativa al metodo del costo medio. Inoltre, anche qualora sia quest'ultimo il metodo seguito per la valutazione di alcuni sinistri, la loro determinazione deve comunque condurre al costo ultimo prevedibile.

⁸ Tale possibilità viene comunque permessa soltanto a particolari rami. Si rimanda pertanto al comma 3 dell'articolo 33 del decreto legislativo n.173.

⁹ I metodi di valutazione della riserva sinistri dei rami appena richiamati sono definiti nel provvedimento ISVAP 1978 G/2001.

una prudente valutazione del costo ultimo per aggregazioni o generazioni di sinistri (o per gruppi o categorie di sinistro) e non per singolo sinistro. Successivamente l'impresa farà uso di *adeguati parametri di attribuzione*¹⁰ allo scopo di ripartire il costo ultimo, o per i sinistri della generazione corrente il costo medio, ai singoli sinistri di ogni generazione.

Il principio dell'obiettività richiede che le imprese di assicurazione facciano uso di tutte le informazioni raccolte, disponibili e necessarie per giungere alla best estimate della riserva sinistri. In tal modo è necessario considerare, oltre agli esborsi che la compagnia è tenuta a sostenere, anche eventuali somme che la stessa potrà recuperare. Le eventuali somme recuperabili, oltre ai rendimenti finanziari, non possono però essere coinvolte al fine di una deduzione o sconto della riserva sinistri.

Se diversi metodi di stima dovessero fornire valori nettamente diversi, il principio della prudenza impone l'accantonamento della somma maggiore.

Infine, ma non meno importante, si ricorda il principio della competenza che fa da filo conduttore per la redazione di tutto il bilancio di fine esercizio. Secondo tale principio l'impresa deve porre in riserva il costo futuro previsto per i sinistri ancora da pagare, incluse le spese di liquidazione, tenuto conto dell'inflazione e dei sinistri tardivi, che seppur non ancora denunciati sono di competenza dell'esercizio in cui si redige il bilancio. L'inflazione coinvolta nel costo sinistri può essere scomposta in inflazione esogena e inflazione endogena. L'inflazione esogena è quella generale cioè relativa alla crescita economica del Paese e la cui stima è fornita da istituti statistici come l'Istat. L'inflazione endogena è quella interna all'impresa stessa, è la cosiddetta *claim inflation*, intendendo con ciò il tasso annuo di aumento del costo sinistri caratteristico dell'impresa. Un'attenzione particolare dovrà essere rivolta dagli esperti del settore alla stima di quest'ultima, che è legata a diverse variabili tra le quali si ricordano la politica tariffaria e l'efficienza delle strutture liquidative ed amministrative della compagnia.

Infine si vuole ricordare che, non solo per una compagnia di assicurazione vita, ma anche per una compagnia di assicurazione contro i danni, è necessario essere meticolosi nella definizione delle ipotesi tecniche e finanziarie poste alla base dei metodi scelti per la previsione della riserva sinistri. Infatti, un loro allontanamento per difetto dalla realtà aziendale potrebbe essere causa di una sottostima¹¹ degli impegni tecnici con inevitabili conseguenze sulla gestione dell'impresa.

Infine, è bene richiamare quali siano le informazioni che devono essere riportate in nota integrativa:

_

¹⁰ Circolare Isvap n.360/D del 1999.

¹¹ Lo stesso comma 7 dell'articolo 33 impone implicitamente una corretta valutazione delle ipotesi proiettive.

- metodologia utilizzata nella valutazione (stima separata sinistro per sinistro ovvero costo medio per la generazione di bilancio);
- indicazione, in caso di utilizzo del criterio del costo medio limitatamente ai sinistri dell'esercizio:
 - dei gruppi di sinistri omogenei e sufficientemente numerosi con i relativi criteri di individuazione:
 - > dei costi medi ultimi applicati;
- descrizione degli eventuali metodi statistico-attuariali impiegati per la determinazione del costo ultimo dei sinistri, con particolare riguardo a:
 - > eventuali categorie di sinistri interessati;
 - > ipotesi tecniche e finanziarie applicate in specie per quanto attiene al tasso di crescita del costo dei sinistri utilizzato;
- indicazione delle rimanenti categorie di sinistri, o dell'intero ramo, valutati con criteri diversi dalle metodologie statistico-attuariali con descrizione delle procedure e ipotesi applicate per la determinazione del costo ultimo;
- l'ammontare dello scostamento, per difetto o per eccesso, se rilevante, tra la riserva sinistri in entrata e l'aggregato costituito dai pagamenti di esercizi precedenti effettuati nell'anno e dalla relativa nuova riserva di fine esercizio, con illustrazione dei motivi che lo hanno determinato.

2. La riserva sinistri nella R.C.Auto

Le imprese che esercitano il ramo danni hanno una forte presenza di polizze di Responsabilità Civile Auto nel proprio portafoglio. Questo spiega perché esiste un interesse non indifferente nei confronti di una corretta stima della riserva per sinistri cagionati dalla circolazione stradale di veicoli a motore. La normativa speciale per il ramo R.C.Auto e natanti prevede che la relativa riserva sinistri sia calcolata, alla fine di ciascun esercizio, distinguendo i sinistri secondo l'esercizio di denuncia/avvenimento (si veda il vecchio Modello 7 sviluppo sinistri RCA nonché il Modulo 29 oggi in vigore). Nella Circolare Isvap n.531/D è indicato che l'attuario incaricato R.C.Auto descrive il processo di formazione e i metodi di calcolo delle riserve tecniche adottati dall'impresa. Con riferimento alla riserva sinistri, l'attuario illustra il processo di determinazione della riserva

attraverso la valutazione separata di ciascun sinistro (metodo dell'inventario). Laddove impiegata, illustra inoltre la metodologia e le ipotesi per la valutazione a costo medio della generazione di bilancio. Descrive infine i criteri ed i metodi di stima per la determinazione del costo ultimo dei sinistri nonché il procedimento di quantificazione ed attribuzione delle spese di liquidazione.

L'articolo 81 del decreto legislativo n.173 disciplina il comportamento delle compagnie di assicurazione in fase di transizione, cioè nel passare da costo attualizzato a costo ultimo. Nell'articolo si legge che le imprese esercenti il ramo di responsabilità civile autoveicoli terrestri sono state autorizzate, fino alla redazione del bilancio d'esercizio del 2000, ad utilizzare il criterio del costo medio attualizzato, potevano quindi tener conto dei proventi finanziari derivanti dagli investimenti al fine di operare una deduzione o sconto della riserva sinistri limitatamente alle generazioni 1997 e precedenti. In nota integrativa dovevano essere riportati il valore della riserva sinistri prima della deduzione o sconto, l'ammontare del beneficio finanziario, i tassi impiegati per le valutazioni, l'importo della riserva scontata e i criteri adottati per la valutazione del periodo che deve decorrere prima del pagamento dei sinistri. Nel caso di attualizzazione della riserva sinistri, era inoltre richiesto l'inserimento, in nota integrativa, dei metodi statistico-attuariali impiegati; del periodo di differimento delle singole generazioni di sinistri e dei relativi criteri di determinazione; del tasso di crescita del costo dei sinistri applicato ai fini della determinazione del costo ultimo; del tasso di rendimento utilizzato. Nello stesso articolo è inoltre fornito l'orizzonte temporale massimo che era concesso alle imprese per l'attualizzazione, tale periodo è pari a sei anni in funzione dell'anzianità di ogni generazione, in tal modo le generazioni che rimanevano fuori dal range così stabilito dovevano essere valutate a costo ultimo¹². Ai fini della deduzione o sconto della riserva sinistri, l'impresa doveva fornire una previsione sull'andamento futuro dei mercati finanziari, da qui l'esigenza di essere prudenti nel fornire le ipotesi finanziarie 13 da applicare per l'attualizzazione. Quindi, se lo scenario finanziario prevedeva dei ribassi del tasso di interesse, questi trends dovevano essere contemplati nella definizione delle ipotesi riguardanti il tasso di interesse.

Sembra interessante poter accennare ai rami 14 e 15¹⁴ del punto A) dell'allegato al decreto legislativo n.175 del 17 marzo 1995.

-

¹² Per maggiori chiarimenti a riguardo si rimanda alla circolare n.360/D del 1999.

¹³ Al punto d) del primo comma dell'articolo 81 del decreto legislativo n.173 sono forniti i requisiti richiesti affinché sia possibile l'utilizzo di un particolare tasso di interesse per l'attualizzazione.

Il provvedimento dell'Isvap in cui sono contenute le disposizioni a riguardo della riserva sinistri per i rami credito e cauzione è il n.1978-G del 4 dicembre 2001. Il provvedimento è entrato in vigore a partire dall'esercizio 2002 e pertanto non possono più essere applicate, alle imprese che esercitano il ramo credito e il ramo cauzione, le disposizioni contenute nel D.M. 23 maggio 1981 successivamente modificato dal D.M. 22 giugno 1982. Le disposizioni del 4 dicembre 2001 prevedono che, ferma restando l'applicazione dei criteri generali di cui all'articolo 33 del decreto legislativo del 26 maggio 1997 n.173, la riserva sinistri per il ramo cauzione sia costituita sia in caso di richiesta di incameramento della cauzione sia comunque al verificarsi di atti o fatti che configurino o possano obiettivamente configurare i presupposti della prestazione della garanzia. La riserva sinistri deve essere pari alla somma assicurata a meno che documentati elementi oggettivi non consentano di ridurne l'importo¹⁵. Anche per il ramo credito rimane di fatto possibile l'applicazione di quanto riportato all'articolo 33 del decreto legislativo n.173, ma la riserva sinistri deve essere costituita soltanto al verificarsi di determinate situazioni riportate nella sezione III articolo 5 del provvedimento n.1978-G. Al comma 4 dell'articolo 5 è stabilito che la riserva sinistri deve essere pari alla somma assicurata a meno che non si provi la possibilità di una riduzione oggettiva dell'importo assicurato.

Ogni anno l'Isvap elabora delle statistiche di mercato per il ramo R.C.Auto che riguardano, anche, i dati necessari per la valutazione della riserva sinistri. Si vogliono riportare di seguito alcune di dette statistiche¹⁶

2.1. Numero dei sinistri denunciati e con seguito

Esercizio	N. denunciati*	Δ%	N. denunciati con seguito**	Δ%
1997	5.096.240		4.729.366	
1998	5.077.334	-0,4	4.696.262	-0,7
1999	5.230.128	3,0	4.843.334	3,1
2000	4.885.572	-6,6	4.534.745	-6,4
2001	4.469.911	-8,5	4.064.046	-10,4
2002	4.257.019	-4,8	3.807.969	-6,3
2003	4.096.349	-3,8	3.649.446	-4,2
2004	4.085.115	-0,3	3.654.431	0,1
Δ 99–04		-21,9		-24,5

^{*} I sinistri denunciati sono al netto dei CID mandatari.

¹⁶ Sono state inserite le più significative ai fini del presente lavoro.

^{**} Si intendono i sinistri pagati nell'esercizio o riservati alla fine dello stesso esercizio.

¹⁵ Provvedimento Isvap 1978-G del 4 dicembre 2001.

Dalla tabella sopra si evince come il numero dei sinistri denunciati sia stato tendenzialmente decrescente nell'intervallo di tempo considerato, lo stesso andamento è riscontrabile per i sinistri con seguito. Non tutti i sinistri che vengono denunciati alla compagnia di assicurazione daranno luogo a risarcimenti, è infatti possibile che un sinistro venga chiuso perché in seguito a varie analisi non si è riscontrata alcuna necessità di pagamento, questi sinistri sono chiamati "senza seguito" e non sono più coinvolti nella stima della riserva sinistri.

2.2. Distribuzione del numero dei sinistri eliminati senza seguito fino al 31.12.2004 (incidenza percentuale rispetto al numero dei sinistri denunciati*)

Gen. di	Gen. di Nell'anno di		Nel 1º anno		Nel 2° anno		Nel 3° anno		Nel 4° anno		Nel 5° anno		Valori al	
accadimento	ccadimento generazione		successivo		successivo		successivo		successivo		successivo		31.12.04	
1999	359.676	7,73%	287.780	5,50%	153.855	2,92%	57.707	1,09%	22.645	0,43%	12.214	0,23%	893.877	16,89%
2000	295.836	6,94%	268.473	5,60%	150.055	3,10%	46.629	0,96%	22.050	0,46%			783.043	16,16%
2001	349.307	9,01%	293.547	6,68%	113.523	2,57%	44.737	1,01%					801.114	18,07%
2002	380.931	10,33%	243.786	5,85%	105.571	2,51%							730.288	17,39%
2003	376.648	10,56%	227.678	5,66%									604.326	15,03%
2004	365.007	10,19%											365.007	10,19%

^{*} Il numero dei sinistri denunciati per ogni generazione si modifica in ciascun anno successivo all'accadimento per effetto delle denunce tardive pervenute.

L'incidenza del numero dei sinistri eliminati perché senza seguito, come è giusto attendersi, per una generazione si riduce se il differimento è maggiore. Questa ovvia riduzione è dovuta sostanzialmente al fatto che nei vari anni l'impresa liquida dei sinistri. Infatti, la gran parte delle chiusure per senza seguito avviene entro il secondo anno di differimento, il motivo è da ricercare nel fatto che molti sinistri sono stati già pagati o eliminati negli anni precedenti. Osservando l'ultima colonna si ricava, per le generazioni riportate in tabella, la percentuale dei sinistri eliminati senza seguito in data 31 dicembre 2004. Si può affermare che sono stati eliminati per senza seguito in media il 15% dei sinistri denunciati nei diversi anni. Il restante 85% è composto da sinistri pagati, riservati o eliminati per senza seguito in data successiva al 31 dicembre 2004.

2.3.Distribuzione del numero dei sinistri riaperti fino al 31.12.2004 (incidenza percentuale rispetto al numero dei sinistri denunciati*)

Generazione di accadimento	Nel 1° anno successivo		Nel 2° anno successivo		Nel 3° anno successivo		Nel 4° anno successivo		Nel 5°		Valori al 31.12.04	
1999	114.543	2,19%	74.617	1,41%	31.419	0,59%	17.520	0,33%	11.148	0,21%	249.247	4,71%
2000	103.203	2,15%	70.757	1,46%	33.148	0,68%	19.048	0,39%			226.156	4,67%
2001	111.481	2,54%	82.847	1,87%	32.269	0,73%					226.597	5,11%
2002	119.127	2,86%	73.080	1,74%							192.207	4,58%
2003	129.601	3,22%									129.601	3,22%

^{*} Il numero dei sinistri denunciati per ogni generazione si modifica in ciascun anno successivo all'accadimento per effetto delle denunce tardive pervenute.

I dati della tabella 2.3. sono stati raccolti dal mercato assicurativo nell'intervallo di tempo che va dall'esercizio 1999 all'esercizio 2004. Come si nota però non è presente la riga relativa al 2004, il motivo è molto semplice: nello stesso anno di generazione non esistono, per definizione, sinistri riaperti, infatti non è presente la colonna relativa alla stessa generazione. I sinistri del 2004 saranno riaperti a partire dal 2005.

L'incidenza percentuale dei riaperti è decrescente nei diversi anni di sviluppo per lo stesso motivo dei senza seguito. Fino al 31 dicembre 2004 sono stati riaperti in media il 4% dei sinistri denunciati nelle diverse generazioni.

2.4. Velocità di liquidazione per numeri

Generazione di accadimento	Nell'anno di generazione	Al 1º anno successivo	Al 2° anno successivo	Al 3° anno successivo	Al 4° anno successivo	Al 5° anno successivo	Riserva Sinistri al 31.12.04
1999	57,4%	89,1%	95,1%	97,3%	98,4%	99,0%	1,0%
2000	57,7%	89,1%	95,0%	97,2%	98,4%		1,6%
2001	56,6%	88,2%	94,6%	97,2%			2,8%
2002	56,2%	88,1%	94,6%				5,4%
2003	57,0%	88,9%					11,1%
2004	63,0%						37,0%

NB: Percentuale dei sinistri pagati, cumulati in ciascun anno di sviluppo, rispetto ai sinistri risultati con seguito al 31.12.2004 (pagati + riservati)

La velocità di liquidazione per numeri di sinistri è abbastanza stabile per tutti gli anni di accadimento nei diversi anni si sviluppo. Nel passare dall'anno di generazione al quinto anno di sviluppo, gli incrementi sono sempre meno proporzionali, ciò vuol dire che la

velocità di liquidazione per numeri segue un andamento concavo. Si suppone che tutte le generazioni seguano lo stesso andamento: partono da un valore intorno al 60% e dopo un quinquennio raggiungono circa il 100%; in questa tabella è possibile vedere ciò solo per l'anno 1999. Nell'ultima colonna sono riportate le percentuali del numero dei sinistri che in data 31 dicembre 2004 non sono stati ancora chiusi e che pertanto continueranno ad essere posti in riserva fino a quando non si procederà ad una loro eliminazione, o perché pagati o perché senza seguito. La percentuale dei sinistri riservati è molto bassa per generazioni lontane perché sono stati già liquidati la gran parte dei sinistri, restano da pagare molto probabilmente i sinistri che richiedono una fase di liquidazione più lunga come per esempio quelli che hanno cagionato danni a persone. Invece, per le generazioni più recenti la percentuale residua è molto più elevata perché maggiore è il numero di sinistri ancora da liquidare. Prendendo come esempio la generazione 2004 si può affermare che al 31 dicembre dello stesso anno le compagnie esercenti il ramo R.C.Auto in Italia avevano pagato il 63% dei sinistri denunciati nello stesso anno, le stesse avevano messo a riserva il 37% del totale dei sinistri avvenuti. E' bene ricordare che le percentuali relative all'anno di generazione sono piuttosto elevate perché i primi sinistri ad essere chiusi sono quelli con soli danni a cose, relativamente non troppo onerosi.

2.5. Velocità di liquidazione per importi

Gen. di accadimento	Nell'anno di generazione	Al 1° anno successivo	Al 2° anno successivo	Al 3° anno successivo	Al 4° anno successivo	Al 5° anno successivo	Riserva Sinistri al 31.12.04
1999	27,6%	61,7%	75,6%	82,0%	86,1%	89,3%	10,7%
2000	27,6%	62,2%	75,4%	81,8%	86,0%		14,0%
2001	27,7%	61,6%	75,1%	81,6%			18,4%
2002	27,8%	62,1%	75,7%				24,3%
2003	29,3%	63,1%					36,9%
2004	33,0%						67,0%

NB: Percentuale dei pagamenti, cumulati in ciascun anno di sviluppo, rispetto al costo complessivo dei sinistri risultati con seguito al 31.12.2004 (pagati + riservati)

In modo analogo a quanto fatto per il numero dei sinistri, l'Isvap presenta una tabella riassuntiva sulla velocità di liquidazione per importi. L'andamento è identico a quello della tabella precedente: al 31 dicembre 2004 c'è una percentuale bassa di sinistri ancora da liquidare per la generazione 1999 e una percentuale più alta per i sinistri del 2004. La differenza è nei valori assoluti di tali percentuali. Le due tabelle mostrano valori alquanto

differenti, infatti, i dati della 2.5. sono costantemente inferiori ai relativi dati della 2.4. E' possibile quindi dedurre che le velocità di liquidazione per numeri sono sistematicamente più elevate delle relative velocità di liquidazione per importi. Generalmente le imprese di assicurazione chiudono prima i sinistri con danni a cose, soprattutto quelli di importi piuttosto bassi, e successivamente i sinistri che hanno causato danni alle persone perché questi ultimi richiedono delle specifiche perizie di durate non indifferenti. E' risaputo che il ramo R.C.Auto ha dei tempi di liquidazione piuttosto lunghi quando negli incidenti derivanti dalla circolazione stradale dei veicoli a motore sono coinvolte delle persone. Poiché sul totale dei sinistri avvenuti, il numero dei sinistri con soli danni a cose è molto più elevato di quelli con danni a persone, di questi ultimi, fortunatamente, non ne accadono tanti, la velocità di liquidazione per numeri è maggiore di quella per importi.

2.6. Sinistri pagati dell'esercizio e degli esercizi precedenti (importi in milioni di Euro; costi medi in unità di Euro)

Es	sercizio	Sinistri accaduti nell'esercizio	Sinistri accaduti negli esercizi precedenti	Totale
	n.pag.	2.699.067	1.833.747	4.532.814
1999	imp.pag.	3.566	7.613	11.179
	pag.medio	1.321	4.151	2.466
	n.pag.	2.474.453	1.878.599	4.353.052
	Δ %	-8,3	2,4	-4,0
2000	imp.pag.	3.466	8.095	11.561
2000	Δ %	-2,8	6,3	3,4
	pag.medio	1.401	4.309	2.656
	Δ %	6,1	3,8	7,7
	n.pag.	2.184.177	1.808.573	3.992.750
	Δ %	-11,7	-3,7	-8,3
2001	imp.pag.	3.525	8.726	12.251
2001	Δ %	1,7	7,8	6,0
	Pag.medio	1.614	4.825	3.068
	Δ %	15,2	12,0	15,5
	n.pag.	2.055.452	1.672.485	3.727.937
	Δ %	-5,9	-7,5	-6,6
2002	imp.pag.	3.607	8.551	12.158
2002	Δ %	2,3	-2,0	-0,8
	Pag.medio	1.755	5.113	3.261
	Δ %	8,7	6,0	6,3

	n.pag.	2.022.457	1.625.454	3.647.911
	Δ %	-1,6	-2,8	-2,1
2003	imp.pag.	3.874	8.928	12.802
2003	Δ %	7,4	4,4	5,3
	Pag.medio	1.915	5.493	3.509
	Δ %	9,1	7,4	7,6
	n.pag.	2.029.332	1.592.192	3.621.524
	Δ %	0,3	-2,0	-0,7
2004	imp.pag.	4.233	9.014	13.247
2004	Δ %	9,3	1,0	3,5
	pag.medio	2.086	5.661	3.658
	Δ %	8,9	3,1	4,2

Nella tabella precedente i sinistri sono stati classificati per accadimento sulla base della modulistica di vigilanza.

Il numero totale dei sinistri pagati in ogni anno per i sinistri correnti o precedenti si è leggermente ridotto negli anni, passando da 4.532.814 nel 1999 a 3.621.524 nel 2004. Relativamente ai sinistri delle generazioni precedenti, il numero dei liquidati in media si riduce nell'intervallo considerato, ma sono comunque presenti perché al momento della redazione del bilancio sono inseriti nella riserva sinistri; infatti, dalla tabella 2.4. si è visto che solo dopo cinque anni le imprese riescono a liquidare il 99% dei sinistri verificatisi. Si può quindi pensare che nell'anno 1999 siano stati pagati dei sinistri della generazione 1994, così come tra i dati relativi al bilancio 2004 si possono trovare sinistri del 1999. L'importo pagato, e di conseguenza il pagato medio, è stato tendenzialmente crescente nel tempo, probabilmente in seguito ad un aumento dell'inflazione o per variazioni giurisprudenziali nel livello degli indennizzi.

2.7. Sinistri riservati dell'esercizio e degli esercizi precedenti (importi in milioni di Euro; costi medi in unità di Euro)

Es	ercizio	Sinistri accaduti nell'esercizio	Sinistri accaduti negli esercizi precedenti	Totale
	n.ris.	1.631.831	888.365	2.520.196
1999	imp.ris.	7.407	11.437	18.844
	ris.medio	4.539	12.874	7.477
	n.ris.	1.491.329	1.008.943	2.500.272
	Δ %	-8,6	13,6	-0,8
2000	imp.ris.	7.674	12.999	20.673
2000	Δ %	3,6	13,7	9,7
	ris.medio	5.146	12.883	8.268
	Δ %	13,4	0,1	10,6
	n.ris.	1.341.675	1.027.058	2.368.733
	Δ %	-10,0	1,8	-5,3
2001	imp.ris.	7.705	14.144	21.849
2001	Δ %	0,4	8,8	5,7
	ris.medio	5.743	13.771	9.224
	Δ %	11,6	6,9	11,6
	n.ris.	1.252.174	978.308	2.230.482
	Δ %	-6,7	-4,7	-5,8
2002	imp.ris.	8.073	15.155	23.228
2002	Δ %	4,8	7,1	6,3
	ris.medio	6.447	15.491	10.414
	Δ %	12,3	12,5	12,9
	n.ris.	1.167.437	960.837	2.128.274
	Δ %	-6,8	-1,8	-4,6
2003	imp.ris.	8.324	16.115	24.439
2003	Δ %	3,1	6,3	5,2
	ris.medio	7.130	16.772	11.483
	Δ %	10,6	8,3	10,3
	n.ris.	1.189.279	893.958	2.083.237
	Δ %	1,9	-7,0	-2,1
2004	imp.ris.	8.584	16.804	25.388
2004	Δ %	3,1	4,3	3,9
	ris.medio	7.218	18.797	12.187
	Δ%	1,2	12,1	6,1

N.B.: I sinistri sono stati riclassificati per accadimento sulla base della modulistica di vigilanza.

Gli importi riservati sono considerati al netto della stima finale per sinistri IBNR.

Il numero di sinistri riservati nell'anno corrente ha avuto un cambiamento in negativo nel passare da un anno al successivo, salvo per l'anno d'origine 2004 in cui si sono riservati più sinistri che nel 2003. L'andamento è diverso per il numero di sinistri riservati ma avvenuti negli anni precedenti: dal 1999 al 2001 c'è stata una crescita, invece dal 2002 al 2004 la stessa grandezza ha registrato un andamento inverso. L'importo complessivamente riservato per i sinistri della generazione di bilancio ha subito una variazione al rialzo nell'intervallo temporale qui considerato. Un aumento dell'importo riservato congiuntamente ad una riduzione del numero di sinistri riservati ha portato ad un aumento negli anni del costo medio riservato passando da €4.539 nel 1999 a €7.218. Le cause sono da ricercarsi in ambito economico per quanto riguarda l'inflazione crescente (come già osservato per la tabella 2.6.) e in ambito legislativo (aumenti degli indennizzi per ragioni giurisprudenziali ma anche introduzione del criterio del costo ultimo a partire dal bilancio 2000¹⁷). In merito ai sinistri riservati nei diversi anni, ma accaduti in esercizi precedenti, si osserva un comportamento analogo a quanto visto per i sinistri della generazione corrente: si ha sistematicamente un aumento dell'importo globale riservato nonché del costo medio a riserva. Un aumento del costo medio riservato, ceteris paribus, determina una rivalutazione, o in altri termini un incremento, della riserva.

Una sintesi di quanto detto riguardo il costo medio pagato o riservato è presentata nella tabella successiva dove lungo le tante diagonali si leggono i costi dei sinistri di una stessa generazione pagati o riservati nei vari anni di sviluppo. Gli stessi importi rivelano quanto già affermato in precedenza: i costi che le compagnie di assicurazione operanti sul mercato italiano hanno sostenuto sono stati maggiori negli anni più recenti di quanto non lo fossero in passato. Il rapporto riservato medio su pagato medio è sempre maggiore dell'unità, in alcuni casi si discosta di tanto, invece in altri è prossimo al 100%. Quest'ultimo indicatore fornisce informazioni interessanti in merito alla politica di liquidazione e di riservazione delle compagnie italiane. Queste ultime, infatti, stimano di liquidare i sinistri ancora aperti ad un valore che in media è maggiore dell'esborso medio sostenuto per i sinistri ormai chiusi. Gli aumenti probabilmente sono dovuti all'effetto congiunto di cambiamenti interni ed esterni all'azienda. Le imprese possono mutare negli anni lo loro politica di liquidazione così come subiscono le conseguenze dovute alla perdita del potere d'acquisto della moneta

_

¹⁷ Si riveda, in merito al costo ultimo, quanto detto al paragrafo 1.

2.8. Costo medio del pagato e del riservato per antidurata (costi medi in unità di Euro)

														Totale		Totale
Es	ercizio	12+	11	10	9	8	7	6	5	4	3	2	1	Precedent	0	Generazion
														i		e
	CMP									13.498	8.344	6.309	2.797		1.317	
1999	CMR	_	_	_	-	_	_	_	-	23.774	19.202	12.795	7.637		4.523	
1,7,7	Totale									19.550	13.935	9.144	4.006		2.526	
	CMR/CMP									1,8	2,3	2,0	2,7		3,4	
	CMP	29.353	24.225	23.312	22.949	24.009	23.252	24.212	19.786	13.575	9.146	6.347	2.930	4.309	1.401	2.656
	$\Delta\%$									0,6	9,6	0,6	4,8		6,4	
2000	CMR	35.235	30.521	31.079	29.287	29.488	26.957	28.894	29.697	24.289	17.786	12.235	7.946	12.883	5.146	8.268
	$\Delta\%$									2,2	-7,4	-4,4	4,0		13,8	
	CMR/CMP	1,2	1,3	1,3	1,3	1,2	1,2	1,2	1,5	1,8	1,9	1,9	2,7	3,0	3,7	3,1
	CMP	29.013	32.346	26.358	29.918	24.912	26.903	24.085	18.854	12.917	8.832	6.374	3.225	4.825	1.614	3.068
	$\Delta\%$	-1,2	33,5	13,1	30,4	3,8	15,7	-0,5	-4,7	-4,8	-3,4	0,4	10,1	12,0	15,2	15,5
2001	CMR	38.204	35.732	33.759	33.177	31.282	33.716	34.643	30.327	23.978	17.375	11.976	8.836	13.771	5.743	9.224
	$\Delta\%$	8,4	17,1	8,6	13,3	6,1	25,1	19,9	2,1	-1,3	-2,3	-2,1	11,2	6,9	11,6	11,6
	CMR/CMP	1,3	1,1	1,3	1,1	1,3	1,3	1,4	1,6	1,9	2,0	1,9	2,7	2,9	3,6	3,0
	CMP	31.418	35.598	31.754	28.088	29.496	27.573	22.865	16.241	11.030	8.084	6.554	3.519	5.113	1.755	3.261
	$\Delta\%$	8,3	10,1	20,5	-6,1	18,4	2,5	-5,1	-13,9	-14,6	-8,5	2,8	9,1	6,0	8,7	6,3
	CMR	42.103	36.487	36.329	34.142	36.503	39.841	36.713	30.649	22.975	16.914	13.784	10.207	15.491	6.447	10.414
2002	$\Delta\%$	10,2	2,1	7,6	2,9	16,7	18,2	6,0	1,1	-4,2	-2,7	15,1	15,5	12,5	12,3	12,9
	Totale	38.785	36.211	34.928	32.204	34.195	35.604	31.941	25.409	18.252	13.016	9.926	5.344	8.943	3.531	5.939
	$\Delta\%$	9,9	4,4	11,2	0,1	16,9	13,7	3,6	-2,9	-6,7	-3,3	10,5	11,8	10,9	10,9	10,8
	CMR/CMP	1,3	1,0	1,1	1,2	1,2	1,4	1,6	1,9	2,1	2,1	2,1	2,9	3,0	3,7	3,2

	CMP	34.145	33.966	32.974	30.528	34.657	25.483	21.036	13.944	10.258	8.351	7.015	3.817	5.493	1.915	3.509
	$\Delta\%$	8,7	-4,6	3,8	8,7	17,5	-7,6	-8,0	-14,1	-7,0	3,3	7,0	8,5	7,4	9,1	7,6
2003	CMR	44.876	41.701	39.218	42.043	44.288	41.951	36.480	28.479	22.836	19.435	14.858	10.786	16.772	7.130	11.483
	$\Delta\%$	6,6	14,3	8,0	23,1	21,3	5,3	-0,6	-7,1	-0,6	14,9	7,8	5,7	8,3	10,6	10,3
	CMR/CMP	1,3	1,2	1,2	1,4	1,3	1,6	1,7	2,0	2,2	2,3	2,1	2,8	3,1	3,7	3,3
	CMP	34.891	30.147	28.183	30.509	29.579	27.139	18.681	13.619	10.081	8.254	7.314	3.945	5.661	2.086	3.658
	Δ%	2,2	-11,2	-14,5	-0,1	-14,7	6,5	-11,2	-2,3	-1,7	-1,2	4,3	3,4	3,1	8,9	4,2
	CMR	44.897	41.182	45.600	49.432	45.795	40.628	34.947	29.421	26.314	21.350	16.085	12.358	18.797	7.218	12.187
2004	Δ%	0,0	-1,2	16,3	17,6	3,4	-3,2	-4,2	3,3	15,2	9,9	8,3	14,6	12,1	1,2	6,1
	Totale	41.754	37.566	40.145	43.682	40.682	36.225	29.172	23.199	19.204	15.081	11.256	6.123	10.385	3.982	6.772
	Δ%	0,9	-4,2	7,8	13,8	-1,0	-0,8	-5,5	1,6	8,1	4,6	5,5	7,1	7,2	4,1	5,0
	CMR/CMP	1,3	1,4	1,6	1,6	1,5	1,5	1,9	2,2	2,6	2,6	2,2	3,1	3,3	3,5	3,3

Legenda:

CMP: pagato medio

CMR: riservato medio

2.9. Costo medio dei sinistri con seguito dall'anno di accadimento fino al 31.12.2004 (importi in milioni di Euro; costi medi in unità di Euro)

Generazione di accadimento	Importo pagato e riservato *	Numero dei sinistri pagati e a riserva	Costo medio	Δ%
1999	13.814	4.667.067	2.960	
2000	13.315	4.293.178	3.101	4,8
2001	13.205	3.865.346	3.416	10,2
2002	13.260	3.668.592	3.614	5,8
2003	13.413	3.585.565	3.741	3,5
2004	14.266	3.673.744	3.883	3,8

^{*}Gli importi pagati sono espressi in valuta 2004

Gli importi riservati al 31.12.2004 sono comprensivi della stima finale per sinistri IBNR. Il costo medio per i sinistri avvenuti nel 2004, senza le stime per i sinistri IBNR (455.133 ad un costo medio di 3.183 Euro), è pari a 3.982 Euro (si veda la tabella 2.8.)

Nella tabella 2.9. si trova la conferma di quanto detto a riguardo del costo medio pagato e riservato: entrambi sono in rialzo nell'intervallo 1999-2004 e il loro comportamento congiunto sarà naturalmente in aumento. Tale risultato è dovuto ad un incremento dell'importo pagato e riservato e contemporaneamente ad una riduzione nel numero dei sinistri pagati e a riserva. Tuttavia non si deve dimenticare che gli esercizi successivi risentono del pagamento dei sinistri appartenenti alle generazioni passate.

2.10. Sviluppo della riserva sinistri(importi in milioni di Euro)

Esercizio	1999	2000	2001	2002	2003	2004
Riserva iniziale	17.224	18.817	20.699	21.896	23.227	24.439
Risp./(Perdita) pag.definitivi	1.141	1.315	1.659	1.978	2.131	2.545
Risp./(Perdita) pag.parziali	-236	-327	-322	-338	-333	-313
Risp.senza seguito	927	1.023	1.175	1.408	1.451	1.456
(Perdita) riaperti (pagati e riservati)	-703	-782	-824	-896	-993	-1.115
Risp./(Perd.) su pag.al netto del saldo (ss-riap) (a)	1.129	1.229	1.688	2.152	2.256	2.573
% riserva caduta	13,2	13,5	16,6	20,5	20,4	22,3
% riserva iniziale	6,6	6,5	8,2	9,8	9,7	10,5
(Rival.)/Riduz. Ris.residua sin.pag.parzialmente	-784	-814	-989	-993	-1165	-1023
(Rival.)/Riduz. Ris.residua sin.non movimentati	-1.115	-1.435	-1.485	-1.518	-1.457	-1.503
(Rival.)/Riduz. Ris.residua totale (b)	-1.899	-2.249	-2.474	-2.511	-2.622	-2.526
% riserva residua	-21,9	-23,2	-23,5	-22,0	-21,5	-19,6
% riserva iniziale	-11,0	-12,0	-12,0	-11,5	-11,3	-10,3
Saldo (c) =(a)+(b)	-770	-1.020	-786	-359	-366	47
% riserva iniziale	-4,5	-5,4	-3,8	-1,6	-1,6	0,2

Come si nota leggendo la prima riga della precedente tabella la riserva sinistri si incrementa nei vari anni a causa dell'aumento degli importi dei sinistri riservati di cui si diceva prima. La riga che fa riferimento ad una rivalutazione/riduzione della riserva presenta per tutte le generazioni dei valori negativi, in tal senso, come si dirà meglio al paragrafo 3.2., è stato necessario, con riguardo all'intero portafoglio assicurativo italiano, procedere ad un incremento della riserva sinistri iniziale poiché la stessa, in seguito a diverse analisi, è risultata insufficiente. Il mercato italiano, nel suo complesso, è riuscito a stimare correttamente i pagamenti, anzi, dai risarcimenti effettuati, al netto del saldo (senza seguito-riaperti), ha ottenuto un risparmio crescente con il passare degli anni. La stessa osservazione non può essere fatta con riferimento alle riserve residue totali, per queste, infatti, si ha in ogni anno una sistematica rivalutazione.

2.11. Sviluppo della riserva sinistri per fasce di mercato (importi in milioni di Euro)

Fasce	Esercizio	1999	2000	2001	2002	2003	2004
	Riserva iniziale	8.836	10.301	11.670	12.974	14.231	17.067
_	Risp./(Perd.) su pag.al netto del saldo (ss-riap) (a)	674	891	1.179	1456	1.535	1.900
lm 0	(Rival.)/Riduz. Ris.residua totale (b)	-955	-1.170	-1.531	-1.495	-1.627	-1.778
P>=500 mln	% riserva iniziale	-10,8	-11,4	-13,1	-11,5	-11,4	-10,4
\$	Saldo (c) = $(a)+(b)$	-280	-279	-352	-40	-92	122
	% riserva iniziale	-3,2	-2,7	-3,0	-0,3	-0,6	0,7
	Riserva iniziale	4.571	4.456	4.646	4.254	4.244	2.127
]0m]	Risp./(Perd.) su pag.al netto del saldo (ss-riap) (a)	297	198	256	337	330	248
Z-56	(Rival.)/Riduz. Ris.residua totale (b)	-464	-549	-530	-495	-502	-240
<u> </u>	% riserva iniziale	-10,1	-12,3	-11,4	-11,6	-11,8	-11,3
250 mln<=P<500mln	Saldo (c) = $(a)+(b)$	-167	-351	-275	-157	-172	8
25(% riserva iniziale	-3,6	-7,9	-5,9	-3,7	-4,0	0,4
g	Riserva iniziale	1.977	1.951	2.522	2.809	3.028	3.767
0 m	Risp./(Perd.) su pag.al netto del saldo (ss-riap) (a)	91	57	116	212	267	283
\$25	(Rival.)/Riduz. Ris.residua totale (b)	-243	-205	-221	-319	-322	-363
<u>=</u>	% riserva iniziale	-12,3	-10,5	-8,8	-11,4	-10,6	-9,6
100 mln<=P<250 mln	Saldo (c) = $(a)+(b)$	-152	-148	-105	-107	-55	-80
100	% riserva iniziale	-7,7	-7,6	-4,2	-3,8	-1,8	-2,1
	Riserva iniziale	1.840	2.108	1.861	1.859	1.723	1.478
	Risp./(Perd.) su pag.al netto del saldo (ss-riap) (a)	67	82	138	148	124	143
P<100 mln	(Rival.)/Riduz. Ris.residua totale (b)	-238	-326	-191	-202	-171	-145
<100	% riserva iniziale	-12,9	-15,5	-10,3	-10,9	-9,9	-9,8
P.	Saldo (c) = $(a)+(b)$	-171	-243	-53	-55	-47	-2
	% riserva iniziale	-9,3	-11,5	-2,9	-2,9	-2,7	-0,2

N.B. I saldi non considerano lo sviluppo della riserva stimata per sinistri IBNR, vale anche per la 2.10.

Suddividendo il mercato italiano in fasce in funzione della massa di premi gestita, si osserva che tutte le imprese indistintamente hanno riservato negli anni in esame una somma insufficiente. Nonostante il costo medio riservato sia aumentato nel tempo, è stato necessario ogni anno procedere con una rivalutazione della riserva sinistri. Il grado di insufficienza in valore assoluto si riduce considerando imprese di minori dimensioni; in valore relativo è maggiore per le imprese di piccole dimensioni e minore per le grandi imprese. La procedura di stima della riserva sinistri deve essere molto controllata e bisogna essere molto attenti nel valutarla per evitare che il valore di questa rivalutazione sia talmente elevato a tal punto che l'impresa non riesca ad adempiere agli impegni assunti nei confronti degli assicurati e danneggiati rischiando la liquidazione coatta amministrativa. Da questa esigenza il legislatore ha emanato il decreto legislativo di cui si è ampiamente discusso nel paragrafo precedente.

2.12. Sinistri con danni a persone (importi in milioni di Euro; costi medi in unità di Euro)

Esercizio	2003				2004		Δ%			
Escicizio	esercizio	es.prec.	Totale	esercizio	es.prec.	totale	esercizio	es.prec.	totale	
n.pagati persone	122.540	385.747	508.287	154.911	404.034	558.945	26,4	4,7	10,0	
inc.% su n.pag.tot.	5,4	21,29	12,45	6,75	22,95	13,78				
imp.pagati persone	629	4.647	5.276	812	5.225	6.037	29,1	12,4	14,4	
inc.% su imp.pag.tot.	16,23	52,05	41,21	19,19	57,96	45,57				
pagato medio persone	5.129	12.047	10.379	5.244	12.932	10.801	2,2	7,3	4,1	
pag.medio persone/pag.medio tot.	2,68	2,19	2,96	2,51	2,28	2,95	-6,3	4,1	-0,3	
n.riservati persone	317.222	380.774	697.996	326.870	374.230	701.100	3,0	-1,7	0,4	
inc.% su n.ris.tot.	27,17	39,63	32,8	27,48	41,86	33,65				
imp.riservati persone	4.697	10.831	15.528	4.775	12.118	16.893	1,7	11,9	8,8	
inc.% su imp.ris.tot.	56,43	67,21	63,54	55,63	72,11	66,54				
Riservato medio persone	14.808	28.445	22.247	14.608	32.381	24.095	-1,4	13,8	8,3	
ris.medio persone/ris.medio tot.	2,08	1,70	1,94	2,02	1,72	1,98	-2,9	1,2	2,1	

2.13. Sinistri con soli danni a cose (importi in milioni di Euro; costi medi in unità di Euro)

Esercizio		2003			2004		Δ%			
Escretzio	esercizio	es.prec.	totale	esercizio	es.prec.	totale	esercizio	es.prec.	totale	
n.pagati cose	1.836.763	1.054.338	2.891.101	1.801.162	1.011.375	2.812.537	-1,9	-4,1	-2,7	
Inc.% su n.pag.tot.	90,82	64,86	79,25	88,76	63,52	77,66				
imp.pagati cose	2.388	1.851	4.240	2.443	1.881	4.324	2,3	1,6	2,0	
inc.% su imp.pag.tot.	61,65	20,74	33,12	57,72	20,87	32,64				
pagato medio cose	1.300	1.756	1.466	1.357	1.860	1.537	4,4	5,9	4,8	
pag.medio cose/pag.medio tot.	0,68	0,32	0,42	0,65	0,33	0,42	-4,4	3,1	0,0	
n.riservati cose	768.741	491.215	1.259.956	779.278	446.617	1.225.895	1,4	-9,1	-2,7	
inc.% su n.ris.tot.	65,85	51,12	59,20	65,53	49,96	58,85				
imp.riservati cose	1.895	1.838	3.733	1.946	1.878	3.824	2,7	2,2	2,4	
inc.% su imp.ris.tot.	22,76	11,40	15,27	22,67	11,18	15,06				
riservato medio cose	2.465	3.741	2.962	2.497	4.205	3.119	1,3	12,4	5,3	
ris.medio cose/ris.medio tot.	0,35	0,22	0,26	0,35	0,22	0,26	0,0	0,0	0,0	

Dal confronto tra le due ultime tabelle si nota come il numero dei sinistri con soli danni a cose è nettamente maggiore del relativo numero di sinistri con soli danni a persone. Le imprese di assicurazione negli anni 2003 e 2004 sono state abbastanza stabili nel chiudere i sinistri che hanno causato solo danni materiali. Infatti, il numero di sinistri con danni a cose della generazione corrente liquidati nell'anno in cui sono avvenuti è quasi uguale al numero per entrambi gli anni di origine, e la stessa considerazione può essere per sinistri accaduti in anni precedenti e liquidati negli esercizio 2003 o 2004. Lo stesso commento può in parte valere anche per i sinistri in cui sono state coinvolte delle persone, ovviamente le cifre sono differenti. Questa tipologia di sinistri ha dei tempi di liquidazione piuttosto lunghi, e il numero di sinistri della generazione corrente che vengono chiusi nello stesso anno è abbastanza basso¹⁸. Come logica conseguenza ne deriva che l'incidenza percentuale sul totale dei sinistri pagati è maggiore per i sinistri con soli danni a cose di quanto lo sia la percentuale relativa ai sinistri con danni fisici. L'esborso complessivo, relativo ai danni materiali, che le imprese hanno sostenuto nel biennio, non ha subito cambiamenti rilevanti

_

¹⁸ Si osservi per la generazione 2004: 1.801.162 sinistri con danni a cose pagati nello stesso anno, contro i 154.911 sinistri con danni a persone. Le cifre sono davvero diverse.

attestandosi intorno a 4.300 milioni di Euro. Leggermente diversa è la situazione in tabella 2.12. in cui l'importo pagato, come è ovvio, attendersi è maggiore. Considerazioni analoghe possono essere fatte in merito al pagato medio: per i sinistri con danni a persone il costo medio pagato si aggira intorno a €11.000, quasi un decimo del relativo costo medio dei sinistri con danni materiali che ammonta a €1.500. I sinistri con danni fisici sono in numero inferiore ma hanno un costo maggiore degli altri. Passando ad esaminare il comportamento delle imprese nel riservare i due tipi di sinistri si nota che riservano più sinistri con danni a persone di quanti ne liquidano, e invece riservano un numero inferiore, rispetto al numero dei pagati, di sinistri con danni materiali. Il motivo di detta differenza è che le compagnie di assicurazione vengono a conoscenza di tantissimi sinistri che hanno causato solo danni a cose (molti di questi, poi, hanno dei costi piuttosto bassi) e di pochi incidenti in cui sono state coinvolte anche delle persone ma che richedono alla compagnia un risarcimento elevatissimo. I primi sono i cosiddetti sinistri short-tail e i secondi, poiché richiedono dei tempi di liquidazione abbastanza lunghi, sono dei long-tail, e come tali compariranno nella riserva sinistri di tanti bilanci di fine esercizio. In sintesi, si può concludere affermando che per le imprese che esercitano il ramo R.C.Auto, ma in generale i rami di responsabilità civile, è molto difficile definire una corretta stima per la riserva sinistri dal momento che un ruolo alquanto importante è rivestito dai sinistri long-tail.

2.14. Sintesi del conto tecnico del ramo (importi in milioni di Euro)

Voci	1999	2000	2001	2002	2003	2004
Premi di competenza	12.783	14.048	15.012	16.312	17.366	17.996
Oneri relativi ai sinistri	-13.248	-13.886	-13.734	-13.735	-14.177	-14.375
Altre partite tecniche	-186	-184	-100	-166	-178	-228
Spese di gestione	-2.422	-2.559	-2.740	-2.921	-3.047	-3.169
Saldo tecnico al lordo della riassicurazione	-3.073	-2.581	-1.562	-510	-36	224
Quota dell'utile degli investimenti	935	1.050	899	648	888	1.077
Risultato del conto tecnico al lordo della riassicurazione	-2.138	-1.531	-663	138	852	1.301
Risultato del conto tecnico al netto della riassicurazione	-1.905	-1.298	-452	239	883	1.294

In ultimo si vuole riportare una tabella che sintetizza il conto tecnico del ramo R.C.Auto nei sei anni 1999-2004. Il portafoglio assicurativo italiano ha registrato un sistematico aumento dei premi di competenza e degli oneri relativi ai sinistri (salvo per l'esercizio

2001). Tutte le imprese di assicurazione nel triennio 1999-2001 hanno dovuto sostenere dei costi superiori ai relativi premi, facendo sì che il saldo tecnico al lordo della riassicurazione risultasse negativo. I rendimenti finanziari derivanti dagli investimenti hanno presentato un andamento altalenante, definendo un risultato tecnico al netto della riassicurazione ancora negativo ma in valore assoluto minore.

Una migliore condizione economica per le compagnie italiane si è avuta nel triennio 2002-2004, in cui si è registrato un risultato del conto tecnico positivo, sia in presenza che in assenza di riassicurazione, ma minore qualora si sia ricorso ai riassicuratori.

3. Il triangolo di run-off

Nel momento in cui le imprese si accostano alla stima della riserva sinistri, i dati che hanno a disposizione sono raccolti in un triangolo simile a quello seguente

	0	1	2	••••	j	••••	k-1	k
0	$lpha_{\scriptscriptstyle 00}$	$lpha_{01}$	$lpha_{\scriptscriptstyle 02}$		$lpha_{0j}$		$lpha_{0,k-1}$	$lpha_{0k}$
1	$lpha_{10}$	$lpha_{\scriptscriptstyle 11}$	$lpha_{\scriptscriptstyle 12}$		$lpha_{1j}$		$lpha_{1,k-1}$	
2	$\alpha_{\scriptscriptstyle 20}$	$lpha_{\scriptscriptstyle 21}$	α_{22}		$lpha_{2j}$			
••••								
i	$lpha_{i0}$	$lpha_{i1}$	$lpha_{i2}$					
••••								
k-1	$\alpha_{k-1,0}$	$lpha_{\scriptscriptstyle k-1,1}$						
k	$\alpha_{_{k0}}$							

Gli elementi α_{ij} possono rappresentare o importi pagati, sia incrementali che cumulati, o numeri dei sinistri, siano essi denunciati, riservati, chiusi perché senza seguito o riaperti ma anche pagati. Per riga si legge l'anno di generazione o di denuncia¹⁹, cioè l'anno in cui il sinistro si è verificato o è stato denunciato; per colonna si legge l'anno di sviluppo (o di

-

¹⁹ La diversa terminologia fa richiamo alla possibilità per le compagnie di assicurazione di classificare i sinistri per anno di denuncia o per anno di generazione, richiedendo in tal modo un approccio diverso alla stima della riserva sinistri.

differimento). Pertanto, se α_{ij} indica un importo incrementale, esso rappresenta il costo per i sinistri verificatisi (o denunciati, a seconda della classificazione che si adotta) nell'anno i pagati dall'impresa nell'anno i+j, cioè con j anni di ritardo. Fissata una riga è possibile leggere l'evoluzione dei sinistri²⁰ appartenenti a quella generazione nei differenti anni di sviluppo. Invece, per colonna sono indicati i sinistri delle diverse generazioni caratterizzati dallo stesso ritardo. Le chiavi di lettura di questo ritardo possono essere molteplici, tutto sta nel cosa vogliano indicare i valori α_{ij} . Così, se α_{ij} indicano importi cumulati, α_{ij} è l'ammontare globale che la compagnia ha pagato fino all'anno i+j per tutti quei sinistri facenti parte della generazione i. Se invece α_{ij} facesse riferimento al numero dei sinistri denunciati, allora questo valore sarebbe il numero di sinistri accaduti nell'anno i ma denunciati con j anni di ritardo. Il punto di partenza per tutti i metodi di valutazione della riserva sinistri è proprio questa matrice di dati chiamata "triangolo di run-off".

L'obiettivo di ciascuna impresa è quello di "rettangolarizzare"²¹ tale triangolo stimando i valori del triangolo inferiore. Le imprese riescono a costruire un simile triangolo raccogliendo i dati presenti nel modulo 28, che è stato introdotto insieme al modulo 29 con i nuovi metodi di calcolo del bilancio del 1998.

Il numero degli anni di sviluppo dipende dal ramo in questione, per il ramo R.C.Auto generalmente una generazione viene estinta in dodici o tredici anni, ma possono essere necessari anche vent'anni se i sinistri hanno cagionato danni fisici a persone.

3.1. La modulistica di vigilanza allegata al bilancio: il modulo 28

L'Isvap chiede alle imprese che esercitano il ramo danni di presentare congiuntamente al bilancio di fine esercizio un allegato relativo al portafoglio del lavoro diretto italiano. Il modulo 28 deve essere compilato per ogni rischio del ramo danni²² eccetto che per il ramo 10, R.C. autoveicoli terrestri, e per il ramo 12 R.C. veicoli marittimi, lacustri e fluviali i quali sono identificati nel modulo 29. Nel modulo si inseriscono i dati del bilancio in corso

_

²⁰ Intesi questi sia come numeri che come importi.

²¹ Con questo termine si vuole far riferimento al completamento della matrice riportando i valori stimati per la parte inferiore della tabella, in modo tale che disponendo di un triangolo si ottenga un rettangolo (da qui il termine rettangolarizzazione).

²² La classificazione dei rischi per ramo è riportata nell'allegato A) del decreto legislativo n.175 del 17 marzo 1995.

e quelli relativi agli esercizi precedenti per un'anzianità massima di otto anni. Quei sinistri più vecchi di otto anni vengono catalogati sotto la voce "N-8 e precedenti".

Il modulo 28 distingue cinque tipologie di sinistri

- sinistri a riserva all'inizio dell'esercizio
- sinistri denunciati nell'esercizio
- sinistri riaperti nell'esercizio
- sinistri a riserva alla fine dell'esercizio
- sinistri in causa

I sinistri a riserva all'inizio riportano nelle prime due colonne la riserva iniziale distinta per numero e importo, e nelle colonne contigue si inseriscono i pagamenti sostenuti nell'esercizio distinguendo i sinistri chiusi perché pagati a titolo definitivo da quelli ancora da riservare a fine anno perché pagati parzialmente. Per la stessa classe di sinistri si conteggiano gli eliminati per senza seguito. Anche per i sinistri denunciati nell'esercizio la suddivisione è analoga alla precedente ma la classificazione tra pagati definitivi, parzialmente o eliminati per senza seguito non fa riferimento alla riserva iniziale ma ai sinistri denunciati nell'esercizio in corso. I sinistri denunciati non necessariamente devono appartenere alla generazione ultima ma possono riferirsi, come peraltro avviene nella realtà, ad anni precedenti. La terza tipologia di sinistri riguarda i riaperti nell'esercizio. Dopo aver immesso il numero complessivo dei sinistri riaperti li si distingue per tipo di pagamento definitivo o parziale. Nelle colonne adiacenti si procede al conteggio del numero totale dei sinistri pagati nell'esercizio e dei relativi importi. Il numero complessivo dei sinistri pagati è dato dalla somma dei sinistri pagati definitivamente tra quelli appartenenti ai sinistri a riserva all'inizio, sinistri denunciati e sinistri riaperti; analogamente è fatto con gli importi. Successivamente si procede alla valutazione dell'accantonamento necessario alla fine dell'attività annuale. Infatti, la riserva complessiva alla fine dell'anno di bilancio in numero e importo è data dalla somma dei sinistri a riserva all'inizio dell'esercizio, dei sinistri denunciati e dei riaperti nello stesso esercizio. Il numero dei sinistri a riserva all'inizio dell'esercizio è calcolato sottraendo al numero dei sinistri della riserva iniziale i pagati a titolo definitivo e gli eliminati per senza seguito. Sottraendo dal numero dei sinistri denunciati nell'esercizio i pagati definitivi e gli eliminati perché senza seguito si ottiene il numero dei sinistri denunciati nell'esercizio. Per conteggiare, invece, i sinistri riaperti nell'esercizio è sufficiente sottrarre al numero dei riaperti il numero dei pagamenti definitivi. Infine si effettua una sorta di sintesi di quanto classificato in precedenza. Nell'ultima tipologia di sinistri sono tabulati il totale dei sinistri pagati nell'esercizio, distinti per numero e importo, e la riserva complessiva alla fine dell'esercizio, suddivisa in numero e importo. Per ottenere il totale dei sinistri pagati nell'esercizio, come numero e importo, è necessario sommare i sinistri riservati all'inizio dell'esercizio che sono stati pagati a titolo definitivo, ai pagamenti definitivi comprensivi sia dei sinistri denunciati nell'esercizio che dei riaperti.

3.1.1. L'allegato al modulo 28 dei sinistri tardivi

L'allegato numero 1 al modulo 28 presenta la stessa forma del modulo ma è suddiviso in due sezioni. La sezione a) è inerente allo sviluppo nell'esercizio corrente dei sinistri denunciati tardivamente nello stesso esercizio, la sezione b) riguarda lo sviluppo nell'esercizio in corso dei sinistri denunciati tardivamente negli esercizi precedenti e che sono stati collocati a riserva (analitica).

Le prime tre colonne della sezione a) riportano la riserva iniziale stimata al 31.12 dell'anno precedente all'attuale per sinistri tardivi suddivisa per numero, costo medio e importo, dato come prodotto tra costo medio e numero. Nelle colonne successive si inseriscono i dati effettivi dell'esercizio corrente per anno di accadimento. Si distinguono i sinistri tardivi denunciati nell'esercizio per numero di denunciati, numero e importo dei pagati e numero dei senza seguito, numero e importo dei sinistri a riserva analitica alla fine dell'esercizio. Questo ultimo tipo di sinistri è ottenuto sottraendo ai denunciati i pagati e i senza seguito. Sempre nella sezione a) si valuta la riserva finale stimata al 31.12 dello stesso anno di bilancio di fine esercizio per i sinistri tardivi distinguendo il numero, il costo medio e l'importo. Infine si effettua anche nell'allegato una sintesi dei sinistri in causa classificandoli in sinistri pagati nell'esercizio e valutando la riserva analitica alla fine dell'esercizio.

Nella sezione b) si immettono dapprima per i sinistri denunciati tardivamente il numero e l'importo della riserva iniziale analitica al 31.12 dell'anno precedente. I dati successivi fanno riferimento ai sinistri tardivi a riserva all'inizio dell'esercizio e ai sinistri tardivi riaperti durante l'esercizio. I sinistri tardivi a riserva alla fine del bilancio precedente vengono suddivisi in sinistri pagati nell'esercizio e sinistri senza seguito. In tal modo è possibile calcolare la riserva alla fine dell'esercizio precedente sottraendo al numero dei sinistri a riserva iniziale dello scorso esercizio il numero dei pagamenti e degli eliminati per senza seguito. Tra i sinistri tardivi riaperti nel corso dell'ultimo anno si classificano i

sinistri riaperti nonché i sinistri pagati durante l'anno. Dunque la riserva finale per questo tipo di sinistri è data dalla differenza tra riaperti e pagati.

Con tutti i dati a disposizione è possibile valutare la riserva finale (analitica) per i sinistri denunciati tardivamente. Il numero dei sinistri a riserva è la somma del numero dei sinistri a riserva (analitica) alla fine dell'esercizio per sinistri tardivi denunciati nell'esercizio della sezione a), della riserva alla fine dell'esercizio per sinistri tardivi a riserva alla fine del precedente bilancio e la riserva finale per sinistri tardivi riaperti nell'esercizio corrente. L'importo della riserva finale per sinistri tardivi è calcolato come somma degli importi relativi alle tre tipologie di riserva implicate nel calcolo del numero dei sinistri posti a riserva.

3.2. La modulistica di vigilanza allegata al bilancio: il modulo 29

Per il bilancio degli esercizi 1998 e 1999 i moduli 28 e 29 e gli allegati numeri 2 e 4 al modulo 29 devono essere compilati in base all'anno di denuncia del sinistro. A partire dal bilancio dell'esercizio 2000 i medesimi moduli devono essere compilati in base all'anno di accadimento del sinistro. Ai fini della rilevazione contabile resta comunque fermo il criterio della registrazione dei sinistri in base alla data in cui è pervenuta la denuncia. Il "modulo 29" è un allegato che le imprese di assicurazione che esercitano il ramo della R.C.Auto devono presentare congiuntamente al bilancio di fine esercizio. A differenza di quest'ultimo il modulo 29 non può essere consultato dal pubblico, ma è inviato all'Isvap che dovrà controllare, o meglio vigilare, sull'operato dell'impresa di assicurazione. Questo modulo è molto importante per verificare se l'impresa ha proceduto correttamente nella valutazione della riserva sinistri. L'interesse dell'Isvap nei confronti del modulo 29 è di facile intuizione dal momento che le riserve sinistri vanno iscritte nel passivo del bilancio di fine esercizio. I dati raccolti nel modulo si riferiscono ai valori della riserva sinistri all'inizio dell'esercizio e al numero e agli importi dei sinistri movimentati durante l'anno. Per sinistri movimentati durante l'anno si intende il numero e l'importo dei sinistri pagati definitivamente o parzialmente; dei sinistri eliminati perché senza seguito; dei sinistri denunciati; dei sinistri riaperti che a loro volta possono essere pagati a titolo definitivo o parziale. E' bene notare che in ogni caso i sinistri pagati parzialmente saranno direttamente coinvolti nel calcolo della riserva sinistri poiché sono ancora in corso di liquidazione alla fine dell'esercizio, cioè al beneficiario non è stato completamente erogato il risarcimento

che gli spetta e pertanto il sinistro non è stato definitivamente chiuso. Questi valori, e in particolar modo quelli riferiti ai sinistri pagati parzialmente, ai sinistri non movimentati durante l'esercizio, ai sinistri denunciati o a quelli riaperti, sono utili per calcolare le riserve residue per ogni anno di generazione e infine stimare l'ammontare della riserva sinistri da apporre in bilancio. Si procede successivamente ad una rivalutazione o riduzione, rispettivamente, del valore della riserva sinistri iniziale. Nel caso in cui, a fine esercizio, la riserva sinistri iniziale dovesse risultare insufficiente dalle diverse stime, allora si parlerà di rivalutazione e il segno di tale valore sarà negativo. Al contrario, se nell'esercizio precedente la riserva sinistri era stata sopravvalutata si verificherà una riduzione pari al valore riportato in tabella con segno positivo. Questo secondo caso nella realtà di un'impresa risulta abbastanza raro, infatti, nella pratica aziendale si verifica quasi sempre una rivalutazione della riserva. Le imprese di assicurazione sono comunque obbligate a portare qualunque rettifica in bilancio purché venga sempre garantita la "sufficienza degli stanziamenti iscritti" 23. La riserva sinistri complessiva alla fine dell'esercizio è calcolata come somma delle riserve parziali per ogni anno di generazione di sinistri. Il valore delle singole riserve residue è dato dalla somma degli importi: dei sinistri pagati parzialmente, dei sinistri non movimentati durante l'esercizio, dei sinistri denunciati e/o riaperti nell'esercizio. Dai moduli allegati ai bilanci delle imprese è possibile costruire delle serie storiche concernenti il numero di sinistri (denunciati, pagati, senza seguito e riservati) e l'ammontare sia dei pagamenti che delle riserve. Infatti, i dati presenti in questo modulo 29 consentono di compilare la diagonale della matrice di run-off per una generazione di sinistri; pertanto l'impresa può completare il triangolo superiore di detta matrice consultando una serie di moduli 29, tanti quanti sono gli anni di generazione di sinistri che intende considerare. Una volta costruito tale triangolo, l'impresa potrà completare la matrice stimando i valori del triangolo inferiore attraverso un metodo dei tanti a sua disposizione. Dalla matrice completa si trarrà la stima della riserva sinistri il cui valore verrà posto in bilancio.

_

²³ Circolare Isvap n.360/D del 21 Gennaio 1999

4. Metodi di calcolo per la riserva sinistri

Come è stato già osservato, nel decreto legislativo non si accenna in alcun modo a imporre alle imprese di assicurazione quale metodo di calcolo impiegare per la stima della riserva sinistri. Il legislatore sa bene che non esiste un metodo che si dimostri migliore di un altro, ogni metodo ha i suoi vantaggi ma anche i suoi svantaggi. Ecco perché si è dettati soltanto i principi da rispettare nel calcolo della riserva sinistri rimandando a ciascuna impresa la libera scelta sull'impiego di un metodo piuttosto che di un altro, fermo restando l'obbligo da parte dell'Isvap di controllare il bilancio pervenuto e di intervenire laddove lo ritenga necessario ai fini della solvibilità dell'impresa. L'Isvap, infatti, vigila sull'attività di ciascuna impresa per garantire che gli interessi degli assicurati vengano rispettati; pertanto pone la massima attenzione alla valutazione della riserva sinistri in quanto un accantonamento insufficiente, che si traduce in una sottostima della riserva, può rendere l'impresa insolvente, cioè incapace di far fronte agli impegni assunti nei confronti degli assicurati. Lo stato di insolvenza viene inteso come il primo step per dichiarare successivamente la liquidazione coatta amministrativa della stessa impresa da parte dell'autorità di vigilanza. Dall'altro canto, una sovrastima della riserva sinistri non è auspicabile perché significherebbe per l'impresa aumentare il passivo del suo bilancio con inevitabili conseguenze sul risultato economico.

Esistono due grandi famiglie di metodi per il calcolo della riserva sinistri: metodi deterministici e metodi stocastici caratterizzati, questi ultimi, da significative distribuzioni probabilistiche delle riserve. Entrambe le famiglie racchiudono a loro volta altri metodi.

I metodi statistici possono essere classificati in base ai dati utilizzati per la valutazione della riserva sinistri, pertanto si distinguono:

- o metodi che utilizzano le proiezioni dei sinistri pagati;
- o metodi che utilizzano le proiezioni dei sinistri avvenuti;
- o metodi che utilizzano le proiezioni del loss ratio²⁴.

E'possibile effettuare un'ulteriore raggruppamento dei metodi di stima. Si possono menzionare i *metodi a costo medio* che, una volta definito l'intervallo di differimento, cercano di stimare la velocità di liquidazione congiuntamente ai costi medi prevedibili e la probabile evoluzione futura dei sinistri senza seguito, eliminati o riaperti. Sulla base di queste previsioni si proseguirà alla valutazione dell'importo da accantonare. I *metodi concatenati* e i *metodi di separazione* hanno un differente percorso valutativo, questi,

-

²⁴ Il loss ratio è definito come rapporto dei sinistri a premi, fatto riferimento ad un prefissato ramo.

infatti, cercano di calcolare dei coefficienti di pagamento, detti coefficienti di sviluppo, e di proiettarli al futuro in funzione dell'esperienza passata dell'impresa. Inoltre, le tre tipologie di metodi ora richiamati prendono in considerazione per le possibili stime future l'andamento del processo inflattivo come risultante sia da fattori esterni che da fattori interni all'impresa. Appartiene ai metodi a costo medio il metodo Fisher-Lange, mentre un esempio di metodi concatenati potrebbe essere il metodo chain ladder, e per quanto riguarda l'ultimo tipo si ricorda il metodo della separazione aritmetica di Taylor. Questi ultimi tre metodi citati verranno presentati con maggiore accuratezza nel seguente capitolo. La scelta di un metodo anziché di un altro è dettata dalle informazioni a disposizione della compagnia e dalle caratteristiche del portafoglio.

4.1. Metodi deterministici

Tra i tanti metodi appartenenti a questa categoria si possono citare il *Grossing up* e il *Link Ratio*. Il primo calcola il costo di generazione stimato ottenuto rapportando la somma del costo di generazione al pagato cumulato totale dopo t anni di differimento; la percentuale così ottenuta si moltiplica per l'importo indicante il pagato cumulato dell'ultimo anno di sviluppo per quella generazione. Si procede in questo modo per tutte le generazioni dei sinistri considerate. Successivamente si calcola il fattore di Grossing Up indicato con $g_j(i)$, dove i indica l'anno di generazione e j l'anno di differimento. Il valore $g_j(i)$ è ottenuto come rapporto tra il pagato cumulato alla data di valutazione e il costo di generazione stimato. Si ipotizza che negli anni successivi la velocità di liquidazione dei pagamenti sia uguale a quella calcolata, in questo modo si possono stimare i costi futuri di generazione. Sottraendo al costo totale di tutta la generazione l'importo pagato cumulato alla data di valutazione si ottiene la riserva sinistri stimata per quel determinato anno di origine. Si sommano tutte le riserve residue e si ottiene la riserva sinistri globale.

Il Link Ratio definisce i fattori $r_j(i)^{25}$ come rapporto tra il valore del pagato cumulato ad un anno di sviluppo e il valore del pagato cumulato per l'anno di sviluppo precedente. Per ogni anno di differimento si considerano i valori più elevati e li si moltiplicano, ottenendo in tal modo i fattori f_j . Il primo anno di evoluzione avrà tanti fattori moltiplicativi quanti sono gli anni di differimento, gli anni successivi avranno sempre un fattore in meno. In

35

 $^{^{25}}$ Con i e j aventi gli stessi significati visti prima.

seguito vengono definiti i costi futuri di generazione ottenuti moltiplicando i fattori f_j per il pagato cumulato alla data di valutazione. Sulla base dei costi futuri e del pagato cumulato alla data di valutazione viene stimata la riserva sinistri di fine esercizio. Il Link Ratio, così come il Grossing Up, presenta delle varianti. Lo scopo della trattazione esula da un'analisi più approfondita di tali metodi per cui si rinvia all'opera di Gismondi, Curti e Di Gregorio citata in bibliografia.

Di seguito ci si soffermerà sull'esposizione di altri metodi di natura deterministica che rivestono un ruolo alquanto importante all'interno delle imprese per la stima della riserva. Si tratta del metodo chain ladder, del metodo Fisher-Lange e del metodo della separazione aritmetica di Taylor. Si vuole ricordare come i metodi di stima che verranno esposti di seguito possono essere applicati ai cosiddetti "rami di massa", cioè a quei rami aventi un numero elevato di dati, come per esempio l'R.C.Auto. Tuttavia, anche per altri rami è possibile far ricorso a tali metodi, però le stime saranno soggette ad una maggiore volatilità causata dal numero esiguo dei dati iniziali. In generale, la stima della riserva sinistri per i rami di cui l'impresa dispone di pochi dati relativi ai sinistri è effettuata recuperando i criteri di calcolo impiegati in passato e verificando che i sinistri siano stati riservati correttamente. In caso affermativo si riservano i nuovi sinistri sulla base dei criteri coinvolti per i calcoli precedenti, invece, nel caso in cui l'impresa non è stata capace di stimare nel modo migliore possibile i sinistri passati, si correggono le nuove stime delle riserve sulla base delle medie delle differenze del passato.

4.2. Metodi stocastici

I metodi stocastici sono così chiamati perché fanno riferimento alla distribuzione di probabilità di determinate quantità, siano esse pagamenti o numero dei sinistri. Sono presenti in letteratura un numero abbastanza elevato di metodi facenti parte di questa classe. Il motivo di un così elevato numero di metodi è da ricercarsi nel fatto che sostanzialmente esistono infiniti modi per "costruire" un metodo. Gli studiosi che si sono occupati della ricerca di nuovi metodi stocastici sono partiti dall'idea di una distribuzione di probabilità sottostante i dati²⁶ reali raccolti in un triangolo di run-off. Hanno fatto riferimento a quella distribuzione probabilistica conosciuta che secondo loro poteva adattarsi meglio ai dati che si fossero osservati nella realtà. Una volta scelta quale debba

_

²⁶ Tali dati possono essere sia importi che numeri di sinistri.

essere la distribuzione di probabilità, si passa a definire i principali momenti della distribuzione: valore atteso e varianza. Alcuni metodi possono differire nella definizione della media dei pagamenti o del numero dei sinistri, altri possono considerare una medesima relazione per il valore atteso e cambiare l'equazione relativa alla varianza. Il mondo assicurativo è in continuo cambiamento, e questo è motivo di ricerca di nuovi metodi stocastici che riescano ad essere al meglio rappresentativi della realtà sottostante ai dati raccolti. Un interesse così particolare nel ricercare metodi sempre migliori, intendendo con questo aggettivo metodi che riescano a superare i punti di debolezza di un metodo già conosciuto, è dettato dalla necessità di poter stimare nel miglior modo possibile l'ammontare di cui l'impresa necessiterà al momento della liquidazione del sinistro. Queste previsioni devono quindi rispecchiare nel modo più veritiero possibile i reali impegni della compagnia per evitare che ci siano casi di sotto o sovrastima che possono essere causa di gestioni future negative o di preoccupazioni per gli azionisti.

CAPITOLO DUE

I principali metodi deterministici

1. Il metodo Chain Ladder

Come già affermato in precedenza esistono diversi metodi deterministici per la stima della riserva sinistri. L'indagine di vari metodi di analisi dei dati relativi ai sinistri si dilagò con una notevole velocità a partire dagli inizi degli anni Settanta in risposta agli innumerevoli casi di fallimento degli assicuratori inglesi e australiani.

Nel settore assicurativo, sin dai tempi antichi, si è ampiamente sviluppato l'utilizzo del metodo chain ladder, che per questo motivo è conosciuto come metodo base per la valutazione della riserva sinistri. Il largo impiego che ne viene fatto ai dati di run-off è dovuto alla semplicità sottostante il suo meccanismo di stima.

Le origini del metodo rimango tuttora sconosciute. Non si è a conoscenza di chi ne sia stato l'autore o di chi l'abbia applicato per la prima volta al triangolo di run-off.

Taylor afferma che già agli inizi degli anni Settanta il professore R. E. Beard in veste di consulente del Department of Trade nel Regno Unito faceva ampio uso di tale metodo. Inoltre, gli autori inglesi Clarke e Harland in un loro testo del 1974 descrivono un metodo che include tutti gli elementi del chain ladder e il metodo di stima dei loro parametri è lo stesso del chain ladder e sarà esposto successivamente. Se ne conclude, quindi, che la nascita di tale metodo è da porre in data antecedente al 1974. Lo stesso modello appare già nel 1973²⁷ come applicazione della Teoria della Credibilità alla riserva sinistri.

La denominazione del metodo in esame, metodo chain ladder o metodo della catena, è conseguenza del meccanismo di calcolo dei parametri e di stima degli incogniti valori futuri del costo sinistri. Infatti, il chain ladder fa parte della classe dei metodi concatenati proprio perché alla base delle stime c'è la forte ipotesi di costanza nel tempo della politica di liquidazione dei sinistri da parte dell'impresa di assicurazione. In altre parole, allo scopo

²⁷ Si rimanda alle pagine 177-190 del testo di Kramreiter H. e Straub E. "On the calculation of IBNR reserves II." Mitteilungen der Vereinigung Schweizerischer Versicherungs-mathematiker (1973).

di determinare l'ammontare da porre in bilancio tra le passività della compagnia, si proietta al futuro l'esperienza passata in materia di liquidazione, supponendo che l'assicuratore non muti nel tempo la modalità di chiusura dei sinistri. In questo modo è chiaro come i valori futuri dipenderanno fortemente dai valori passati definendo in tal maniera una struttura concatenata.

E' bene ricordare che il chain ladder è un metodo che viene ampiamente impiegato nei rami cosiddetti di massa come l'R.C.Auto. Infatti, nel seguito, dopo aver presentato le modalità di stima dei parametri e di conseguenza della riserva sinistri si mostrerà un esempio di calcolo applicato ad un triangolo di run-off riportante i dati di una generica compagnia che esercita il ramo R.C.Auto.

Il metodo in questione considera i valori α_{ij} del triangolo di run-off, del paragrafo tre del precedente capitolo, come importi pagati complessivamente, cioè cumulati, nell'anno i + jper i sinistri appartenenti alla *i - esima* generazione. Sulla base dell'esperienza passata e con l'ausilio dei fattori di sviluppo si cerca di completare la parte inferiore del triangolo di run-off ottenendo infine il valore della riserva sinistri come somma delle riserve residue di ogni anno di generazione. La riserva sinistri di ogni generazione è data dalla differenza tra il valore dei pagamenti cumulati alla fine del periodo di differimento considerato²⁸ e l'importo effettivamente pagato alla data di valutazione. In altre parole si stima quale debba essere il costo complessivo che l'assicuratore deve supportare per una determinata generazione di sinistri, si sottrae quanto già è stato pagato e il valore così ottenuto identifica la riserva della generazione in esame. La compagnia provvederà, in seguito, a iscrivere nel modulo 29²⁹ le riserve residue relative agli anni di generazione previsti nel modulo. Infine si sommano le riserve per tutte le generazioni di sinistri coinvolte nella stima e si ottiene l'ammontare degli impegni a carico della compagnia alla fine di un generico anno d'esercizio. Tale somma verrà posta nel passivo del bilancio sotto la voce riserva sinistri.

²⁸ I triangoli relativi alla R.C.Auto hanno un'estensione del periodo di differimento molto lunga come per esempio dodici o tredici anni, a volte si può riservare un sinistro anche per vent'anni. Quest'ultimo è un caso molto particolare in quanto riferito a sinistri che hanno causato gravi danni a persone o nei casi peggiori la morte.

²⁹ Per i rami diversi dalla R.C.Auto si fa uso del modulo 28.

1.1. Le ipotesi del metodo

Il metodo utilizza un insieme di pagamenti dei sinistri suddivisi per anno di generazione e anno di sviluppo, in tal modo si ottiene un insieme di osservazioni sulle variabili casuali C_{ij} , avendo indicato in tal modo l'importo cumulato pagato con j anni di differimento per quei sinistri avvenuti nel generico anno i. L'obiettivo è calcolare il valore $C_{i,j+1}$, avendo posto C_{ii} come ultima osservazione disponibile.

Il metodo si basa sull'ipotesi che al variare di j tra 0 e T, avendo indicato con Tl'ultimo anno di sviluppo presente nel triangolo di run-off, il valore dei rapporti $\frac{C_{i,j+1}}{C}$ non

dipenda, a meno di variazioni aleatorie, dalla generazione i cui essi fanno riferimento ma solo da j. E' come se si assumesse che la progressione dei pagamenti cumulati si mantenga sostanzialmente la medesima per ogni generazione³⁰. In termini operativi significa proiettare i dati dell'ultima diagonale della matrice di run-off.

Nella sua forma più semplice il modello può essere scritto nella seguente forma $P_{ij}=lpha_i
ho_j^{31}$, dove P_{ij}^{32} indica i risarcimenti effettuati con j anni di ritardo per i sinistri avvenuti nell'anno i, α_i è una costante che dipende dall'anno di generazione e ρ_i , anch'essa costante, dipendente dall'anno di sviluppo. In tal modo α_i può essere interpretato come l'ammontare totale dei pagamenti riferito ai sinistri del generico anno i, e ρ_j come la porzione di questo totale relativo ad ogni anno i pagabile nel j-esimo anno di differimento.

Successivamente si procede al calcolo dei fattori di sviluppo e si moltiplicano tali fattori per C_{ij} , ovvero per l'ultimo dato noto e reso disponibile all'attuario, e si ottengono le stime dei futuri importi cumulati.

Taylor accenna ad una forma un po' più complicata di quella presentata sopra. Ponendo ϕ come tasso costante dell'aumento dei sinistri da periodo a periodo il modello può essere

una stima migliore si utilizzano i rapporti dei pagamenti cumulati perché presentano una maggiore stabilità rispetto ai rapporti annuali in quanto i primi assorbono possibili oscillazioni dovute all'andamento dei rapporti annuali. ³¹ Si veda l'opera di Taylor del 1986 citata in bibliografia.

40

 $^{^{30}}$ Si potrebbero considerare in modo analogo i rapporti $\frac{P_{i,j+1}}{P_{ii}}$ dei pagamenti annuali, ma al fine di ottenere

 $^{^{32}\,\}mathrm{Si}$ noti come diventa $\,C_{ij} = \sum_{k=1}^{J} P_{ik}\,$.

riscritto nel seguente modo $P_{ij} = \alpha_i \left(\rho_j / \lambda^{i+j-u} \right) \lambda^{i+j-u}$, con u arbitrario e $\lambda = 1 + \phi$, ovvero $P_{ij} = \alpha_i^* \rho_j^* \lambda^{i+j-u}$ dove ρ_j^* è proporzionale a ρ_j / λ^{i+j-u} , o alternativamente si può avere $P_{ij} = n_i \mu_i \rho_j^* \lambda^{i+j-u}$. I parametri hanno il seguente significato: λ^{i+j-u} corregge i pagamenti dei sinistri, per l'aumento degli stessi, dai valori della moneta del periodo u ai valori del periodo di pagamento i+j; α_i^* è l'ammontare totale dei pagamenti riferiti all'anno i ed espressi in valore del periodo u ; ρ_j^* è la quota del totale precedente pagabile nell'anno di differimento j . Inoltre è stato possibile scomporre l'importo totale α_i^* nei due fattori n_i , il numero dei sinistri avvenuti nell'anno i, e μ_i , il costo medio, espresso in termini monetari del periodo u, dei sinistri appartenenti alla generazione i.

Le due forme del metodo proposte possono essere adottate come base del metodo chain ladder.

Nel successivo paragrafo verrà descritta la procedura di calcolo dei fattori di proporzionalità³³.

1.1.1. La stima dei fattori di sviluppo

Per calcolare i valori della colonna relativa alla massima antidurata, valori necessari al fine di avere la stima della riserva sinistri, è necessario disporre dei dati mancanti i quali si ottengono a loro volta calcolando i coefficienti dati dal rapporto della somma di due colonne consecutive.

La stima dei rapporti tra importi delle colonne contigue j-1 e j viene effettuata secondo³⁴ la

$$m_{j} = \frac{\sum_{i=0}^{T-j} C_{ij}}{\sum_{i=0}^{T-j} C_{i,j-1}}$$
 $j = 1,2,....T$ (1)

I coefficienti devono essere calcolati per ogni anno di differimento presente nel triangolo di run-off. In linea con l'obiettivo di stima della riserva sinistri, è bene sottolineare che non esiste il coefficiente m_0 dal momento che si riferisce agli importi pagati nello stesso anno

Altro nome per indicare i fattori di sviluppo.
 Per ulteriori approfondimenti si rimanda al testo di Daboni citato in bibliografia.

in cui sono avvenuti i sinistri, valori noti all'impresa di assicurazione che impiegherà gli stessi allo scopo di stimare la riserva da porre nel bilancio di fine esercizio. Infatti, i dati che devono essere stimati fanno riferimento ad anni di sviluppo maggiori di zero, cioè l'impresa deve valutare al momento della redazione del bilancio di chiusura a quanto ammonta il proprio impegno nei confronti degli assicurati i cui sinistri non sono stati ancora chiusi, cioè pagati, risultando gli stessi già liquidati.

Dalla formula vista sopra si nota come i fattori di proporzionalità sono una media ponderata dei rapporti di sviluppo. La dimostrazione è di seguito riportata.

Siano r_{ij} i rapporti degli importi cumulati relativi alla j-esima e alla (j-1)-esima

colonna, o in simboli
$$r_{ij} = \frac{C_{ij}}{C_{i,j-1}}$$
.

I coefficienti in questione possono essere riscritti nel seguente modo

$$m_{j} = \frac{\sum_{i=0}^{T-j} r_{ij} C_{i,j-1}}{\sum_{i=0}^{T-j} C_{i,j-1}}$$
(1 bis)

da cui è facile capire il carattere di media ponderata che assumono i fattori in parola.

"Per ogni anno di sviluppo j, il coefficiente è determinato come media dei rapporti di anno j, con pesi forniti dai valori cumulati di anno j-1".

1.1.2. La stima della riserva sinistri

Trovati tutti i valori dei coefficienti la stima degli importi mancanti e quindi indispensabili per completare la matrice dei dati, avviene secondo la seguente formula

$$\widehat{C}_{hk} = C_{h,T-h} \cdot \prod_{j=T-h+1}^{k} m_j \qquad h = 1,2,\dots T$$
 (2)

$$k = t - h + 1,....T$$

Stimati i pagamenti futuri $\left(\widehat{C}_{hk}\right)$ la riserva sinistri complessiva è data da

$$R = \sum_{i=0}^{T} \left(\hat{C}_{i\infty} - C_{i,T-i} \right) \tag{3}$$

_

³⁵ Si rinvia al testo di Ferrara Giovanna (2003/2004) citato in bibliografia.

dove $(\widehat{C}_{i\infty} - C_{i,T-i})$ è la riserva sinistri riferita all'anno di generazione i e $\widehat{C}_{0\infty} = C_{0\infty}$, stima dell'importo che complessivamente l'impresa deve pagare relativamente alla prima generazione in esame. Per il primo periodo di origine si ipotizza che il pagamento ultimo futuro sia un valore certo dal momento che considera sinistri avvenuti nel lontano passato e pertanto la probabilità di sbagliare è molto bassa, inoltre questi sinistri riguardano per lo più quei, pochi, casi in cui si sono registrati danni alle persone e dopo tanti anni la stima dei pagamenti è quasi certa. In tutti gli altri casi per calcolare i pagamenti che la compagnia prevede di sostenere oltre l'ultimo anno di differimento il fattore incrementale da applicare è così definito

$$m_{\infty} = \frac{C_{0\infty}}{C_{0t}} \tag{4}$$

Utilizzando questo coefficiente è possibile stimare i pagamenti dell'ultima colonna della matrice dei dati

$$\widehat{C}_{i\alpha} = \widehat{C}_{it} m_{\alpha} \tag{5}$$

attraverso i quali si ottengo le stime della riserva sinistri per ogni anno di generazione, secondo quanto detto prima, e successivamente ottenere il valore della riserva sinistri complessiva tramite la (3).

L'idea di fondo è quella di proiettare al futuro l'esperienza passata dell'azienda ottenendo in tal modo il costo complessivo per ogni generazione di sinistri avvenuti e coinvolti nella stima. Successivamente si sottrae a tale costo l'importo che è stato già pagato e la differenza determina la riserva sinistri per quella data generazione. La somma di tutte le riserve residue definisce il valore che dovrà essere inserito nel bilancio di fine esercizio.

1.2. Le varianti del metodo chain ladder classico

Il metodo esposto sopra si presta molto bene grazie alla semplicità di calcolo richiesta. Non deve però essere ignorata la possibilità che le stime non siano coerenti con la realtà effettiva o che ci siano altre modalità di valutazione che fanno riferimento alla logica del chain ladder variandone alcuni aspetti. Di seguito si farà cenno ad alcune delle infinite varianti del metodo chain ladder classico.

1.2.1. Il metodo chain ladder con aggiustamento per inflazione

Il metodo chain ladder suppone implicitamente che i dati abbiano un tasso costante di inflazione che non viene rimosso, anzi viene estrapolato al futuro, ipotizzando quindi che negli anni successivi l'inflazione sia la stessa di quella registrata fino a quel momento.

Ipotizzato ciò i risultati conseguiti possono essere ben diversi da ciò che si realizzerà a causa della presenza di inflazione non considerata o considerata implicitamente durante le analisi svolte. Per ovviare al problema inflattivo è possibile coinvolgere i tassi di inflazione registrati nel passato e quelli previsti per il futuro. Il chain ladder con aggiustamento per inflazione opera esattamente allo stesso modo del chain ladder classico, ma usa i pagamenti dei sinistri da cui l'effetto dell'aumento è sostituito dalla conversione ai valori della moneta corrente. La procedura è molto semplice: è sufficiente riportare i dati della matrice in valore del periodo base scelto appositamente dall'analista.

L'equazione base del chain ladder, $P_{ij} = n_i \mu_i \rho_j^* \lambda^{i+j-u}$, viene modificata al fine di tenere in conto la possibilità che l'aumento dei sinistri non sia necessariamente uguale da un anno all'altro. Sostituendo λ^{i+j-u} con λ_{i+j}/λ_u dove λ_{i+j} è il valore di un appropriato indice di aumento dei sinistri nel periodo (i+j), l'equazione diventa $P_{ij}^* = P_{ij} \lambda_u/\lambda_{i+j}$, i risarcimenti effettuati con un ritardo di j anni per quei sinistri appartenenti alla i-esima generazione sono convertiti nei valori della moneta del periodo base u. Dunque $P_{ij} = n_i \mu_i \rho_j^* \lambda^{i+j-u}$ e $P_{ij}^* = P_{ij} \lambda_u/\lambda_{i+j}$ forniscono la $P_{ij}^* = n_i \mu_i \rho_j^*$, che paragonata con l'equazione base del chain ladder mostra come strutturalmente il modello chain ladder con inflazione sia un caso particolare del chain ladder classico con $\lambda = 1$ e quindi con un aumento dei sinistri pari a zero. La proiezione dei sinistri non pagati avviene secondo la procedura vista precedentemente, con la differenza di dover rendere omogenei tutti i dati riportandoli ai valori della moneta del periodo base e considerare l'inflazione futura per la stima dei risarcimenti futuri. Se si volesse riscrivere la somma da riservare in dipendenza dei soli

importi incrementali si avrebbe $R_i = \sum_{k=j+1}^{\infty} P_{ik}$

$$= \sum_{k=j+1}^{\infty} P_{ik}^* \, \lambda_{i+k} / \lambda_u \quad \text{dove} \quad \lambda_{i+k} \quad \text{è il valore di un indice}$$

dell'aumento dei sinistri proiettato per il periodo di pagamento (i+k).

L'uso di un esplicito indice di inflazione, secondo quanto formulato nella $P_{ij}^* = P_{ij} \lambda_u / \lambda_{i+j}$, supera alcune delle obiezioni che sorgono contro il basic chain ladder. Per questa ragione, infatti, la variante vista prima è di solito preferita al metodo classico. La scelta è netta soprattutto quando si sono realizzati nel recente passato, o sono attesi nell'immediato futuro, cambiamenti sostanziali negli indici di inflazione. In questa ultima circostanza viene meno l'assunzione implicita di un aumento costante dei sinistri.

Tuttavia la difficoltà più grande che non può essere trascurata consiste nel selezionare un appropriato indice che evidenzi l'aumento dei sinistri. Una sottostima di tale indice, infatti, porta ad una sovrastima del ritardo medio riportato dal momento in cui è accaduto il sinistro al momento del pagamento.

Un particolare problema è l'*inflazione superimposta*, un termine utilizzato da Benktander per coprire la differenza (apparentemente persistentemente positiva) tra i tassi di incremento dei sinistri e le misure standard di inflazione.

E' stato mostrato da Taylor e Matthews che certi metodi di analisi dei dati contengono un meccanismo di autocorrezione in relazione all'inflazione superimposta. Più precisamente, se viene sottostimato, sia in passato che in futuro, l'aumento dei sinistri secondo un margine costante, per esempio l'inflazione superimposta, si conseguirebbe il medesimo risultato se fossero state utilizzate accurate misure per l'aumento dei sinistri³⁶. Il metodo chain ladder con aggiustamenti per inflazione è uno di questi metodi.

Nonostante le modifiche apportate per tener conto dell'inflazione, anche per questa variante si possono avanzare le stesse critiche del chain ladder classico, critiche che verranno presentate più in dettaglio successivamente.

1.2.2. Il metodo chain ladder a costo medio di generazione

Una seconda variante presente tra la classe dei metodi concatenati si basa sul *costo medio* dei sinistri pagati.

Si considera il triangolo di run-off degli importi dei sinistri pagati

45

³⁶ La sottostima dell'aumento dei sinistri passati porta ad una sovrastima del ritardo medio dall'avvenuto pagamento. Questa sovrastima, quando viene effettuata la retroazione nella proiezione al futuro, compensa la sottostima dell'aumento dei futuri sinistri.

	Anno di sviluppo j					
Anno di generazione i	0	1	2	•••	k-1	k
0	p_{00}	p_{01}	p_{02}		$p_{0,k-1}$	p_{0k}
1	p_{10}	p_{11}	p_{12}		$p_{\scriptscriptstyle 1,k-1}$	
2	p_{20}	p_{21}				
•••						
k-1	$p_{k-1,0}$	$p_{k-1,1}$				
k	p_{k0}					

e la distribuzione del numero di sinistri denunciati con seguito

	Sinistri denunciati con seguito
Anno di generazione $\it i$	
0	n_0
1	n_1
2	n_2
•••	
k-1	n_{k-1}
k	n_k

Si elabora il triangolo di run-off dei costi medi dei sinistri denunciati

	Anno di sviluppo j					
Anno di generazione $\it i$	0	1	2	•••	k-1	k
0	s ₀₀	s ₀₁	s ₀₂		$s_{0,k-1}$	s_{0k}
1	<i>S</i> ₁₀	<i>S</i> ₁₁	<i>S</i> ₁₂		$S_{1,k-1}$	
2	S ₂₀	s ₂₁				
•••						
k-1	$S_{k-1,0}$	$S_{k-1,1}$				
k	S_{k0}					

dove
$$s_{ij} = \frac{p_{ij}}{n_i}$$
 $i = 0,1,...k$ e $j = 0,1,...k - i$.

Al fine di eliminare l'influenza del numero dei sinistri rendendo i dati più stabili rispetto al triangolo riportante i costi medi incrementali, si elabora il triangolo di run-off dei costi medi cumulati dei sinistri denunciati

	Anno di sviluppo j					
Anno di generazione i	0	1	2	•••	k-1	k
0	S_{00}	S_{01}	S_{02}		$S_{0,k-1}$	S_{0k}
1	S_{10}	S_{11}	S_{12}		$S_{1,k-1}$	
2	S_{20}	S_{21}				
•••						
k-1	$S_{k-1,0}$	$S_{k-1,1}$				
k	S_{k0}					

dove
$$S_{ij} = \sum_{h=0}^{j} s_{ih}$$
 $i = 0,1,...k$ e $j = 0,1,...k - i$.

La stima della riserva sinistri segue la stessa procedura descritta in precedenza a riguardo del basic chain ladder. Partendo dal triangolo cumulato e dividendo gli elementi relativi a colonne successive si costruisce la matrice dei fattori di sviluppo

	Anno di sviluppo j					
Anno di generazione i	0	1	2	•••	k-1	k
0	d_{00}	d_{01}	d_{02}		$d_{0,k-1}$	d_{0k}
1	d_{10}	d_{11}	d_{12}		$d_{1,k-1}$	
2	d_{20}	d_{21}				
•••						
k-1	$d_{k-1,0}$	$d_{k-1,1}$				
k	d_{k0}					

dove
$$d_{ij} = \frac{S_{i,j+1}}{S_{ij}}$$
 $i = 0,1,...k-1$ e $j = 0,1,...,k-i-1$.

I fattori di sviluppo rappresentano i coefficienti di incremento dei pagamenti cumulati, tenendo conto sia dell'anno di generazione del sinistro che dell'anno di sviluppo. Come nell'impostazione originale del metodo chain ladder, anche questa variante si basa sull'ipotesi che il rapporto tra i valori di colonne successive del triangolo dei pagamenti cumulati sia costante. Ad esempio, per la colonna h-esima del triangolo di run-off dei fattori di sviluppo si assume che $d_h=d_{0h}=...=d_{k-h,h}$, con h=0,...k, dove d_h è il "vero³⁷" fattore di sviluppo costante della colonna h-esima. La variante in esame, così come altre varianti che possono essere concretizzate, fornisce una stima alternativa di tali rapporti costanti. In particolare si pone

$$d_h = \frac{\sum_{i=0}^{k-h-1} w_{ih} d_{ih}}{\sum_{i=0}^{k-h-1} w_{ih}}^{38}$$
(6)

La scelta del set di pesi " w_{ij} " è basata sulla credibilità dei diversi fattori di sviluppo, ovvero sull'ipotesi di maggiore o minore rilevanza dell'esperienza recente rispetto all'esperienza passata, e pertanto si utilizzano, anche, pesi del tipo $w_{ij} = (i + j)^2$ che conducono a dare maggiore credibilità alle informazioni più recenti³⁹.

Sulla base dei parametri d_h è possibile stimare i costi medi cumulati futuri secondo

$$S_{ij} = S_{i,k-i} \prod_{h=k-i}^{j-1} d_h \text{ con } k-i < j \le k$$
 (7)

Il totale della riserva sinistri può essere calcolato dalla relazione precedente, ricordando di sottrarre quanto già è stato pagato⁴⁰, oppure stimare i futuri pagamenti e ricavare con un passaggio successivo il valore stimato della riserva sinistri. In simboli bisogna calcolare

$$p_{ij} = s_{ij} n_i = (S_{ij} - S_{i,j-1}) \cdot n_i$$
 (8)

e dalla precedente ricavare la

³⁷ L'aggettivo in questione non deve trarre in inganno. In questo caso specifico col termine vero si vuole indicare il coefficiente che sarà impiegato per la stima degli importi cumulati.

48

 $^{^{38}}$ Si noti l'analogia con quanto visto nel paragrafo 1.1.1. nella (1 bis). Secondo la (6), infatti, il fattore di sviluppo relativo a ciascuna colonna del triangolo, è una media ponderata di tutti i singoli rapporti fatti tra gli importi cumulati di due colonne successive. Per dare una dimostrazione di quanto detto basta sostituire ai pesi w_{ij} l'altra classe di pesi, C_{ij} , così facendo si ottiene $d_h = m_h$. Si nota subito la coincidenza dei

coefficienti di proporzionalità impiegati dal chain ladder classico e dalla sua variante a costo medio.

39 La possibile scelta di pesi vista prima non è l'unica, infatti possono essere impiegati pesi arbitrari che abbiano, però lo stesso "effetto": assegnare un' importanza (in questo caso un peso) decrescente a rapporti di anni più lontani.

⁴⁰ Si confronti quanto detto con la (3).

$$R = \sum_{i=1}^{k} \sum_{j=k-i+1}^{k} p_{ij} \tag{9}$$

Anche nell'impostazione originale è possibile stimare la riserva complessiva facendo riferimento non già agli importi cumulati ma ai risarcimenti futuri stimati, in tale circostanza la (3) diventerebbe

$$R = \sum_{i=1}^{T} \sum_{i=t-i+1}^{T} P_{ij}$$
 (3 bis)

L'utilizzo di importi cumulati o incrementali, al fine di definire la riserva sinistri, è una scelta del tutto personale e non ha alcuna implicazione sul risultato finale; in entrambi i casi il valore risultante sarà lo stesso.

Per dare prova di ciò si riprenda la $R = \sum_{i=0}^{T} (\widehat{C}_{i\infty} - C_{i,T-i})$ e si sostituisca a C_{ij} la sua

espressione in termini di importi incrementali, $C_{ij} = \sum_{k=o}^{j} P_{ik}$, da cui si ricava

$$R = \sum_{i=0}^{T} \left(\sum_{k=0}^{\infty} P_{ik} - \sum_{k=0}^{T-i} P_{ik} \right), \text{ che con le giuste semplificazioni diventa } R = \sum_{i=0}^{T} \sum_{k=0}^{\infty} P_{ik}.$$

L'ultima espressione è identica alla precedente (3 bis) ponendo $T=\infty$ nella seconda sommatoria , sostituzione consentita dal momento che nel triangolo di run-off si è posto che il numero degli anni di differimento fosse pari a T; inoltre P_{0k} è un elemento della matrice triangolare superiore e come tale non rientra nel calcolo della riserva sinistri, pertanto nella prima sommatoria l'elemento i=0 non va considerato, ottenendo in conclusione $R=\sum_{i=1}^{T}\sum_{k=t-i+1}^{T}P_{ik}$, uguale alla (3 bis).

1.2.3. Il metodo chain ladder con gli incurred

Craighead nel 1980 ha messo in luce come *l'essenza del metodo chain ladder è di* estrapolare i valori futuri ricercati da un insieme di dati noti usando i rapporti calcolati come medie e applicarli successivamente alle coorti più recenti. Pertanto il metodo, da un punto di vista astratto, è apparentemente adattabile a certi elementi che non necessariamente devono essere i pagamenti dei sinistri. Una possibilità è di applicare il metodo agli importi "incurred", dove l'ammontare detto incurred per il periodo di origine i, valutato alla fine del periodo di differimento j, è dato dal totale dei pagamenti effettuati

fino alla fine dell'anno di sviluppo j più la valutazione reale dei sinistri non pagati, possibilmente considerando anche la componente degli IBNR.

1.2.3.1. La logica del metodo

Si definisce

$$I_{ij} = \sum_{k=0}^{j} P_{ik} + R_{ij} \tag{10}$$

dove i simboli hanno il seguente significato

 $\sum_{k=0}^{j} P_{ik}$ = somma dei pagamenti effettuati entro l'anno j per i sinistri della generazione i

 $R_{ij}=$ ammontare della riserva nell'anno $\,j\,$ per i sinistri avvenuti nell'anno $\,i\,.$

Quindi I_{ij} è la valutazione dell'assicuratore alla fine del j-esimo anno di sviluppo per i sinistri appartenenti all'i-esimo anno di origine. Resta chiarito cosa si intende per "incurred", la somma degli importi dei sinistri pagati e riservati fino ad una specifica antidurata per una determinata generazione.

Truckle ha intuito effettivamente che il metodo classico del chain ladder può essere applicato agli I_{ij} invece che ai C_{ij} . Pertanto, la struttura del modello può essere della forma $I_{ij} - I_{i,j-1} = \alpha_i \rho_j$, che richiama quanto visto precedentemente per il basic chain ladder. In questo caso, però, il parametro ρ_j ha un significato diverso rispetto a prima, infatti, sarebbe meglio scrivere $I_{ij} - I_{i,j-1} = \alpha_i \xi_j$, indicando con ξ_j la proporzione dell'ammontare degli incurred in un dato anno di origine riconosciuto dal cambiamento delle stime concrete tra la fine delle antidurate j-1 e j.

1.2.3.2. La stima della riserva sinistri

Al fine di stimare i fattori di sviluppo si utilizza la stessa procedura del chain ladder classico⁴¹ a cui è necessario apportare una modifica: sostituire ai termini C_{ij} i nuovi

-

⁴¹ Si rimanda al paragrafo 1.1.1. per le espressioni sulle formule da impiegare.

elementi I_{ij} . I link ratios degli incurred hanno un significato diverso da quelli dei paid. Infatti, mentre nel chain ladder classico definiscono la politica di liquidazione dell'impresa, risultando il rapporto tra pagamenti, nel caso degli incurred i fattori m_j rappresentano l'errore di stima fatta in precedenza dalla compagnia. Pertanto, se per un dato anno di differimento il valore di m_j è maggiore dell'unità significa che l'impresa ha dovuto aumentare gli accantonamenti rispetto all'esercizio precedente. In una tale situazione è necessario che l'impresa incrementi la somma da riservare in misura pari al fattore di proporzionalità convertito in percentuale.

Poiché la prerogativa indispensabile per poter applicare il metodo chain ladder è che ci sia una certa costanza nel tempo, e quindi il rapporto tra colonne consecutive sia proporzionale, nel caso in cui si dovesse avere una politica di riservazione costante nel tempo, ma lo stesso non si avesse per la politica di liquidazione, è consigliabile applicare il metodo chain ladder basato sugli incurred piuttosto che il basic chain ladder.

Anche per la stima dei sinistri non pagati si impiega lo stesso sistema di calcoli ricordando, però, che gli importi di cui si sta facendo uso sono degli incurred e non semplicemente dei pagamenti. Detto ciò, la valutazione dei futuri risarcimenti è

$$P_{ij} = I_{ij} \prod_{k=1}^{j} \beta_k - C_{ij}$$
 (11)

avendo indicato con β_k i fattori di sviluppo.

Nella precedente formula è stato necessario sottrarre agli incurred gli importi cumulati già pagati alla fine del j-esimo anno di differimento per ottenere la stima dei rimborsi per i sinistri non ancora pagati. Inoltre, la (11) mostra i sinistri non pagati come proporzionali ai sinistri avvenuti, gli incurred, sulla base degli accantonamenti effettivi. In tal modo diventa sostanziale per le valutazioni dei sinistri non pagati l'effetto delle riserve accumulate negli anni precedenti.

L'idea di base che sottende questo metodo è la sicurezza di poter utilizzare come guida per la proiezione al futuro, sulla base dei dati di bilancio, la modalità in cui le entità degli incurred si sono concretizzati in passato. In altre parole, si considera l'esperienza passata come punto di partenza per poter effettuare le proiezioni future, ipotizzando che ci sia costanza nel tempo. Sebbene l'idea sia semplice e rispettabile, il metodo presentato sopra ha alcune difficoltà logiche. Infatti, non si accenna ad alcun adeguamento per l'aumento dei sinistri, invece, il metodo chain ladder, applicato ai pagamenti realizzati, assume un tasso di crescita dei sinistri costante da periodo. Con ciò non si esclude la

possibilità che lo stesso metodo possa essere cambiato apportando alcune modifiche, come per esempio l'inflazione. Se l'adeguamento per inflazione è fatto ai valori del periodo base u, allora bisogna riferirsi ad una diversa relazione,

$$egin{aligned} I_{ij}^* &= C_{ij}^* + R_{ij}^* \ &= \sum_{k=0}^j P_{ik}^* + R_{ij}^* \ &= \lambda_u \Bigg[\sum_{k=0}^j rac{P_{ik}}{\lambda_{i+k}^{(p)}} + rac{R_{ij}}{\lambda_{i+j}^{(r)}} \Bigg] \end{aligned}$$

dove $\lambda^{(p)}$ è l'indice di aumento applicato ai pagamenti dei sinistri esteso lungo un periodo e $\lambda^{(r)}$ applicato alle stime dei sinistri non pagati, valutate alla fine di un periodo.

Si può facilmente notare che il chain ladder basato sugli incurred dipende dalle stime concrete dei sinistri non pagati, a differenza del chain ladder classico che fa riferimento agli importi pagati e che pertanto è totalmente indipendente dagli accantonamenti creati fino a quel periodo.

1.3. Applicazioni del basic chain ladder e delle sue varianti

Qui di seguito sono presentati alcuni esempi 42 per meglio capire come operano il chain ladder e le sue varianti 43

1.3.1. Il metodo chain ladder basato sui pagati

Per poter stimare la riserva sinistri è sufficiente conoscere gli importi dei pagamenti raccolti nel seguente triangolo

⁴³ E' ragionevole ipotizzare che i dati coinvolti negli esempi numerici facciano riferimento alla R.C.Auto.

⁴² I valori coinvolti sono interamente frutto di invenzione, nonostante si sia cercato di rappresentare in maniera più fedele possibile la realtà di un'impresa di medie dimensioni.

1.3.1.1. Importi incrementali dei pagamenti in Euro.000

Gen	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	28.446	29.251	12.464,	5.144	2.727	2.359	1.334	1.238	941	860	282	727	1.068
1994	31.963	36.106	13.441	5.868	2.882	2.422	918	1.076	734	458	456		
1995	37.775	40.125	12.951	6.034	3.010	1.264	1.250	1.135	904	559			
1996	40.418	44.499	15.370	5.594	2.616	1.984	2.137	1.184	873				
1997	44.116	45.490	15.339	5.478	2.541	2.906	1.294	1.124					
1998	50.294	48.040	17.843	7.035	3.934	2.726	2.267						
1999	49.620	49.991	19.570	10.047	5.750	3.313							
2000	46.410	49.694	20.881	8.202	4.714								
2001	48.295	49.354	18.304	8.833									
2002	52.590	50.606	18.604										
2003	58.599	53.743											
2004	60.361												

I risarcimenti di ogni periodo di origine sono decrescenti per antidurata, il motivo è semplice: nei primi anni di differimento si liquida il maggior numero di sinistri⁴⁴, ritardando il pagamento per i sinistri che richiedono una perizia maggiore. Lungo ciascuna diagonale si leggono i pagamenti avvenuti nello stesso anno di calendario⁴⁵ nonostante i sinistri abbiano differenti periodi di origine.

Nell'ultima colonna è inserito un valore che è frutto di valutazioni approfondite da parte dell'attuario, infatti, il dato in questione indica l'ammontare che la compagnia stima di pagare per chiudere la generazione 1993, e come tale viene posto nel bilancio di fine esercizio del 2004. In generale questi valori non sono molto elevati in quanto l'impresa dopo un periodo di differimento così lungo come dodici anni è debitrice solo di pochi sinistri, la gran parte dei quali implica un risarcimento per danni a persona.

Dal triangolo precedente si ricavano gli importi cumulati

⁴⁴ Si veda quanto detto in merito nel primo capitolo.

⁴⁵ Sono gli esborsi sostenuti dall'impresa nello stesso anno di bilancio per i sinistri di ognuna delle generazioni considerate in questo esempio.

1.3.1.2. Importi cumulati dei pagamenti in Euro.000

Con	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	28.446	57.697	70.161	75.305	78.032	80.391	81.725	82.963	83.904	84.764	85.046	85.773	86.841
1994	31.96	68.069	81.510	87.378	90.260	92.682	93.600	94.676	95.410	95.868	96.324		
1995	37.775	77.900	90.851	96.885	99.895	101.159	102.409	103.544	104.448	105.007			
1996	40.418	84.917	100.287	105.881	108.497	110.481	112.618	113.802	114.675				
1997	44.116	89.606	104.945	110.423	112.964	115.870	117.164	118.288					
1998	50.294	98.334	116.177	123.212	127.146	129.872	132.139						
1999	49.620	99.611	119.181	129.228	134.978	138.291							
2000	46.410	96.104	116.985	125.187	129.901								
2001	48.295	97.649	115.953	124.786									
2002	52.590	103.196	121.800										
2003	58.599	112.342											
2004	60.361												

L'esborso richiesto annualmente alla compagnia presenta valori crescenti se si considerano anni di esercizio più recenti, tutto ciò coincide con quanto detto nel capitolo precedente per quanto riguarda il costo medio del pagato. I valori della tabella 1.3.1.2. sono facilmente ottenibili, è sufficiente sommare gli importi di una stessa generazione ma riferiti a due anni di sviluppo consecutivi. In formule è così riprodotto $C_{ij} = P_{ij} + C_{i,j-1}$ dove i simboli hanno i seguenti significati

 C_{ij} = somma di tutti i pagamenti effettuati entro l'anno j per quei sinistri appartenenti alla generazione i

 P_{ij} = ammontare dei pagamenti nell'anno j dei sinistri avvenuti nell'anno i

 $C_{i,j-1}=$ somma di tutti i pagamenti effettuati entro l'anno j-1 per quei sinistri appartenenti alla generazione i.

Con altra notazione si può scrivere, in forma equivalente, $C_{ij} = \sum_{l=0}^{j} P_{il}$.

Si riprenda l'ultimo elemento dell'anno 2001. Il valore richiamato è ottenuto nel seguente modo 124.786 = 115.953 + 8.833 oppure 124.786 = 48.295 + 49.354 + 18.304 + 8.833.

L'obiettivo è di proiettare i dati lungo la diagonale principale.

Questa ultima tabella permette di calcolare il triangolo dei fattori di sviluppo

1.3.1.3. Il triangolo dei fattori di sviluppo

Gen	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993	2,0283	1,2160	1,0733	1,0362	1,0302	1,0166	1,0151	1,0113	1,0102	1,0033	1,0085	1,0125
1994	2,1296	1,1975	1,0720	1,0330	1,0268	1,0099	1,0115	1,0078	1,0048	1,0048		
1995	2,0622	1,1663	1,0664	1,0311	1,0127	1,0124	1,0111	1,0087	1,0054			
1996	2,1010	1,1810	1,0558	1,0247	1,0183	1,0193	1,0105	1,0077				
1997	2,0311	1,1712	1,0522	1,0230	1,0257	1,0112	1,0096					
1998	1,9552	1,1815	1,0606	1,0319	1,0214	1,0175						
1999	2,0075	1,1965	1,0843	1,0445	1,0245							
2000	2,0708	1,2173	1,0701	1,0377								
2001	2,0219	1,1874	1,0762									
2002	1,9623	1,1803										
2003	1,9171											
2004												

Di seguito sono riportati i coefficienti calcolati dal triangolo precedente e applicando la (1), nonché quelli ottenuti dalla (1) ma con un diverso sistema di pesi⁴⁶, $(i+j)^2$ invece di C_{ij} , e infine i fattori di sviluppo calcolati come media aritmetica semplice su ogni colonna. Nel triangolo 1.3.1.3. non è stata inserita la colonna relativa all'anno di differimento zero poiché in relazione allo stesso anno non sono richieste alcune stime e di conseguenza non è necessario calcolare il relativo link ratio.

I tre tipi di fattori di sviluppo sono sintetizzati nella tabella che segue

1.3.1.4. Fattori di sviluppo

	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}	m_{11}	m_{12+}
Media ponderata con pesi C_{ij}	2,0171	1,1887	1,0679	1,0330	1,0226	1,0146	1,0113	1,0087	1,0066	1,0041	1,0085	1,0125
Media ponderata con pesi $(i+j)^2$	1,9964	1,1892	1,0693	1,0338	1,0225	1,0147	1,0111	1,0087	1,0065	1,0041	1,0085	1,0125
Media aritmetica semplice	2,0261	1,1895	1,0679	1,0328	1,0228	1,0145	1,0116	1,0089	1,0068	1,0040	1,0085	1,0125

⁴⁶ Per dare maggiore importanza ai dati più recenti.

-

I fattori di proporzionalità indicano al pedice a quale colonna si riferiscono, e pertanto, come è ovvio attendersi, non esiste m_0 perché nella prima non c'è alcun dato mancante e che deve essere stimato. Il fattore di proporzionalità indicato con m_{∞} in questo esempio numerico coincide con m_{12+} , e consentirà di stimare gli importi pagati con antidurata almeno pari a dodici anni.

Guardando attentamente gli ultimi due anni di sviluppo si nota che in tutti e tre i casi i coefficienti sono gli stessi. Per comprendere il motivo di una tale uguaglianza è sufficiente osservare il triangolo dei fattori di sviluppo. Le ultime due colonne presentano un solo valore e pertanto, nonostante si faccia una media semplice o ponderata, i risultati devono necessariamente coincidere in tutti e tre i casi.

Dalla tabella 1.3.1.4. si osserva che nell'ultima riga i fattori di sviluppo, a parte qualche anno, sono maggiori degli altri due casi implicando, in tal modo, degli importi futuri di pagamento maggiori e di conseguenza una riserva complessiva maggiore.

I risarcimenti successivi alla data di valutazione, ovvero i pagamenti richiesti alla compagnia, stimati mediante le tre tipologie di fattori m_i sono i seguenti

1.3.1.5. Stima dei pagamenti cumulati futuri con pesi C_{ij} (importi in Euro.000)

Com	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												86.841
1994											97.147	98.357
1995										105.436	106.337	107.661
1996									115.434	115.905	116.896	118.351
1997								119.322	120.111	120.602	121.633	123.147
1998							133.638	134.806	135.698	136.252	137.417	139.128
1999						140.309	141.901	143.141	144.088	144.676	145.913	147.730
2000					132.834	134.772	136.301	137.492	138.402	138.967	140.155	141.900
2001				128.905	131.816	133.739	135.256	136.438	137.341	137.902	139.081	140.813
2002			130.075	134.369	137.403	139.408	140.989	142.221	143.162	143.747	144.976	146.781
2003		133.543	142.616	147.323	150.650	152.848	154.582	155.933	156.964	157.606	158.953	160.932
2004	121.757	144.734	154.567	159.670	163.275	165.657	167.536	169.001	170.119	170.814	172.274	174.419

Ogni colonna della tabella ha lo stesso coefficiente di proporzionalità, in base a quanto definito dalla (2). Esiste in verità un altro modo per calcolare i valori della 1.3.1.5., nel

caso in cui non si volesse utilizzare la (2); è sufficiente moltiplicare il cumulato della colonna precedente per il fattore di sviluppo relativo alla colonna di riferimento per la stima. In formule si ha $\hat{C}_{ij} = \hat{C}_{i,j-1} m_j^{47}$, che non è nient'altro che la (2) scritta in modo diverso.

Anche impiegando gli altri due vettori dei coefficienti di proporzionalità si adotta lo stesso procedimento e si ottiene pertanto

1.3.1.6. Stima dei pagamenti cumulati futuri con pesi $(i+j)^2$ (importi in Euro.000)

Gen	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												86.841
1994											97.147	98.357
1995										105.437	106.339	107.663
1996									115.424	115.897	116.888	118.344
1997								119.313	120.092	120.585	121.615	123.130
1998							133.611	134.769	135.650	136.206	137.370	139.080
1999						140.327	141.891	143.120	144.055	144.646	145.882	147.699
2000					132.827	134.783	136.285	137.466	138.364	138.931	140.119	141.864
2001				129.007	131.914	133.856	135.348	136.520	137.412	137.975	139.155	140.888
2002			400.045									
2003			130.245	134.651	137.684	139.711	141.268	142.492	143.423	144.011	145.242	147.051
		133.596	142.858	147.691	151.018	153.242	154.949	156.292	157.313	157.958	159.308	161.292
2004	120.505	143.303	153.239	158.423	161.991	164.377	166.208	167.648	168.744	169.435	170.884	173.012

-

 $^{^{47}}$ Si fa notare che volutamente si è scritto $\hat{C}_{i,j-1}$ e non $C_{i,j-1}$. Infatti, anche se i dati lungo la diagonale non sono stimati, la notazione di cui sopra non fa perdere di generalità il concetto esposto.

1.3.1.7. Stima dei pagamenti cumulati futuri con media aritmetica (importi in Euro.000)

Com	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												86.841
1994											97.147	98.357
1995										105.431	106.333	107.657
1996									115.455	115.922	116.912	118.368
1997								119.338	120.149	120.635	121.666	123.181
1998							133.667	134.854	135.771	136.319	137.485	139.197
1999						140.292	141.915	143.174	144.148	144.731	145.968	147.785
2000					132.865	134.787	136.347	137.556	138.492	139.052	140.240	141.987
2001				128.874	131.814	133.722	135.268	136.469	137.397	137.952	139.131	140.864
2002			130.067	134.327	137.392	139.380	140.993	142.244	143.211	143.790	145.019	146.825
2003		133.629	142.699	147.373	150.736	152.917	154.686	156.058	157.120	157.755	159.103	161.084
2004	122.297	145.470	155.343	160.432	164.093	166.467	168.393	169.887	171.042	171.734	173.202	175.358

Il passo successivo è di calcolare le riserve residue per ogni generazione e per i tre casi analizzati in base alla $(\hat{C}_{i\infty} - C_{i,T-i})$, conseguendo i risultati qui di seguito mostrati

1.3.1.8. Riserve residue per generazione pesi C_{ij} (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.068	2.033	2.654	3.676	4.859	6.989	9.439	11.999	16.027	24.981	48.590	114.058	246.374 ⁴⁸

1.3.1.9. Riserve residue per generazione pesi $(i+j)^2$ (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.068	2.033	2.656	3.669	4.842	6.941	9.408	11.963	16.102	25.251	48.950	112.651	245.531

1.3.1.10. Riserve residue per generazione con media aritmetica (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.068	2.033	2.650	3.693	4.893	7.058	9.494	12.086	16.078	25.025	48.742	114.997	247.816

⁴⁸ Ottenuto mediante la (3).

La riserva più elevata la si riscontra nel terzo caso in base a quanto detto in merito ai fattori di sviluppo. Le tre tipologie di stima presentano, invece, le medesime riserve per gli anni 1993 e 1994 perché i coefficienti m_{11} e m_{12+} sono uguali e, moltiplicati a uguali importi a cui si sottraggono gli stessi valori dei pagamenti cumulati, restituiscono lo stesso valore. In numeri si ha (a meno di approssimazioni decimali) $\hat{C}_{1994,11} = 96.324 \cdot 1,0085$ e $\hat{C}_{1994,12} = 96.324 \cdot 1.0085 \cdot 1,0125$. Per ottenere la riserva della generazione 1994 si deve svolgere la differenza in base a quanto detto per calcolare le riserve residue per ogni anno origine, $(\hat{C}_{i\infty} - C_{i,T-i})$, che nell'esempio diventa $(\widehat{C}_{i,12} - C_{i,2004-i}),$ di $R_{1994} = \hat{C}_{1994,12} - C_{1994,10} = 98.357 - 96.324 = 2.033$. Si può facilmente notare che i precedenti calcoli sono uguali per i tre casi analizzati. Ancora più semplice è spiegare perché la riserva del 1993 presenta gli stessi valori. In tutti e tre le tipologie esaminate i dati coinvolti sono proprio i dati storici cumulati a cui si applica poi la differenza sopra richiamata ottenendo $R_{1993} = 86.841 - 85.773 = 1.068$ che è esattamente ciò che si era inserito come riserva della generazione più vecchia. Tale valore è determinato inizialmente dall'attuario incaricato al fine di svolgere le analisi, e secondo il motivo esposto in precedenza. La riserva sinistri, come è ovvio, aumenta per anno di generazione. La compagnia, infatti, alla fine dell'esercizio 2004 ha pagato pochi sinistri dello stesso anno o di anni immediatamente precedenti, invece ha chiuso definitivamente 49 la generazione 1992, che infatti non compare nel triangolo di run-off, e deve pagare piccoli importi per i sinistri accaduti in anni passati.

Fra le tre stime possibili della riserva sinistri l'attuario sceglierà, motivando tale scelta nella nota integrativa, il valore più realistico e prudente in base alle caratteristiche tipiche dell'impresa, valore che dovrà essere iscritto nel passivo del bilancio di fine esercizio 2004.

_

⁴⁹ Nella pratica assicurativa è possibile riservare un sinistro anche per venti anni o più, ma questi riguardano casi particolari (nel ramo R.C.Auto sono i sinistri con danni a persona di una certa entità).

1.3.2. Il metodo chain ladder con inflazione

Al fine di poter applicare la variante chain ladder inflation-adjusted è indispensabile riprendere i dati di input già visti nella 1.3.1.1. e deflazionare tali importi⁵⁰ attraverso i tassi di inflazione registrati nei vari periodi di origine implicati nelle analisi. Per la successiva fase di proiezione, l'attuario deve conoscere il vettore dei tassi di inflazione previsti per il futuro. In ogni caso i tassi d'inflazione devono contenere cambiamenti interni ed economici, tipicamente esterni all'impresa di assicurazione.

1.3.2.1. Tassi di inflazione per gli anni passati (valori in percentuale)

Ī	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Ī	4,2	3,9	5,4	3,9	1,7	2,0	1,7	2,5	2,7	2,5	2,7	2,2

I tassi indicati sopra sono stati realmente registrati negli anni di riferimento. Per i tassi futuri si ipotizza che gli stessi possano avere un andamento simile a quello esposto qui di seguito

1.3.2.2. Tassi di inflazione per gli anni futuri (valori in percentuale)

2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
6,0	6,25	4,5	3,75	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0

Per prima cosa si rivalutano gli importi pagati in base al tasso di inflazione registrato nei periodi trascorsi

⁵⁰ E' opportuno procede in tal modo poiché si è implicitamente ipotizzato che il triangolo di run-off dei pagamenti contenga già le variazioni per inflazione.

1.3.2.3. Importi deflazionati dei pagamenti in Euro.000

Gen	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	27.251	28.110	11.791	4.943	2.681	2.312	1.311	1.207	916	839	274	711	1.068
1994	30.716	34.156	12.917	5.768	2.824	2.381	895	1.047	716	446	446		
1995	35.735	38.560	12.731	5.913	2.959	1.232	1.216	1.107	880	547			
1996	38.842	43.743	15.063	5.499	2.551	1.930	2.084	1.152	854				
1997	43.366	44.580	15.078	5.341	2.472	2.833	1.259	1.099					
1998	49.288	47.223	17.397	6.845	3.836	2.652	2.217						
1999	48.776	48.741	19.042	9.796	5.595	3.240							
2000	45.250	48.352	20.359	7.981	4.610								
2001	46.991	48.120	17.810	8.639									
2002	51.275	49.240	18.195										
2003	57.017	52.561											
2004	59.033												
	-												

Adesso tutti gli importi sono espressi, poiché deflazionati, nella stessa moneta e come tali sono omogenei. Dai dati in esame si ricava facilmente il triangolo dei pagamenti cumulati

1.3.2.4. Importi deflazionati dei pagamenti cumulati in Euro.000

Gen	Ant. 0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	27.251	55.361	67.152	72.096	74.776	77.088	78.400	79.607	80.522	81.361	81.635	82.346	83.414
1994	30.716	64.873	77.790	83.558	86.382	88.763	89.658	90.705	91.421	91.866	92.312		
1995	35.735	74.295	87.026	92.939	95.898	97.131	98.347	99.454	100.333	100.880			
1996	38.842	82.584	97.647	103.146	105.696	107.627	109.710	110.862	111.716				
1997	43.366	87.946	103.024	108.366	110.838	113.671	114.930	116.030					
1998	49.288	96.511	113.908	120.753	124.589	127.241	129.459						
1999	48.776	97.518	116.559	126.355	131.950	135.190							
2000	45.250	93.602	113.961	121.942	126.552								
2001	46.991	95.111	112.921	121.560									
2002	51.275	100.515	118.710										
2003	57.017	109.577											
2004	59.033												
2004	39.033												

Si può facilmente notare come gli importi siano minori di quelli visti prima nel caso del chain ladder classico, ma nonostante ciò è sensato attendersi una riserva sinistri più elevata dal momento che successivamente questi importi verranno incrementati in base all'inflazione prevista, sia economica che propria della compagnia. Per verificare quanto affermato sopra si procede con l'analisi e si confrontano i risultati ottenuti. Per far ciò è prima necessario calcolare i fattori di proporzionalità, analogamente a quanto fatto prima si

presentano tre casi: media aritmetica ponderata con i pagamenti cumulati, caso tipico del chain ladder, media aritmetica con pesi $(i+j)^2$ e media aritmetica semplice

1.3.2.5. Il triangolo dei fattori di sviluppo

Gen	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993	2,0315	1,2130	1,0736	1,0372	1,0309	1,0170	1,0154	1,0115	1,0104	1,0034	1,0087	1,0130
1994	2,1120	1,1991	1,0742	1,0338	1,0276	1,0101	1,0117	1,0079	1,0049	1,0049		
1995	2,0791	1,1714	1,0679	1,0318	1,0129	1,0125	1,0113	1,0088	1,0054			
1996	2,1262	1,1824	1,0563	1,0247	1,0183	1,0194	1,0105	1,0077				
1997	2,0280	1,1714	1,0518	1,0228	1,0256	1,0111	1,0096					
1998	1,9581	1,1803	1,0601	1,0318	1,0213	1,0174						
1999	1,9993	1,1953	1,0840	1,0443	1,0246							
2000	2,0686	1,2175	1,0700	1,0378								
2001	2,0240	1,1873	1,0765									
2002	1,9603	1,1810										
2003	1,9218											
2004												

1.3.2.6. Fattori di sviluppo

	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}	m_{11}	m_{12+}
Media ponderata con pesi C_{ij}	2,0187	1,1891	1,0682	1,0332	1,0227	1,0147	1,0114	1,0088	1,0067	1,0042	1,0087	1,0130
Media ponderata con pesi $(i+j)^2$	1,9976	1,1894	1,0695	1,0339	1,0226	1,0148	1,0112	1,0088	1,0066	1,0042	1,0087	1,0130
Media aritmetica semplice	2,0281	1,1899	1,0683	1,0330	1,0230	1,0146	1,0117	1,0090	1,0069	1,0041	1,0087	1,0130

Con ragionamento simile a quello fatto per il chain ladder classico si spiega perché le ultime due colonne hanno gli stessi valori dei parametri.

Una volta determinati i coefficienti si procede in modo analogo al chain ladder e si definiscono i pagamenti futuri e quindi li si rivalutano in base al tasso di inflazione previsto per l'anno di pagamento

1.3.2.7. Stima dei pagamenti futuri deflazionati con pesi C_{ij} (importi in Euro.000)

Gen	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												83.414
1994											93.116	94.324
1995										101.299	102.182	103.507
1996									112.467	112.935	113.919	115.396
1997								117.055	117.842	118.332	119.363	120.911
1998							130.938	132.096	132.984	133.537	134.700	136.447
1999						137.176	138.743	139.970	140.911	141.497	142.729	144.581
2000					129.426	131.327	132.828	134.002	134.903	135.464	136.644	138.416
2001				125.595	128.448	130.334	131.824	132.989	133.883	134.440	135.611	137.370
2002			126.809	131.019	133.995	135.963	137.517	138.732	139.665	140.246	141.468	143.302
2003		130.294	139.184	143.805	147.071	149.231	150.937	152.271	153.295	153.932	155.273	157.287
2004	119.171	141.701	151.369	156.395	159.946	162.296	164.151	165.602	166.715	167.408	168.867	171.057

1.3.2.8. Stima dei pagamenti futuri deflazionati con pesi $(i+j)^2$ (importi in Euro.000)

Gen	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												83.414
1994											93.116	94.324
1995										101.301	102.183	103.508
1996									112.458	112.927	113.911	115.388
1997								117.046	117.824	118.316	119.346	120.894
1998							130.912	132.059	132.937	133.491	134.654	136.400
1999						137.189	138.729	139.945	140.875	141.462	142.694	144.545
2000					129.412	131.326	132.800	133.964	134.854	135.417	136.596	138.368
2001				125.685	128.526	130.426	131.890	133.046	133.930	134.489	135.660	137.420
2002			126.960	131.268	134.235	136.220	137.749	138.956	139.879	140.463	141.686	143.524
2003		130.331	139.389	144.119	147.377	149.556	151.235	152.560	153.574	154.214	155.558	157.575
2004	117.926	140.261	150.009	155.099	158.605	160.950	162.757	164.183	165.274	165.963	167.409	169.580

1.3.2.9. Stima dei pagamenti futuri deflazionati con media aritmetica (importi in Euro.000)

Com	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												83.414
1994											93.116	94.324
1995										101.295	102.177	103.502
1996									112.488	112.951	113.935	115.413
1997								117.072	117.881	118.366	119.397	120.946
1998							130.970	132.147	133.061	133.608	134.772	136.519
1999						137.161	138.763	140.009	140.977	141.557	142.790	144.642
2000					129.463	131.350	132.884	134.078	135.005	135.560	136.741	138.514
2001				125.574	128.463	130.335	131.858	133.042	133.962	134.513	135.684	137.444
2002			126.815	131.004	134.017	135.971	137.558	138.794	139.754	140.329	141.551	143.387
2003		130.382	139.284	143.884	147.194	149.340	151.084	152.441	153.495	154.126	155.469	157.485
2004	119.724	142.454	152.181	157.207	160.823	163.168	165.073	166.556	167.707	168.397	169.864	172.067

1.3.2.10. Stima dei pagamenti futuri inflazionati con pesi C_{ij} (importi in Euro.000)

Con	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												88.419
1994											98.703	100.219
1995										107.377	108.568	108.165
1996									119.215	119.993	119.045	119.723
1997								124.079	125.208	123.657	123.839	124.538
1998							138.794	140.352	138.968	138.544	138.741	140.540
1999						145.406	147.415	146.269	146.195	145.742	147.011	148.918
2000					137.191	139.535	138.805	139.027	138.950	139.528	140.743	142.569
2001				133.131	136.476	136.199	136.767	136.979	137.900	138.473	139.679	141.491
2002			134.418	139.208	140.025	141.062	141.642	142.894	143.855	144.453	145.712	147.601
2003		138.112	147.883	150.276	152.586	153.708	155.465	156.839	157.894	158.550	159.931	162.005
2004	126.321	150.557	158.181	162.260	164.745	167.165	169.075	170.570	171.717	172.431	173.933	176.188

1.3.2.11. Stima dei pagamenti futuri inflazionati con pesi $(i+j)^2$ (importi in Euro.000)

Gen	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												88.419
1994											98.703	100.219
1995										107.379	108.569	108.166
1996									119.206	119.985	119.037	119.715
1997								124.069	125.188	123.640	123.822	124.521
1998							138.767	140.313	138.919	138.497	138.694	140.492
1999						145.420	147.400	146.243	146.157	145.706	146.975	148.882
2000					137.177	139.534	138.776	138.988	138.900	139.479	140.694	142.519
2001				133.226	136.558	136.295	136.836	137.038	137.948	138.523	139.730	141.542
2002			134.577	139.472	140.276	141.328	141.882	143.125	144.076	144.677	145.937	147.830
2003		138.151	148.101	150.604	152.903	154.042	155.772	157.137	158.181	158.841	160.224	162.302
2004	125.001	149.027	156.759	160.915	163.363	165.778	167.640	169.109	170.232	170.942	172.431	174.668

1.3.2.12. Stima dei pagamenti futuri inflazionati con media aritmetica (importi in Euro.000)

Gen	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												88.419
1994											98.703	100.219
1995										107.372	108.563	108.160
1996									119.238	120.011	119.062	119.740
1997								124.096	125.249	123.693	123.874	124.574
1998							138.829	140.406	139.048	138.618	138.815	140.615
1999						145.391	147.435	146.310	146.264	145.804	147.074	148.981
2000					137.230	139.559	138.864	139.106	139.055	139.627	140.843	142.669
2001				133.109	136.491	136.201	136.802	137.033	137.981	138.548	139.755	141.568
2002			134.424	139.191	140.047	141.069	141.685	142.958	143.946	144.538	145.797	147.688
2003		138.205	147.990	150.359	152.714	153.820	155.616	157.014	158.100	158.750	160.133	162.210
2004	126.907	151.357	159.029	163.102	165.648	168.063	170.025	171.553	172.739	173.449	174.960	177.229

I valori riportati nelle 1.3.2.10., 1.3.2.11. e 1.3.2.12. sopra sono maggiori di quelli inseriti nelle corrispondenti tabelle per il basic chain ladder perché in questo secondo caso si stanno trattando importi inflazionati da cui si ricavano le riserve residue di seguito riportate per i tre casi

1.3.2.13. Riserve residue per generazione pesi C_{ij} (importi in Euro.000)

199	93	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
6.0	73	7.907	7.285	8.007	8.509	11.082	13.728	16.017	19.931	28.892	52.428	117.115	297.014

1.3.2.13. Riserve residue per generazione pesi $(i+j)^2$ (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
6.073	7.907	7.286	7.999	8.481	11.034	13.692	15.967	19.982	29.120	52.725	115.634	295.911

1.3.2.13. Riserve residue per generazione con media aritmetica (importi in Euro.000)

199	3 1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
6.07	3 7.907	7.280	8.024	8.544	11.156	13.791	16.118	20.008	28.979	52.632	118.196	298.708

Si può facilmente notare come le tre riserve complessive siano tutte superiori alle precedenti per via dell'inflazione.

Anche in questo caso è possibile operare gli stessi ragionamenti visti prima per le generazioni 1993 e 1994, perché, nonostante cambino i numeri, la logica di calcolo è invariata. Resta chiarito, pertanto, il motivo dell'uguaglianza delle riserve delle prime due generazioni in tutti e tre i casi.

1.3.3. Il metodo chain ladder con costi medi di generazione

Come detto in precedenza, la variante in esame presenta la stessa procedura di calcolo del basic chain ladder, la differenza risiede nel considerare il triangolo dei costi medi dei sinistri pagati e non il triangolo dei risarcimenti cumulati. Per calcolare i costi medi è necessario disporre dell'insieme dei pagamenti, fornito dalla 1.3.1.1., e dai sinistri denunciati e che non sono stati eliminati perché senza seguito. Il vettore dei sinistri denunciati è il seguente

1.3.3.1. Sinistri denunciati con seguito

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
53.941	54.269	55.104	54.603	54.056	55.947	54.906	51.902	46.725	44.483	46.198	45.768

I dati precedenti sono stati ottenuti sottraendo dalla tabella 2.3.5. dei sinistri denunciati i valori della 2.3.3. dei sinistri senza seguito. Sono stati detratti i sinistri senza seguito con antidurata nulla per rendere i dati più omogenei. Il calcolo deve essere fatto per ogni generazione.

Il triangolo dei costi medi dei sinistri denunciati è ottenuto rapportando i valori della 1.3.1.1. ai rispettivi della 1.3.3.1., come indicato sopra dalla $s_{ij} = \frac{p_{ij}}{n_i}$

1.3.3.2. Costi medi incrementali dei sinistri denunciati (importi in Euro.000)

Gen.	Ant.												
Gen.	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	0,5274	0,5423	0,2311	0,0954	0,0506	0,0437	0,0247	0,0230	0,0174	0,0159	0,0052	0,0135	0,0198
1994	0,5890	0,6653	0,2477	0,1081	0,0531	0,0446	0,0169	0,0198	0,0135	0,0084	0,0084		
1995	0,6855	0,7282	0,2350	0,1095	0,0546	0,0229	0,0227	0,0206	0,0164	0,0101			
1996	0,7402	0,8150	0,2815	0,1024	0,0479	0,0363	0,0391	0,0217	0,0160				
1997	0,8161	0,8415	0,2838	0,1013	0,0470	0,0538	0,0239	0,0208					
1998	0,8990	0,8587	0,3189	0,1257	0,0703	0,0487	0,0405						
1999	0,9037	0,9105	0,3564	0,1830	0,1047	0,0603							
2000	0,8942	0,9575	0,4023	0,1580	0,0908								
2001	1,0336	1,0563	0,3917	0,1890									
2002	1,1822	1,1376	0,4182										
2003	1,2684	1,1633											
2004	1,3188												

Sommando per riga si consegue il triangolo dei costi medi cumulati

1.3.3.3. Costi medi cumulati dei sinistri denunciati (importi in Euro.000)

Gen.	Ant.												
Gen.	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	0,5274	1,0696	1,3007	1,3961	1,4466	1,4904	1,5151	1,5380	1,5555	1,5714	1,5766	1,5901	1,6099
1994	0,5890	1,2543	1,5020	1,6101	1,6632	1,7078	1,7247	1,7446	1,7581	1,7665	1,7749		
1995	0,6855	1,4137	1,6487	1,7582	1,8128	1,8358	1,8585	1,8791	1,8955	1,9056			
1996	0,7402	1,5552	1,8367	1,9391	1,9870	2,0234	2,0625	2,0842	2,1002				
1997	0,8161	1,6577	1,9414	2,0428	2,0898	2,1435	2,1675	2,1882					
1998	0,8990	1,7576	2,0766	2,2023	2,2726	2,3213	2,3619						
1999	0,9037	1,8142	2,1706	2,3536	2,4583	2,5187							
2000	0,8942	1,8516	2,2540	2,4120	2,5028								
2001	1,0336	2,0899	2,4816	2,6706									
2002	1,1822	2,3199	2,7381										
2003	1,2684	2,4318											
2004	1,3188												

Dalla matrice precedente si elabora il triangolo di run-off dei fattori di sviluppo

1.3.3.4. Triangolo dei fattori di sviluppo

Com	Ant.											
Gen.	1	2	3	4	5	6	7	8	9	10	11	12+
1993	2,0283	1,2160	1,0733	1,0362	1,0302	1,0166	1,0151	1,0113	1,0102	1,0033	1,0085	1,0125
1994	2,1296	1,1975	1,0720	1,0330	1,0268	1,0099	1,0115	1,0078	1,0048	1,0048		
1995	2,0622	1,1663	1,0664	1,0311	1,0127	1,0124	1,0111	1,0087	1,0054			
1996	2,1010	1,1810	1,0558	1,0247	1,0183	1,0193	1,0105	1,0077				
1997	2,0311	1,1712	1,0522	1,0230	1,0257	1,0112	1,0096					
1998	1,9552	1,1815	1,0606	1,0319	1,0214	1,0175						
1999	2,0075	1,1965	1,0843	1,0445	1,0245							
2000	2,0708	1,2173	1,0701	1,0377								
2001	2,0219	1,1874	1,0762									
2002	1,9623	1,1803										
2003	1,9171											
2004												
	_											

Applicando la (6) al triangolo precedente si ottengono i seguenti fattori di sviluppo

1.3.3.5. Fattori di sviluppo

d_0	d_1	d_2	d_3	d_4	$d_{\scriptscriptstyle 5}$	$d_{\scriptscriptstyle 6}$	d_7	d_8	d_9	d_{10}	d_{11}
1,9964	1,1892	1,0693	1,0338	1,0225	1,0147	1,0111	1,0087	1,0065	1,0041	1,0085	1,0125

I coefficienti di proporzionalità sono necessari per stimare i risarcimenti futuri proiettando i pagamenti realizzati in data di valutazione, cioè i dati dell'ultima diagonale

1.3.3.6. Stima dei pagamenti medi cumulati futuri (importi in Euro.000)

Con	Ant.											
Gen.	1	2	3	4	5	6	7	8	9	10	11	12+
1993												
1994											1,7901	1,8124
1995										1,9134	1,9298	1,9538
1996									2,1139	2,1225	2,1407	2,1673
1997								2,2072	2,2216	2,2307	2,2498	2,2778
1998							2,3882	2,4089	2,4246	2,4345	2,4554	2,4859
1999						2,5558	2,5843	2,6066	2,6237	2,6344	2,6569	2,6900
2000					2,5592	2,5969	2,6258	2,6486	2,6659	2,6768	2,6997	2,7333
2001				2,7610	2,8232	2,8648	2,8967	2,9218	2,9409	2,9529	2,9782	3,0153
2002			2,9280	3,0270	3,0952	3,1408	3,1758	3,2033	3,2242	3,2374	3,2651	3,3058
2003		2,8918	3,0923	3,1969	3,2689	3,3171	3,3540	3,3831	3,4052	3,4191	3,4484	3,4913
2004	2,6330	3,1311	3,3482	3,4614	3,5394	3,5915	3,6315	3,6630	3,6869	3,7021	3,7337	3,7802

Si procede dunque con il calcolo dei pagamenti futuri

1.3.3.7. Stima dei pagamenti futuri (importi in Euro.000)

Gen.	Ant.											
	1	2	3	4	5	6	7	8	9	10	11	12+
1993												
1994											823	1.210
1995										430	901	1.324
1996									749	473	991	1.455
1997								1.025	780	492	1.031	1.514
1998							1.472	1.157	881	556	1.164	1.710
1999						2.036	1.564	1.229	935	590	1.236	1.816
2000					2.926	1.956	1.502	1.181	898	567	1.188	1.745
2001				4.221	2.906	1.942	1.492	1.172	892	563	1.179	1.733
2002			8.445	4.406	3.033	2.027	1.557	1.224	931	588	1.231	1.808
2003		21.254	9.262	4.833	3.327	2.224	1.708	1.342	1.021	645	1.350	1.984
2004	60.144	22.798	9.935	5.184	3.569	2.385	1.832	1.440	1.095	692	1.448	2.128

La somma per riga restituisce le riserve di ogni generazione. Per l'anno 1993 si accantona il valore previsto dall'attuario e presente come elemento aggiuntivo nella matrice iniziale contenente i pagamenti effettuati dalla compagnia

1.3.3.8. Riserve residue per generazione (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.068	2.033	2.656	3.669	4.842	6.941	9.408	11.963	16.102	25.251	48.950	112.651	245.531

La riserva complessiva presenta il più basso importo di tutti quelli visti finora, ma anche in relazione ai successivi esempi sarà comunque inferiore e più vicino al valore di bilancio della riserva sinistri.

1.3.4. Il metodo chain ladder con gli incurred

Infine si presenta un esempio operativo anche per la variante basata sui sinistri pagati e riservati. I dati storici di riferimento sono raccolti nel triangolo 1.3.1.1. per quanto riguarda i pagamenti, gli importi riservati, invece, presentano i seguenti valori

1.3.4.1. Importi riservati in Euro.000

Gen.	Ant.											
	0	1	2	3	4	5	6	7	8	9	10	11
1993	56.551	26.907	12.910	7.836	6.201	4.555	3.806	3.189	2.792	1.987	1.784	1.068
1994	63.344	25.706	12.497	7.797	6.088	4.289	3.743	2.915	2.252	1.762	1.795	
1995	66.954	25.502	13.034	8.177	5.767	4.623	3.620	2.547	1.804	1.853		
1996	72.768	26.613	13.663	9.695	7.363	6.052	4.111	3.060	1.901			
1997	76.338	29.399	16.012	10.904	8.774	6.308	5.255	2.845				
1998	83.493	37.080	19.807	14.191	11.144	8.161	4.926					
1999	92.136	44.671	25.963	17.438	12.034	7.718						
2000	97.059	47.808	26.658	17.590	12.339							
2001	94.658	44.919	26.905	18.725								
2002	104.836	48.968	29.487									
2003	112.265	47.921										
2004	107.822											

Per riuscire ad avere il run-off degli incurred è necessario sommare i relativi elementi della 1.3.1.2. e della 1.3.3.1. conseguendo

1.3.4.2. Importi pagati e riservati in Euro.000

Gen	Ant.											
	0	1	2	3	4	5	6	7	8	9	10	11
1993	84.997	84.604	83.071	83.141	84.233	84.946	85.531	86.152	86.696	86.751	86.830	86.841
1994	95.307	93.775	94.007	95.175	96.348	96.971	97.343	97.591	97.662	97.630	98.119	
1995	104.729	103.402	103.885	105.062	105.662	105.782	106.029	106.091	106.252	106.860		
1996	113.186	111.530	113.950	115.576	115.860	116.533	116.729	116.862	116.576			
1997	120.454	119.005	120.957	121.327	121.738	122.178	122.419	121.133				
1998	133.787	135.414	135.984	137.403	138.290	138.033	137.065					
1999	141.756	144.282	145.144	146.666	147.012	146.009						
2000	143.469	143.912	143.643	142.777	142.240							
2001	142.953	142.568	142.858	143.511								
2002	157.426	152.164	151.287									
2003	170.864	160.263										
2004	168.183											

Gli elementi della matrice triangolare precedente consento di calcolare i fattori di sviluppo per ogni periodo di origine e antidurata

1.3.4.3. Triangolo dei fattori di sviluppo

Con	Ant.										
Gen	1	2	3	4	5	6	7	8	9	10	11
1993	0,9954	0,9819	1,0008	1,0131	1,0085	1,0069	1,0073	1,0063	1,0006	1,0009	1,0001
1994	0,9839	1,0025	1,0124	1,0123	1,0065	1,0038	1,0025	1,0007	0,9997	1,0050	
1995	0,9873	1,0047	1,0113	1,0057	1,0011	1,0023	1,0006	1,0015	1,0057		
1996	0,9854	1,0217	1,0143	1,0025	1,0058	1,0017	1,0011	0,9976			
1997	0,9880	1,0164	1,0031	1,0034	1,0036	1,0020	0,9895				
1998	1,0122	1,0042	1,0104	1,0065	0,9981	0,9930					
1999	1,0178	1,0060	1,0105	1,0024	0,9932						
2000	1,0031	0,9981	0,9940	0,9962							
2001	0,9973	1,0020	1,0046								
2002	0,9666	0,9942									
2003	0,9380										
2004											

La variante in esame, a differenza del chain ladder classico con e senza inflazione, non considera la colonna relativa al 12-*esimo* anno di differimento per stimare la riserva sinistri. I coefficienti di proporzionalità relativi alle antidurate coinvolte sono riportati di seguito

1.3.4.4. Fattori di sviluppo

	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}	m_{11}
Media ponderat a con pesi C_{ij}	0,9872	1,0034	1,0066	1,0045	1,0016	1,0010	0,9996	1,0012	1,0022	1,0031	1,0001
Media ponderat a con pesi $(i+j)^2$	0,9818	1,0026	1,0056	1,0032	1,0007	1,0004	0,9989	1,0010	1,0023	1,0031	1,0001
Media aritmetic a semplice	0,9886	1,0032	1,0068	1,0053	1,0024	1,0016	1,0002	1,0015	1,0020	1,0030	1,0001

Nonostante i dati implicati nei calcoli siano differenti, si nota ancora che la 11-esima colonna presenta gli stessi valori per tutti indipendentemente dei pesi impiegati per la determinazione dei link ratios⁵¹

1.3.4.5. Stima degli incurred futuri con pesi C_{ij} (importi in Euro.000)

Gen.	Ant.										
Gen.	1	2	3	4	5	6	7	8	9	10	11
1993											
1994											98.131
1995										107.189	107.203
1996									116.829	117.189	117.204
1997								121.279	121.542	121.917	121.932
1998							137.007	137.172	137.470	137.894	137.911
1999						146.157	146.095	146.271	146.589	147.041	147.059
2000					142.470	142.614	142.554	142.726	143.036	143.477	143.495
2001				144.156	144.389	144.535	144.475	144.649	144.963	145.409	145.428
2002			152.284	152.968	153.216	153.371	153.306	153.491	153.824	154.298	154.318
2003		160.801	161.860	162.588	162.851	163.016	162.947	163.143	163.498	164.001	164.022
2004	166.033	166.590	167.688	168.442	168.714	168.885	168.814	169.017	169.384	169.906	169.928

1.3.4.6. Stima degli incurred futuri con pesi $(i+j)^2$ (importi in Euro.000)

Con	Ant.										
Gen.	1	2	3	4	5	6	7	8	9	10	11
1993											
1994											98.131
1995										107.194	107.207
1996									116.844	117.209	117.223
1997								121.252	121.530	121.910	121.925
1998							136.910	137.044	137.359	137.788	137.805
1999						146.071	145.905	146.048	146.384	146.841	146.860
2000					142.341	142.401	142.240	142.380	142.707	143.152	143.170
2001				143.974	144.077	144.138	143.974	144.115	144.446	144.898	144.916
2002			152.131	152.622	152.730	152.795	152.622	152.772	153.122	153.601	153.620
2003		160.678	161.574	162.096	162.211	162.280	162.096	162.255	162.627	163.135	163.156
2004	165.120	165.547	166.471	167.008	167.127	167.198	167.008	167.172	167.556	168.079	168.100

_

⁵¹ Si rimanda sopra per i commenti a riguardo.

1.3.4.7. Stima degli incurred futuri con media aritmetica (importi in Euro.000)

Gen.	Ant.										
Gen.	1	2	3	4	5	6	7	8	9	10	11
1993											
1994											98.131
1995										107.176	107.190
1996									116.810	117.156	117.171
1997								121.318	121.562	121.922	121.937
1998							137.093	137.303	137.579	137.986	138.003
1999						146.245	146.275	146.499	146.793	147.227	147.246
2000					142.582	142.812	142.841	143.060	143.347	143.771	143.790
2001				144.266	144.612	144.846	144.876	145.097	145.389	145.819	145.837
2002			152.319	153.120	153.488	153.736	153.767	154.002	154.312	154.768	154.788
2003		160.771	161.868	162.719	163.110	163.373	163.407	163.657	163.986	164.471	164.492
2004	166.270	166.797	167.935	168.818	169.223	169.497	169.532	169.791	170.132	170.636	170.657

1.3.4.8. Riserve residue per generazione pesi C_{ij} (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.068	1.807	2.196	2.529	3.644	5.772	8.768	13.594	20.642	32.518	51.680	109.567	253.785

1.3.4.9. Riserve residue per generazione pesi $(i+j)^2$ (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.068	1.807	2.200	2.548	3.637	5.666	8.569	13.269	20.130	31.820	50.814	107.739	249.269

1.3.4.10. Riserve residue per generazione con media aritmetica (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.068	1.807	2.183	2.496	3.649	5.864	8.955	13.889	21.051	32.988	52.150	110.296	256.397

Si noti l'analogia dei risultati conseguiti con il metodo chain ladder basato sui paid. Sempre per lo stesso motivo discusso in precedenza, anche in questa ultima analisi svolta le riserve sinistri delle generazioni 1993 e 1994 hanno esattamente gli stessi valori. Infine, si vuole mettere in evidenza l'importanza, da un punto di vista numerico, della riserva dell'ultima generazione. Infatti l'anno 2004 ha mostrato sempre un ammontare pari al doppio della generazione precedente, in virtù di ciò che si è sempre sostenuto: l'ultima generazione si presenta con pochi sinistri chiusi e la gran parte ancora da liquidare, a differenza delle generazioni più lontane. Resta chiaro il motivo di saper stimare correttamente le riserve di ogni anno e in particolar modo dell'ultimo anno di bilancio poiché concorrono alla determinazione della riserva sinistri complessiva il cui valore sarà

inserito nel passivo del bilancio di ciascuna impresa e su cui in seguito l'Isvap vigilerà e trarrà le proprie conclusioni.

Per avere modo di capire in modo migliore la diversità di valore delle riserve generazionali si presenta di seguito una serie di grafici in cui lungo l'asse delle ascisse si leggono i diversi anni di origine coinvolti nelle analisi

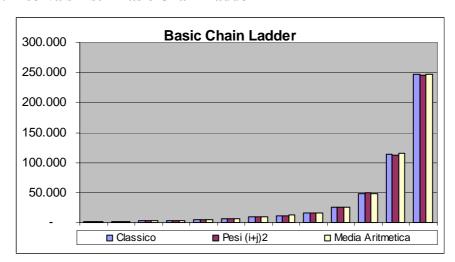


Grafico 1. Riserva sinistri Basic Chain Ladder

Il grafico 1. mostra l'ammontare della riserva sinistri secondo il basic chain ladder con i tre diversi tipi di pesi visti precedentemente. Per le prime generazioni la differenza dei valori registrati nei tre casi è abbastanza irrilevante. Al contrario la diversità si nota soprattutto per la generazione di bilancio, e per la riserva complessiva il cui importo minore si ottiene con i pesi $(i + j)^2$.

Nonostante ciò nei tre casi le stime delle riserve sono omogenee.

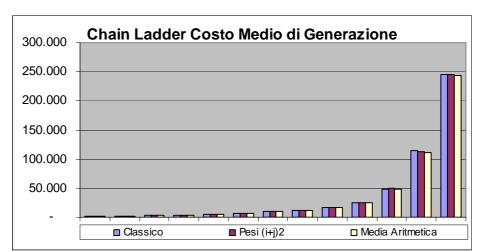


Grafico 2. Riserva sinistri Chain Ladder Costo Medio di Generazione

Anche nel grafico 2. si riscontra la stessa omogeneità di valori vista prima.

La valutazione più bassa è riportata dall'utilizzo della media aritmetica come pesi nella determinazione dei link ratios. Nello stesso grafico è messa in luce la coincidenza di quanto detto in teoria tra il sistema di pesi $(i+j)^2$ e il sistema di pesi classici del chain ladder. La diversità della stima della riserva per l'anno 2004 è dovuta alla non coincidenza dei primi link ratios che influenzano di conseguenza l'ultimo accantonamento di bilancio.

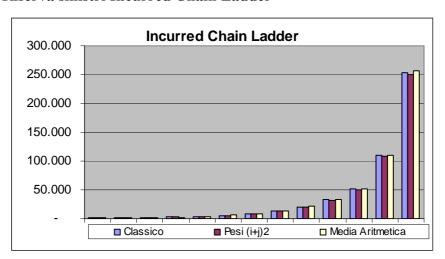


Grafico 3. Riserva sinistri Incurred Chain Ladder

La scala delle coordinate è la medesima in tutti i grafici; in tal modo è più immediato un confronto con le due rappresentazioni precedenti. Alla data di valutazione l'andamento delle riserve di generazione è convesso. Il grafico 3. risulta più simile al primo grafico in cui il sistema di pesi $(i + j)^2$ restituisce dei valori più bassi rispetto agli altri due casi che, invece, presentano stime analoghe. Tuttavia i valori ottenuti sono abbastanza coerenti.

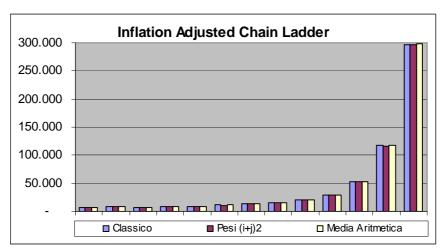


Grafico 4. Riserva sinistri Inflation Adjusted Chain Ladder

La variante del chain ladder con inflazione restituisce le stime più elevate come si è già osservato numericamente. Nonostante ciò, l'andamento della riserva per le varie generazioni è analogo a quanto visto negli altri grafici.

Pesi classici del Chain Ladder

250.000

200.000

150.000

50.000

Basic Chain Ladder
Incurred Chain Ladder
Inflation Adjusted Chain Ladder

Grafico 5. Riserva sinistri con pesi classici del Chain Ladder C_{ij}

Un confronto diretto tra il chain ladder e tutte le sue varianti mette in risalto come il chain ladder inflation adjusted presenta il valore complessivo di riserva più elevato, malgrado per alcune generazioni le stime siano prossime o addirittura inferiori alle stime ottenute con gli altri criteri di valutazione.

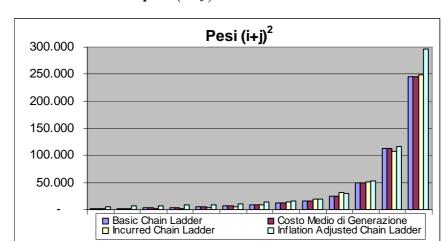


Grafico 6. Riserva sinistri con pesi $(i+j)^2$

Anche se muta il sistema di pesi, l'andamento della riserva resta invariato per il metodo chain ladder e le sue varianti. Il chain ladder con inflazione continua a mostrare una stima più elevata che negli altri casi.

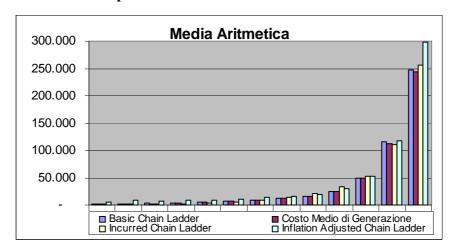


Grafico 7. Riserva sinistri pesi dati dalla media aritmetica

Tutti i grafici hanno la stessa scala e diventa più facile poter effettuare dei confronti.

La generazione 2004 predomina sugli altri anni in termini di riserva globale; il valore più elevato per lo stesso periodo di origine lo si consegue con i coefficienti calcolati come media aritmetica dell'inflation-adjusted chain ladder, proprio perché si fa ricorso ai tassi di inflazione futuri stimati secondo una certa logica.

Thomas Mack ha dimostrato che i fattori di sviluppo valutati in modo classico, cioè prendendo come sistema di pesi gli elementi C_{ij} , restituiscono degli stimatori corretti dei veri fattori; anche calcolando la media aritmetica dei singoli rapporti si ottengo stimatori non distorti ma questi, al contrario dei primi, possiedono una varianza maggiore.

L'inferenza statistica definisce stimatore efficiente quello stimatore non distorto con varianza minima, e insegna a preferire fra tanti stimatori proprio quello efficiente.

In questo contesto sono state presentate alcune delle infinite possibili varianti del chain ladder. Per esempio, con riferimento ai fattori di sviluppo l'attuario può calcolare la riserva sinistri impiegando il valore massimo o minimi⁵² per colonna dei fattori individuali. Inoltre è possibile impiegare un differente, purché coerente e valido, sistema di pesi.

L'attuario, quindi, in base a quanto detto, dopo aver calcolato i coefficienti di proporzionalità con i pesi che preferisce, dovrebbe sempre far cadere la propria scelta al sistema di pesi dato dal triangolo degli importi cumulati dei pagamenti.

_

⁵² Un esempio in merito sarà fatto nell'ultimo paragrafo del capitolo.

1.4. Vantaggi e svantaggi del metodo chain ladder

Presentato nel modo in cui lo è stato, il metodo sviluppa una procedura di stima basata sui rapporti dei pagamenti. E' intuitivo, e fino ad un certo punto empiricamente supportato, che un metodo che procede dal calcolo dei rapporti dei pagamenti cumulati, al fine di ottenere i fattori di proporzionalità, e successivamente moltiplica a catena tali rapporti così ottenuti, restituisca, molto probabilmente, dei valori altamente variabili⁵³. Il metodo richiede che venga soddisfatta l'ipotesi di costanza nel tempo della progressione dei pagamenti cumulati. Pertanto non è applicabile quando i dati, e quindi lo sviluppo, può essere modificato da fattori endogeni o esogeni che precludono la possibilità che esista una qualche stabilità del triangolo coinvolto nella previsione. Uno svantaggio del chain ladder è quello di proiettare al futuro la percentuale dei sinistri passati, determinando in tal modo una rilevante dipendenza della stima dei pagamenti, e del numero dei sinistri che saranno effettuati in futuro. E' consigliabile pertanto effettuare un'analisi preliminare dei dati al fine di evitare errori inutili. Infatti, per poter applicare il metodo chain ladder non si devono avere significativi cambiamenti per anni di calendario, perché effetti su C_{ii} , cioè su anni di calendario influiscono sui fattori di sviluppo che quindi saranno più o meno grandi del normale. Se non si hanno significativi cambiamenti per anni di calendario si può far ricorso al metodo chain ladder, e di conseguenza alle sue varianti.

Forse il più grande svantaggio del chain ladder è di proiettare al futuro la media, in qualche modo, del tasso di aumento dei sinistri del passato. Tutto ciò comporta due inconvenienti. Primo, poiché il caricamento per la futura inflazione è implicita, la sua grandezza non è chiara. Secondo, poiché il caricamento per la futura inflazione è essenzialmente una media dei tassi di inflazione passati, può non essere appropriato per il futuro.

Per ovviare a questi inconvenienti alcuni studiosi hanno tentato di apportare delle modifiche.

Berquist e Sherman nel 1977 hanno presentato alcune versioni diverse rispetto a quella classica del chain ladder. I loro studi si sono concentrati sui rapporti $\frac{C_{i,j+1}}{C_{ij}}$ che non

necessariamente devono essere costanti nel tempo, ma al contrario, possono presentare dei trends. Il loro obiettivo è stato proprio quello di identificare tali trends per poterli proiettare.

_

⁵³ La stessa critica può essere avanzata all'inflation-adjusted chain ladder.

Kremer in un suo lavoro del 1982 ha esaminato il chain ladder in una struttura del modello ANOVA, e ha potuto constatare la connessione esistente tra gli stimatori da lui trovati e quelli presentati nella sezione 1.1.1.

Una questione differente è stata trattata da Hachemeister e Stanard nel 1975, i quali si sono occupati dei sinistri IBNR. Gli stessi hanno denotato con P_{ij} il numero di sinistri avvenuti nell'anno i-esimo ma denunciati con j anni di differimento. Il loro intento è stato di stimare il valore di \hat{P}_{ik} dei sinistri aventi origine nell'anno i e non ancora registrati alla fine del k-esimo anno di sviluppo. Gli autori hanno dimostrato che se i sinistri di un dato periodo di origine sono distribuiti come una binomiale multipla, allora il metodo chain ladder esposto sopra fornisce la stima di massima verosimiglianza.

Mettendo a confronto il basic chain ladder con il chain ladder basato sugli incurred, la superiorità di un metodo di analisi rispetto ad un altro può essere valutata in termini di adattamento del modello ai dati e della probabile variazione per i sinistri non pagati e proiettati. Forse sarebbe meglio affermare che un metodo di stima è preferito se definisce la più piccola deviazione quadratica media⁵⁴ associata alle stime degli esborsi ancora da sostenere. In tal modo quindi si può supporre di ottenere delle migliori stime applicando alle generazioni più recenti un metodo basato sui pagamenti e utilizzando dei modelli incurred per i periodi di origine più lontani. In linea di principio, tuttavia, la procedura più appropriata apparirebbe quella di applicare separatamente i metodi sopra citati ai dati storici, al fine di valutare i risarcimenti futuri; considerare tutte le possibili selezioni delle generazioni a cui i metodi basati sui pagamenti o sugli incurred possono essere applicati e calcolare, per ogni selezione, la varianza dei pagamenti totali stimati e sulla base di questo ultimo risultato scegliere la combinazione tra i due metodi che minimizza la varianza dei sinistri non ancora liquidati. Inoltre, se i parametri coinvolti nel metodo basato sugli incurred mostrano la varianza più piccola, non c'è alcun motivo di rifiutare tale metodo in favore di altri, poiché lo stesso restituisce dei valori per i sinistri non pagati che segnalano anch'essi la più bassa varianza.

Infine si ricordi che gli accantonamenti effettivamente realizzati spesso forniscono il primo avvertimento nel caso dovessero presentarsi cambiamenti improvvisi. Nell'eventualità in cui dovessero verificarsi mutamenti repentini per le riserve storiche, l'attuario deve affrettarsi, possibilmente anticipando i cambiamenti, a correggere di conseguenza le proprie stime.

⁵⁴ Deviazione rispetto al vero ma sottostante valore.

Nonostante gli inconvenienti elencati sopra, il metodo chain ladder continua ad essere ampiamente applicato ai dati grazie alla sua semplicità di calcolo.

2. Il metodo Fisher-Lange

Un metodo di costo medio, denominato FISHER-LANGE, fu proposto nell'articolo di W. Fisher e J. Lange dal titolo "Loss Reserve Testing: A Report Year Approach". Di origine americana, è stato in seguito perfezionato e interpretato nuovamente in Italia e risulta poco utilizzato altrove. La riserva sinistri è calcolata, per ogni generazione, come prodotto tra le stime del numero dei sinistri e il costo medio corrispondente, opportunamente corretto per gli effetti di inflazione endogena (claim inflation) ed esogena (inflazione economica). Sulla base dei dati storici si calcolano le velocità di liquidazione e le aliquote dei sinistri con seguito, al fine di proiettare il numero di sinistri che saranno pagati nei differenti anni di sviluppo, i valori così ottenuti verranno moltiplicati per il costo medio precedentemente determinato, e la somma di tutti i prodotti fornirà la stima della riserva sinistri globale. Dai primi anni Ottanta nel ramo R.C.Auto italiano ha avuto ampia applicazione il metodo in esame. In quegli anni, infatti, non era ancora in vigore la liberalizzazione delle tariffe, ma esisteva un'unica tariffa auto calcolata dalla Commissione del Ministero che recuperava i dati di più interesse dal mercato italiano, a cominciare dal rapporto sinistri a premi, inserendo nel numeratore tra i sinistri avvenuti sia i pagati sia i riservati. Le compagnie italiane fornivano i dati richiesti alla Commissione che era in grado di costruire il rapporto sinistri a premi. Nella eventualità in cui una o più compagnie si fossero trovate in difficoltà economiche e avessero ridotto artificialmente le riserve, il rapporto in questione sarebbe strato compromesso, risultando più basso del reale a causa di una sottostima della riserva sinistri compiuta da alcune compagnie. Poiché la riserva sinistri è coinvolta nella tariffazione, ne segue che se la riserva non è sufficiente i premi che dovrebbero essere applicati nell'esercizio seguente risulteranno insufficienti a risarcire i sinistri futuri, e la compagnia avrà accumulato inadeguatezze passate nonché future. Al fine di evitare un tale problema, la Commissione calcolava nuovamente tutte le riserve sinistri delle differenti compagnie, e cercava di ottenere il migliore risultato utilizzando il metodo Fisher-Lange.

2.1. Le assunzioni del metodo

Al fine di ottenere una stima della riserva sinistri con il metodo in questione è necessario avere a disposizione i seguenti dati, numericamente superiori rispetto al metodo chain ladder.

- il numero totale dei sinistri **denunciati**, per anno di generazione,
- il numero di sinistri **pagati**, distinti per anno di generazione e anno di sviluppo,
- il numero di sinistri **riservati**, distinti per anno di generazione e anno di sviluppo,
- il numero di sinistri **senza seguito**, distinti per anno di generazione e anno di sviluppo,
- il numero dei sinistri **riaperti**, distinti per anno di generazione e anno di sviluppo,
- gli importi dei sinistri pagati, distinti per anno di generazione e anno di sviluppo.

Inoltre occorre effettuare delle ipotesi per quanto riguarda i tassi di inflazione esogena e i tassi di inflazione endogena, oltre ai tassi di adeguamento dei costi medi in funzione dell'antidurata, e infine si deve stabilire il numero di bilanci da considerare ai fini della stima delle aliquote del numero dei sinistri con seguito.

La logica implicita in tale metodo è quella di determinare la velocità di liquidazione futura sulla base dei dati storici, e successivamente moltiplicarla per il numero dei sinistri riservati e per l'aliquota dei sinistri con seguito, ottenendo in tal modo il numero dei sinistri che verranno liquidati nei futuri esercizi. Separatamente viene calcolato il costo medio dei sinistri e lo si adegua all'anno di valutazione in base ai tassi di inflazione esogena ed endogena e ai tassi di adeguamento precedentemente ipotizzati. A questo punto si moltiplicano i costi medi per la rispettiva stima del numero dei sinistri liquidati in seguito al fine di ottenere la stima dei costi futuri distinti per anno di generazione e anno di sviluppo, sommando per riga si determinano le riserve residue per anno di generazione la cui somma restituisce il valore complessivo della riserva sinistri che dovrà essere posto nell'apposita voce del bilancio di esercizio.

In poche parole si calcola la velocità di liquidazione sulla base dei sinistri effettivamente pagati e la si proietta al futuro. In tal modo è possibile ricavare il numero di sinistri che saranno pagati in futuro, che moltiplicati per il rispettivo costo medio individuerà l'ammontare necessario all'impresa per risarcire i sinistri denunciati alla data di valutazione, cioè la riserva sinistri.

Le aliquote dei sinistri con seguito sono ricavate, per ogni generazione i e anno di sviluppo j, in base alla seguente formula

$$aliq_{i,j} = \frac{\sum_{h=j+1}^{T-i} n_{ih} + R_{iT}}{R_{ii}}$$
 (12)

avendo posto

T = anno di valutazione

i = anno di generazione

j = anno di sviluppo

 R_{ij} = numero sinistri riservati per la generazione i nell'anno di sviluppo j

 R_{iT} = numero sinistri riservati per la generazione i nell'anno T

 $n_{ij}=$ numero sinistri pagati per la generazione $i\,$ nell'anno di sviluppo $\,j\,.$

In tal modo si ottiene, per ciascuna generazione, la percentuale dei sinistri riservati nell'anno di sviluppo j che sono stati liquidati negli anni precedenti a quello di valutazione o posti a riserva nell'ultimo anno di bilancio. Tali aliquote, differenziate per antidurata, saranno applicate ai sinistri riservati di ciascuna generazione risultanti dall'ultimo bilancio disponibile.

2.2. La stima della riserva sinistri

La velocità di liquidazione individua le aliquote dei sinistri con seguito che saranno liquidati dopo j anni di sviluppo. La velocità di liquidazione, normalizzata in base al numero di sinistri denunciati nell'ultimo anno di bilancio, nel generico anno di sviluppo j sarà

$$v_{j} = \frac{n_{T-j,j}}{\sum_{j=1}^{J} n_{T-j,j}} * \frac{d_{T}}{d_{T-j}}$$
(13)

avendo posto

J = numero massimo di anni di sviluppo

 $n_{T-j,j}=$ numero sinistri pagati nell'anno T per la generazione T-j .

Le aliquote così determinate saranno applicate ai sinistri della generazione T posti a riserva e con seguito nell'anno di valutazione (T) in modo da ottenere la cadenza dei pagamenti negli anni futuri di sviluppo. Per le successive generazioni si seguirà un

ragionamento analogo. Il triangolo del numero stimato dei sinistri liquidati in formule è dato da

$$\widehat{n}_{ij}^{l} = R_{iT} \cdot aliq_{i-1} \cdot v_{j}^{i} \tag{14}$$

avendo posto $aliq_{j-1}$ l'aliquota scelta, fra tutte quelle calcolate, per il (j-1)-esimo anno di differimento, e v_j^i la velocità di liquidazione della generazione i-esima con antidurata j^{55} .

Per ottenere il costo medio del pagato è sufficiente rapportare l'importo pagato al numero di sinistri pagati per ogni generazione e antidurata. In un secondo tempo si scelgono il vettore dei costi medi del pagato di base per la proiezione⁵⁶ e il vettore dell'inflazione (endogena ed esogena) futura. In tal modo si possono ottenere i costi medi del pagato proiettati, che costituiscono la stima dei costi medi per il triangolo inferiore.

Supponendo di indicare con C_{ij} il costo medio pagato nell'anno i+j, già inflazionato, per i sinistri appartenenti alla generazione i, e con \hat{n}^l_{ij} la stima dei sinistri che saranno liquidati in seguito calcolata per ogni anno di generazione e antidurata, il valore del risarcimento è calcolato nel seguente modo

$$RS_{ii} = C_{ii} \hat{n}_{ii}^l \tag{15}$$

quindi nell'anno i+j per i sinistri dell'anno i l'impresa dovrà pagare un importo pari a RS_{ii} , che rappresenta la stima del costo medio.

La riserva per l'anno *i* viene determinata come somma estesa a tutti gli anni di differimento coinvolti nella stima del costo medio

$$RS_i = \sum_{j=1}^J RS_{ij} \tag{16}$$

E' bene far notare come il valore dell'estremo inferiore della sommatoria vari a seconda della generazione esaminata. In questo caso si sta facendo riferimento all'anno T, posto come generazione di riferimento 57 .

Dunque, la riserva sinistri globale è stimata nel seguente modo

$$R = \sum_{i=0}^{T} RS_i \tag{17}$$

⁵⁵ R_{iT} altro non è che l'ultimo dato disponibile per la generazione considerata, cioè l'ultimo valore che si legge per riga rispetto ad ogni anno.

⁵⁶ Per esempio si può optare per il vettore dell'ultimo bilancio.

⁵⁷Per la generazione T-1 l'estremo inferiore della sommatoria inizierà dal valore 2 e così via per le altre generazioni; rimanendo fisso e uguale per tutte, l'estremo superiore.

con ovvio significato dei termini coinvolti.

2.3. Applicazioni del metodo Fisher-Lange

Anche per il metodo Fisher-Lange si vuole fare un esempio numerico per capire il procedimento di calcolo. I dati coinvolti al fine dell'analisi sono diversi , pertanto è necessario conoscere altri valori qui di seguito riportati

2.3.1. Numero sinistri pagati

Gen.	Ant.												
Gen.	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	34.433	13.796	1.589	568	278	152	104	55	30	31	18	19	36
1994	35.475	13.718	1.501	548	209	134	51	44	27	20	16		
1995	37.004	13.820	1.527	436	194	72	46	29	17	17			
1996	37.038	13.631	1.463	500	164	80	63	40	26				
1997	36.849	13.416	1.564	422	182	107	81	42					
1998	39.171	12.601	1.592	559	273	175	155						
1999	37.492	12.282	2.057	739	391	287							
2000	34.188	12.245	1.938	761	295								
2001	31.308	10.743	1.908	639									
2002	30.357	10.117	1.611										
2003	30.717	11.081											
2004	30.590												

2.3.2. Numero sinistri riservati

Gen.	Ant.											
Gen.	0	1	2	3	4	5	6	7	8	9	10	11
1993	19.508	4.038	1.374	727	445	289	180	125	98	71	54	36
1994	18.794	3.310	1.114	529	318	185	148	105	80	58	43	
1995	18.099	2.854	838	395	196	139	97	73	69	51		
1996	17.565	2.732	875	395	250	178	123	89	66			
1997	17.207	2.642	869	474	318	216	141	102				
1998	16.775	3.170	1.310	758	476	296	145					
1999	17.413	4.396	1.900	1.056	615	325						
2000	17.714	4.325	1.885	1.006	685							
2001	15.417	3.872	1.807	1.050								
2002	14.126	3.751	1.895									
2003	15.481	3.931										
2004	15.178											

2.3.3. Numero sinistri senza seguito

Gen.	Ant.											
Gen.	0	1	2	3	4	5	6	7	8	9	10	11
1993	3.192	2.239	1.349	183	52	29	25	16	7	4	7	4
1994	3.627	2.306	1.002	151	56	33	11	14	7	7	7	
1995	3.617	2.034	846	124	61	19	12	8	4	6		
1996	3.645	1.875	754	126	38	25	15	11	7			
1997	3.729	1.858	679	129	45	29	24	13				
1998	3.806	2.136	768	148	76	60	21					
1999	3.866	1.934	988	290	142	55						
2000	2.859	2.137	1.044	303	113							
2001	3.107	1.952	824	299								
2002	3.416	1.664	874									
2003	3.313	1.763										
2004	3.178											

2.3.4. Numero sinistri riaperti

Gen.	Ant.											
	0	1	2	3	4	5	6	7	8	9	10	11
1993	0	565	275	104	48	25	19	16	9	8	8	5
1994	0	540	308	114	54	34	24	14	9	5	7	
1995	0	610	357	118	56	33	16	13	17	5		
1996	0	676	353	149	60	31	25	17	10			
1997	0	701	469	152	68	32	31	16				
1998	0	1.132	487	152	67	57	26					
1999	0	1.204	547	186	98	52						
2000	0	1.006	528	185	87							
2001	0	1.135	660	181								
2002	0	1.407	629									
2003	0	1.295										
2004	0											

2.3.5. Numero sinistri denunciati

Ipotesi sulla coda	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
66.214	57.133	57.896	58.721	58.248	57.785	59.753	58.772	54.761	49.832	47.899	49.511	48.946

Gli importi dei sinistri pagati distinti per anno di generazione e antidurata sono tabulati nella 1.3.1.1. Con i dati a disposizione si calcolano le aliquote dei sinistri con seguito e le velocità di liquidazione rapportate ad ogni periodo di origine

2.3.6 Aliquote dei sinistri con seguito (valori in percentuale)

Com	Ant.											
Gen.	0	1	2	3	4	5	6	7	8	9	10	11
1993	85,483	71,322	93,959	99,450	100,000	101,384	105,000	107,200	106,122	102,817	101,852	100
1994	86,788	78,338	98,025	102,836	105,346	108,649	101,351	100,952	98,750	101,724		
1995	89,557	83,707	102,864	107,848	118,367	115,108	117,526	116,438	98,551			
1996	91,278	87,921	107,314	111,139	110,000	109,551	107,317	103,371				
1997	92,497	94,625	107,710	108,439	104,403	104,167	102,128					
1998	92,399	91,451	99,771	98,681	99,790	101,351						
1999	92,351	86,419	91,684	94,981	99,512							
2000	89,895	85,064	92,361	97,416								
2001	93,014	92,898	93,470									
2002	96,439	93,468										
2003	96,970											
2004												
Aliquota	01.50	06.50	00.55	100 (0	105.25	10670	106.66	106.00	101.14	102.07	101.05	100
prescelta	91,52	86,52	98,57	102,60	105,35	106,70	106,66	106,99	101,14	102,27	101,85	100

L'aliquota prescelta è stata calcolata come media aritmetica semplice e si è fatto uso dei dati dell'ultimo bilancio.

2.3.7. Velocità di liquidazione al 2004

Anno di differimento	1	2	3	4	5	6	7	8	9	10	11	12+
v_{j}	0,7830	0,1177	0,0449	0,0188	0,0171	0,0091	0,0025	0,0016	0,0010	0,0010	0,0012	0,0022

2.3.8. Velocità di liquidazione al 2003

Anno di differimento	2	3	4	5	6	7	8	9	10	11	12+
v_{j}	0,5423	0,2067	0,0869	0,0787	0,0418	0,0117	0,0072	0,0047	0,0045	0,0054	0,0102

2.3.9. Velocità di liquidazione al 2002

Anno di differimento	3	4	5	6	7	8	9	10	11	12+
v_{j}	0,4517	0,1898	0,1720	0,0914	0,0256	0,0157	0,0102	0,0097	0,0117	0,0222

2.3.10. Velocità di liquidazione al 2001

Anno di differimento	4	5	6	7	8	9	10	11	12+
v_{j}	0,3461	0,3137	0,1666	0,0467	0,0287	0,0186	0,0178	0,0214	0,0405

2.3.11. Velocità di liquidazione al 2000

Anno di differimento	5	6	7	8	9	10	11	12+
v_j	0,4797	0,2548	0,0714	0,0439	0,0284	0,0271	0,0327	0,0619

2.3.12. Velocità di liquidazione al 1999

Anno di differimento	6	7	8	9	10	11	12+
v_{j}	0,4898	0,1372	0,0843	0,0547	0,0522	0,0628	0,1190

2.3.13. Velocità di liquidazione al 1998

Anno di differimento	7	8	9	10	11	12+
v_{j}	0,2690	0,1652	0,1072	0,1023	0,1231	0,2332

2.3.14. Velocità di liquidazione al 1997

Anno di differimento	8	9	10	11	12+
v_j	0,2260	0,1466	0,1399	0,1684	0,3191

2.3.15. Velocità di liquidazione al 1996

Anno di differimento	9	10	11	12+
v_j	0,1894	0,1808	0,2176	0,4122

2.3.16. Velocità di liquidazione al 1995

Anno di differimento	10	11	12+
v_{j}	0,2230	0,2684	0,5086

2.3.17. Velocità di liquidazione al 1994

Anno di differimento	11	12+
v_{j}	0,3455	0,6545

2.3.18. Velocità di liquidazione al 1993

Anno di differimento	12+
v_{j}	0,6545

Con i dati a disposizione si costruisce il triangolo inferiore del numero dei sinistri delle varie generazioni che saranno pagati nei differenti anni di sviluppo

2.3.19. Stima del numero dei sinistri liquidati

Gen.	Ant.												
Gen.	1	2	3	4	5	6	7	8	9	10	11	12+	Totale
1993												24	24
1994											15	28	43
1995										12	14	26	52
1996									13	12	15	27	67
1997								25	15	15	17	33	104
1998							42	26	16	15	18	34	150
1999						170	48	29	18	17	21	39	342
2000					346	186	52	32	20	19	23	42	721
2001				373	347	187	52	32	20	19	23	43	1.095
2002			844	369	343	185	52	32	20	19	23	42	1.928
2003		1.844	801	350	326	175	49	30	19	18	21	40	3.675
2004	10.876	1.545	671	293	273	147	41	25	16	15	18	33	13.955

Successivamente si calcola il costo medio del pagato, semplicemente come rapporto tra i valori della 1.3.1.1. e della 2.3.1., si inflaziona il triangolo del costo medio pagato in base al vettore di inflazione futura 1.3.2.2. e si ottiene il costo medio pagato rivalutato

2.3.20. Stima dei costi medi futuri inflazionati (importi in Euro)

Com	Ant.												
Gen.	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993												33.054	35.037
1994											28.884	35.037	37.227
1995										33.245	30.617	37.227	38.902
1996									33.458	35.240	32.531	38.902	40.361
1997								26.902	35.465	37.442	33.994	40.361	41.572
1998							14.654	28.516	37.682	39.127	35.269	41.572	42.819
1999						11.542	15.533	30.298	39.378	40.594	36.327	42.819	44.104
2000					15.969	12.235	16.504	31.662	40.854	41.812	37.417	44.104	45.427
2001				13.828	16.927	12.999	17.247	32.849	42.080	43.067	38.540	45.427	46.790
2002			11.548	14.658	17.985	13.584	17.894	33.835	43.342	44.359	39.696	46.790	48.193
2003		4.850	12.241	15.574	18.794	14.094	18.430	34.850	44.643	45.689	40.887	48.193	49.639
2004		5.141	13.006	16.275	19.499	14.516	18.983	35.895	45.982	47.060	42.113	49.639	51.128

A questo punto bisogna proiettare al futuro il costo medio trascinando nell'analisi il numero di sinistri da liquidare nei prossimi esercizi così da ottenere la stima del triangolo inferiore

2.3.21 Stima Riserva Sinistri a costo ultimo (importi in Euro.000)

Gen.	Ant.					` 1			,			
	1	2	3	4	5	6	7	8	9	10	11	12+
1993												826
1994											530	1.048
1995										356	519	1.009
1996									446	397	569	1.098
1997								875	566	496	706	1.353
1998							1.187	966	615	535	756	1.448
1999						2.639	1.442	1.154	729	630	890	1.705
2000					4.235	3.074	1.652	1.313	824	712	1.005	1.926
2001				6.311	4.511	3.220	1.718	1.356	851	735	1.038	1.989
2002			12.367	6.635	4.665	3.306	1.751	1.382	867	749	1.058	2.027
2003		22.577	12.477	6.584	4.595	3.233	1.712	1.351	848	732	1.035	1.982
2004	55.915	20.097	10.924	5.723	3.965	2.790	1.478	1.166	732	632	893	1.711

Con i valori precedenti è facile determinare le riserve residue

2.3.22. Riserve residue per generazione (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
826	1.578	1.884	2.510	3.996	5.506	9.189	14.742	21.727	34.807	57.127	106.025	259.916

Da un paragone con le stime ottenute dal metodo chain ladder e dalle sue varianti si ricava che le riserve per ogni generazione sono dello stesso ordine, anche se, come è naturale che sia, sono un po' differenti in cifra. La generazione più vecchia presenta una riserva piuttosto bassa se confrontata con la somma della generazione 2004. Il peso preponderante dell'ultimo periodo di origine può essere compreso dal grafico seguente dove risalta l'importo da accantonare per l'ultima generazione, importo così importante per i motivi più volte discussi.

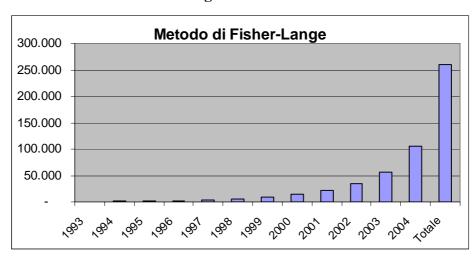


Grafico 8. Riserva sinistri Fisher-Lange

Il grafico rende più immediato il paragone tra le differenti generazioni. Per il primo periodo di origine si stima una riserva sinistri pari a 826 migliaia di Euro, un importo così basso da non essere visualizzato con il relativo istogramma. In tal modo si può comprendere quanto interesse l'attuario ripone nella valutazione della riserva sinistri delle ultime generazioni.

Seppur con valori diversi, l'andamento della riserva sinistri è analogo a quello riscontrato per il chain ladder e per le sue varianti.

2.4. Vantaggi e svantaggi del metodo Fisher-Lange

Il metodo proposto dai due americani è annoverato tra i metodi che hanno un approccio per anno di denuncia e che si applicano per testare l'adeguatezza delle riserve di un portafoglio per i casi di cui si è a conoscenza⁵⁸. In realtà lo scopo del test è triplice: misurare il livello di abbondanza o di insufficienza della riserva; verificare se rispetto all'ultima valutazione la riserva degli anni passati ha subito un cambiamento al rialzo o al ribasso; stabilire il contributo dei vari anni alla somma complessiva da accantonare. Questo tipo di test è di solito applicato a tutti i sinistri di un'unica linea di rischio, ma può essere impiegato anche per suddivisioni di una certa linea, purché le stesse suddivisioni costituiscano un solo problema di accantonamento. E' comune adottare un simile test per il ramo di responsabilità civile.

Per questo tipo di approccio è fondamentale la tabulazione dei sinistri pagati e riservati per anno di denuncia. Da un punto di vista amministrativo si crede infatti che la data di denuncia sia più significativa di quella di accadimento.

Nonostante molti attuari preferiscano un approccio basato sull'anno di avvenimento per stimare la riserva sinistri, un metodo basato sull'anno di denuncia dimostra la sua superiorità in quanto il numero dei casi registrati non è soggetto a continue modifiche in seguito ad ogni nuova valutazione. Questo tipo di approccio fornisce un'ulteriore possibilità, quella di stimare tutti i parametri dai valori dei sinistri pagati, che costituisce un vantaggio rispetto a quelle tecniche di stima che impiegano fattori di sviluppo dei sinistri coinvolgendo per i calcoli dei parametri le stesse riserve. Dunque il test è davvero indipendente dalle riserve. Un'altra caratteristica della metodologia è che essa può essere prontamente modificata e adattata ai cambiamenti previsti dal management dell'impresa in fatto di elementi disponibili o anche in merito al tasso di inflazione futura⁵⁹.

Tuttavia sussistono alcuni inconvenienti anche per questo metodo di stima. La metodologia include l'assunzione che i sinistri registrati nello stesso periodo di differimento appartengano essenzialmente a tipi simili e come tali possono essere paragonati con i sinistri di altre generazioni ma che hanno subito lo stesso ritardo per la loro liquidazione⁶⁰. Questa implicita ipotesi giustifica il perché per proiettare il costo medio non si fa alcuna distinzione dell'appartenenza dei sinistri ad un gruppo piuttosto che ad un altro, ma si utilizzano i trends storici del gruppo comune di appartenenza.

Si deve notare che questo approccio contiene due potenziali fonti di distorsione: i sinistri riaperti e i pagamenti parziali. I sinistri riaperti se vengono inclusi nei dati distinti per anno di denuncia, possono alterare sia i tassi disponibili sia il costo medio del pagato. Per quelle

_

⁵⁸ Intendendo con ciò tutti i casi denunciati alla compagnia e che richiedono un esborso alla stessa o alternativamente la costituzione della riserva sinistri.

⁵⁹ E' possibile, infatti, mostrare quale impatto abbia un cambiamento dell'inflazione sull'adeguatezza della riserva sinistri.

⁶⁰ Cioè possono essere paragonati da un anno di denuncia all'altro.

linee di business con un volume rilevante di sinistri riaperti, la metodologia sopra descritta deve essere modificata in maniera appropriata. Forse la soluzione migliore è di escludere questo tipo di dati dall'analisi, dal momento che si stima separatamente la riserva dei sinistri riaperti. I pagamenti parziali possono essere trattati con delle varianti nell'approccio in esame, soprattutto laddove questa tipologia di dati ha un peso rilevante, altrimenti possono anche essere trascurati perché non comportano grandi preoccupazioni.

Uno sguardo più attento al metodo Fisher-Lange permette di comprendere come il costo medio venga scomposto in tre componenti: l'impatto dell'inflazione, l'effetto dato dall'età del sinistro e il livello generale di costi per una determinata linea di business.

In conclusione esistono due vantaggi a questo approccio. Primo, tutti i dati sono impiegati simultaneamente nell'effettuare le proiezioni dei costi medi invece di suddividere i dati in base all'età e procedere con delle proiezioni separate. Secondo, può essere arbitrariamente usato un numero di differenti valori per l'incremento annuo medio nel costo dei sinistri al fine di valutare la proiezione del costo medio del pagato.

Deve essere enfatizzato che questo particolare approccio basato sull'anno di denuncia non è l'unico, ma uno dei tanti modi per verificare l'adeguatezza della riserva, nessun singolo test è completamente affidabile. Gli attuari dovrebbero avere la sensibilità di impiegare più di una procedura per valutare la posizione della riserva sinistri.

3. Il metodo della separazione aritmetica di Taylor

Nel 1976⁶¹ Cumpston presentò il metodo dei pagamenti per unità di rischio.

Il modello è meno generale del chain ladder con aggiustamenti per inflazione; infatti, in luogo di $P_{ij}^* = n_i \mu_i \rho_j^*$ si ha $P_{ij}^* = n_i \mu \rho_j^*$, in cui si può facilmente notare che la misura del costo medio è assunta indipendente dall'anno di origine. L'ultima equazione può essere riscritta nel seguente modo $P_{ij}^* = n_i q_j^*$, avendo indicato con il parametro q_j^* la quantità $\mu \rho_j^*$, cioè i pagamenti, corretti da inflazione, nell'anno di sviluppo j per sinistro avvenuto.

Volendo rendere il modello più generale basta sostituire n_i con e_i ottenendo $P_{ij}^* = e_i q_j^*$, dove e_i rappresenta una misura del volume di esposizione o il numero di unità di rischio

-

⁶¹ Anche se questo metodo sarebbe potuto apparire altrove prima di tale data.

nella generazione i, e q_i^* denota i pagamenti, rettificati secondo l'inflazione considerata, nell'anno di sviluppo *j* per unità di rischio.

Quanto detto serve come introduzione al metodo della separazione giacché lo stesso Taylor notò che era possibile classificare il suo lavoro nella stessa tipologia di metodi proposta da Cumpston.

3.1. Le ipotesi del metodo

In questo modello gli elementi α_{ii} del triangolo di run-off rappresentano i pagamenti P_{ii} per il risarcimento dei sinistri della generazione i effettuati nell'anno i+j. Si suppone ancora l'ipotesi presente nei precedenti modelli e cioè che lo smontamento dei sinistri avvenga secondo una legge invariante nel tempo, la medesima per ogni generazione, disturbata però da fattori esogeni, quali l'inflazione.

L'intento di questo metodo è quello di "separare" la legge dai disturbi che l'accompagnano e che sono imputabili parte a variazioni di carattere generazionale⁶², parte a variazioni di carattere economico caratteristiche dell'anno di pagamento del sinistro. A tal fine viene postulata la seguente equazione, valida per $0 \le i \le T$ e $0 \le j \le T - i$

$$P_{ij} = \delta_i r_i \mathcal{G}_{i+j} \tag{18}$$

dove δ_i rappresenta il numero di sinistri n_i imputabili alla generazione i ovvero, la somma del numero di quelli liquidati e pagati nell'anno di accadimento e di quelli riservati alla fine dell'anno stesso.

Taylor ha quindi fattorizzato l'ammontare pagato con j anni di differimento per i sinistri originatisi nell'anno i appunto i P_{ii} , in tre elementi collegati rispettivamente all'anno di generazione (δ_i) , all'anno di sviluppo (r_i) e all'anno di pagamento (θ_{i+1}) . La relazione (18) è l'equazione base del metodo, infatti per poter determinare i parametri r_i $(0 \le j \le J)$ e λ_{i+j} è necessario avere a disposizione un insieme di valori P_{ij} . Successivamente bisogna

⁶² Si pensi, in generale, alle politiche assuntive, o in particolare con riferimento a rischi R.C.A., a mutamenti del parco automobilistico.

stimare gli elementi λ_{h+k}^{63} del triangolo inferiore il cui impiego è obbligatorio per effettuare previsioni su P_{ii} $(1 \le i \le T; T-i+1 \le j \le J)$.

La tabella di riferimento utilizzata per calcolare i valori r_j e i valori λ_{i+j} è del seguente tipo

Tabella 3.1.

Generazione	Anno di sviluppo											
Generazione	0	1	2	•••	J							
0	$r_0\lambda_0$	$r_1\lambda_1$	$r_2\lambda_2$		$r_{_J}\lambda_{_J}$							
1	$r_0\lambda_1$	$r_1\lambda_2$	$r_2\lambda_3$									
2	$r_0\lambda_2$	$r_1\lambda_3$	$r_2\lambda_4$									
Т	$r_0 \lambda_T$											

I dati riportati si riferiscono ai valori s_{ij} definiti nel modo seguente

$$s_{ij} = \frac{P_{ij}}{n_i} = r_j \cdot \lambda_{i+j} \tag{19}$$

dove n_i indica il numero dei sinistri denunciati nell'anno i; non necessariamente devono essere considerati i sinistri denunciati, ma altri tipi di sinistri purché siano caratterizzanti la generazione i-esima.

Per realizzare l'ipotesi di invarianza⁶⁴ nel tempo della "legge di smontamento" dei sinistri è indispensabile assumere la condizione di normalizzazione

$$\sum_{j=0}^{J} r_j = 1 \tag{20}$$

dando pertanto a r_j il significato di rapporto⁶⁵ tra il pagato con j anni di differimento e il totale pagato entro i primi J anni di differimento, rapporto indipendente dalla

94

 $^{^{63}}$ I valori futuri di λ_{h+k} sono stimati avanzando delle ipotesi sui valori λ_{i+j} calcolati con l'utilizzo dei dati storici. Per esempio si potrebbero fissare costanti i rapporti $\frac{\lambda_{h+1}}{\lambda_h}$.

 $^{^{64}}$ L'invarianza in questione viene anche concretizzata ponendo costante $\,\lambda_{i+j}\,$ al variare di $\,i\,$ e $\,j\,$.

 $^{^{65}}$ Per questa ragione r_i avrà dimensione nulla.

generazione. Infatti, r_j denota la proporzione dei pagamenti dei sinistri di un periodo di origine pagabili nell'anno di sviluppo j.

3.1.1. La stima dei parametri

Il problema è ottenere i parametri r_j e λ_{i+j} dato un insieme di valori s_{ij} .

Verbeek nel 1972 si servì della massima verosimiglianza per stimare r_j e λ_{i+j} , con l'assunzione che la (i,j)-esima cella del triangolo contenesse una variabile aleatoria distribuita secondo una Poisson con media $r_i\lambda_{i+j}$ e che tutte le celle fossero mutuamente e stocasticamente indipendenti. Taylor dimostrò qualche anno dopo, nel 1977, che gli stessi risultati potevano essere ottenuti senza far ricorso ad alcune distribuzioni di probabilità, ma più semplicemente con un metodo euristico, godendo della possibilità di poter sfruttare le caratteristiche insite nel triangolo dei dati storici s_{ij} .

Le colonne della tabella 3.1. hanno un fattore comune di r_j e ogni diagonale ha un fattore comune dato da λ_{i+j} .

Sia v_j la somma della j-esima colonna e d_h la somma dell' h-esima diagonale

$$v_{j} = \sum_{i=0}^{T-j} s_{ij} = r_{j} \sum_{i=0}^{T-j} \lambda_{i+j}$$
(21)

e

$$d_h = \sum_{i+j=h} s_{ij} = \lambda_h \sum_{j=0}^h r_j \tag{22}$$

da ciò si ottengono le stime

$$\lambda_{h} = \frac{d_{h}}{\sum_{i=0}^{h} r_{i}} = \frac{d_{h}}{\sum_{l=0}^{h} r_{l}}$$
(23)

e

$$r_k = \frac{v_k}{\sum_{i=0}^{T-k} \lambda_{i+k}} = \frac{v_k}{\sum_{l=k}^{J} \lambda_l}$$

$$(24)$$

Dalle formule si evince che per stimare r_k si deve conoscere λ_h e per stimare λ_h bisogna conoscere r_k . A questo punto, per superare questo inconveniente, torna utile la normalizzazione posta per r_i in base alla (20), così facendo si ottengono

$$\lambda_h = \frac{\sum_{i=0}^h s_{i,h-i}}{1 - \sum_{i=0}^{T-h-1} r_{T-i}} \quad h = 0,1,\dots,T$$
 (23 bis)

$$r_{k} = \frac{\sum_{i=0}^{T-k} s_{ik}}{\sum_{i=k}^{T} \lambda_{i}} \quad k = 0,1,\dots,J$$
 (24 bis)

Grazie alla $\sum_{j=0}^J r_j = 1$ è più facile dimostrare la (22). Infatti, i valori lungo la diagonale principale contengono tutti λ_k , pertanto la somma lungo la stessa diagonale risulta $d_k = \lambda_k (r_0 + r_1 + ... + r_k) = \lambda_k$.

Quindi si pone la stima di λ_k pari alla somma della diagonale principale, cioè $\widehat{\lambda}_k = d_k$. Lo stesso procedimento applicato alla seconda diagonale permette di ottenere $d_{k-1} = \lambda_{k-1} (r_0 + r_1 + ... r_{k-1}) = \lambda_{k-1} (1 - r_k)$ da cui si ricava $\lambda_{k-1} = \frac{d_{k-1}}{1 - r_k}$, calcolabile solo se si conosce r_k . Iterando il procedimento si ottiene la (23 bis).

Se si assume l'ipotesi di $\sum_{j=0}^{J} r_j = 1$, cioè che i pagamenti dei sinistri dopo il periodo di differimento t sono trascurabili, e che λ_{ij} è costante al variare di i e j, r_j si potrebbe interpretare come rapporto tra il pagato con j anni di differimento e il totale pagato entro i primi t anni di differimento, quindi r_j sarà pari a zero.

Una volta ottenuti i valori di r_j e λ_{i+j} occorre stimare i valori di $\widehat{\lambda}_{i+j}$ esterni alle osservazioni del triangolo di sviluppo, cioè per i+j>k. Per stimare $\widehat{\lambda}_{i+j}$ è necessario disporre di informazioni aggiuntive come l'indice di inflazione previsto, e di fare ulteriori supposizioni⁶⁶. Calcolati questi valori basta sostituirli nella $P_{ij}=\alpha_i\cdot r_j\cdot \lambda_{i+j}$ e definire P_{ij} per gli anni futuri.

-

⁶⁶ Si riveda a riguardo la nota 37.

3.1.2. La stima della riserva sinistri

Il metodo in esame separa il riservato dal pagato⁶⁷. Per ogni anno di generazione si calcola quanto riservare e quanto pagare negli anni futuri per i sinistri già avvenuti e di cui si è a conoscenza. Sommando questi due importi si trova l'ammontare da riservare a fine esercizio per poter risarcire tutti i sinistri di un determinato periodo di origine. La riserva globale è ottenuta sommando tutte le riserve delle differenti generazioni.

Il metodo della separazione non fa riferimento agli importi cumulati, ma grazie alla stima dei parametri $\hat{\lambda}_{i+j}$ è possibile calcolare le somme che la compagnia pagherà negli anni successivi, e come tali dovranno essere posti in riserva congiuntamente alla riserva iniziale. E' supposta nota la riserva $_TR_0$ per sinistri della prima generazione, valutata polizza per polizza.

Le riserve $_{t}R_{i}$ relative a sinistri delle successive generazioni ancora riservati dopo t anni di differimento vengono stimate secondo la

$$_{t}\widehat{R}_{i} = \frac{\alpha_{i}}{\alpha_{0}} {_{T}}R_{0} \frac{\lambda_{t+i+1}}{\lambda_{t+1}}$$

$$\tag{25}$$

con la condizione che il riservato dopo t anni sia liquidato nell'anno t+1, che sia cioè $_{t}R_{i}=P_{i,t+1}$. Da ciò si ricava la riserva competente alla generazione i

$$R_{i} = \sum_{i=t-i+1}^{J} \widehat{P}_{ij} + \widehat{R}_{i} \quad i = 1, 2, \dots, T$$
 (26)

e la riserva totale, che è pari all'importo

$$R =_{T} R_{0} + \sum_{i=1}^{T} R_{i} \tag{27}$$

3.2. Applicazioni del metodo della separazione aritmetica di Taylor

Anche in questo caso si vuole presentare un esempio numerico al fine di chiarire la procedura operativa del metodo della separazione aritmetica di Taylor. Il punto di partenza

⁶⁷ Di fatto è come se scomponesse la riserva in due fattori: l'importo che va iscritto ogni anno in bilancio e fino alla chiusura del sinistro, e i risarcimenti effettuati nei vari anni di differimento, tutto ciò in relazione ad una specificata generazione di sinistri.

è la costruzione del triangolo degli elementi s_{ij} mediante la (19), e per far ciò è necessario disporre di ulteriori dati come P_{ij} e n_i . Gli importi incrementali dei pagamenti sono stati raccolti nella tabella 1.3.1.1. e come elementi n_i caratterizzanti la generazione i-esima si è ripresa la tabella 2.3.5. che riporta il numero dei sinistri denunciati. Definito l'insieme dei dati di origine si ottiene facilmente il triangolo degli s_{ij}

3.2.1. Triangolo degli elementi s_{ij}

Gen	Ant.											
Gen	0	1	2	3	4	5	6	7	8	9	10	11
1993	0,4979	0,5120	0,2182	0,0900	0,0477	0,0413	0,0233	0,0217	0,0165	0,0151	0,0049	0,0127
1994	0,5521	0,6236	0,2322	0,1014	0,0498	0,0418	0,0159	0,0186	0,0127	0,0079	0,0079	
1995	0,6433	0,6833	0,2206	0,1028	0,0513	0,0215	0,0213	0,0193	0,0154	0,0095		
1996	0,6939	0,7640	0,2639	0,0960	0,0449	0,0341	0,0367	0,0203	0,0150			
1997	0,7635	0,7872	0,2654	0,0948	0,0440	0,0503	0,0224	0,0195				
1998	0,8417	0,8040	0,2986	0,1177	0,0658	0,0456	0,0379					
1999	0,8443	0,8506	0,3330	0,1709	0,0978	0,0564						
2000	0,8475	0,9075	0,3813	0,1498	0,0861							
2001	0,9692	0,9904	0,3673	0,1773								
2002	1,0979	1,0565	0,3884									
2003	1,1836	1,0855										
2004	1,2332											

Assumendo la condizione (20) è possibile calcolare i parametri λ_h e r_k secondo la (23 bis) e la (24 bis), implicati nella equazione base del metodo e utili al fine della stima dei futuri importi da risarcire

3.2.2. I parametri r_k

r_0	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}	r_{11}
0,3875	0,3633	0,1261	0,0504	0,0244	0,0162	0,0099	0,0073	0,0052	0,0036	0,0021	0,0041

3.2.3. I parametri λ_h

λ_{1993}	λ_{1994}	λ_{1995}	λ_{1996}	λ_{1997}	λ_{1998}	λ_{1999}	λ_{2000}	λ_{2001}	λ_{2002}	λ_{2003}	λ_{2004}
1,2848	1,4173	1,6935	1,8326	1,9934	2,1560	2,1745	2,2289	2,4860	2,8581	2,9837	3,1293

Per stimare i pagamenti futuri secondo l'equazione base $P_{ij} = \alpha_i \cdot r_j \cdot \lambda_{i+j}$ è necessario conoscere i valori di λ_h per gli anni successivi al 2004. Al fine di calcolare tali parametri. si considera la funzione interpolante $\lambda_x = \alpha \beta^x$ i cui coefficienti si determinano mediante il criterio dei minimi quadrati⁶⁸. La funzione interpolante linearizzata diventa $\ln \lambda_x = \ln \alpha + x \ln \beta$, ovvero y = a + bx. Le formule da utilizzare per la stima dei parametri secondo il metodo dei minimi quadrati sono

$$b = \frac{\sum x_{i} y_{i} - \frac{\sum x_{i} \sum y_{i}}{n}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}}$$

$$a = \frac{\sum y_i}{n} - \frac{\sum x_i}{n}b$$

dove si assume che x_i siano gli anni di generazione che in questo caso variano da 0 a 11 e n indica il numero di anni di generazione considerati⁶⁹. In tal modo le stime dei parametri λ_{i+j} sono le seguenti

3.2.4. I parametri $\widehat{\lambda}_{i+j}$

λ_{2005}	λ_{2006}	λ_{2007}	λ_{2008}	λ_{2009}	λ_{2010}	λ_{2011}	λ_{2012}	λ_{2013}	λ_{2014}	λ_{2015}	λ_{2016}
3,4815	3,7602	4,0612	4,3863	4,7375	5,1167	5,5263	5,9687	6,4465	6,9625	7,5199	8,1218

Adesso si hanno a disposizione tutti i dati per definire i valori P_{ii} futuri

 68 Nel caso in cui i parametri $\,\lambda_h\,$ dovessero variare in un range contenuto, è possibile considerare il valore

medio e ipotizzando che valga $\frac{\lambda_{i+j+1}}{\lambda_{i+j}} = \mu$, si calcolano $\widehat{\lambda}_{i+j}$ in modo iterativo.

 $^{^{69}}$ In questo esempio n è pari a 12 poiché si sono considerate 12 generazioni.

3.2.5. Pagamenti incrementali futuri in Euro.000

Gen	Ant.										
Gen	1	2	3	4	5	6	7	8	9	10	11
1993											
1994											820
1995										428	898
1996									734	459	962
1997								1.045	787	492	1.031
1998							1.510	1.167	879	549	1.151
1999						2.032	1.604	1.240	933	584	1.223
2000					3.079	2.045	1.615	1.248	939	587	1.231
2001				4.226	3.026	2.010	1.587	1.227	923	577	1.209
2002			8.404	4.387	3.142	2.087	1.647	1.273	958	599	1.256
2003		21.743	9.382	4.898	3.508	2.329	1.839	1.422	1.070	669	1.402
2004	61.902	23.216	10.017	5.230	3.745	2.487	1.964	1.518	1.142	714	1.497

Il dato dell'ultima colonna della tabella 1.3.1.1. è la riserva della generazione 1993 alla data di valutazione, cioè alla fine dell'esercizio 2004. Il vettore delle riserve distinte per generazione è riportato di seguito

3.2.6. Riserve residue per generazione (importi in Euro.000)

199	3 1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.06	8 1.989	2.607	3.527	4.824	6.898	9.360	12.499	16.510	25.544	50.260	115.566	250.654

La riserva sinistri complessiva è in linea con i valori ottenuti dal chain ladder con e senza inflazione, e come era ovvio aspettarsi, un peso rilevante per l'importo globale è fornito dalla generazione 2004 che presenta la riserva più elevata. Anche per il metodo della separazione aritmetica di Taylor si possono avanzare gli stessi commenti fatti in precedenza in merito all'importanza delle generazioni più recenti rispetto a quelle più vecchie e rappresentate dal grafico seguente

Metodo della Separazione Aritmetica di Taylor 300.000 250,000 200.000 150.000 100.000 50.000

Grafico 9 Riserva sinistri separazione aritmetica di Taylor

Tutti i grafici hanno la stessa scala in modo tale da rendere più agevole ogni tipo di confronto. In tutte le analisi svolte si riscontra un andamento monotono crescente delle riserve residue che propongono valori molto bassi per le generazioni più lontane fino a giungere a livelli elevati per gli ultimi esercizi. Pertanto, si può affermare che la stessa riserva sinistri mostra un andamento convesso nel tempo.

Vantaggi e svantaggi del metodo della separazione 3.3. aritmetica di Taylor

E' stato dimostrato dallo stesso Taylor che la logica di stima dei parametri presentata sopra può essere applicata⁷⁰ in casi dove mancano i dati a nord-ovest del triangolo degli elementi s_{ij} , oppure quando i dati disponibili formano un parallelogramma⁷¹. Lo stesso autore ha messo in luce come sia possibile procedere alla valutazione dei parametri in questi casi particolari; è sufficiente inserire degli zeri nelle celle vacanti e servirsi delle (23 bis) e (24 bis) per la stima dei parametri. Un'ulteriore soluzione, nel caso in cui dovessero mancare i dati sia a destra che a sinistra della parte superiore del triangolo, è quella di costruire con i dati a disposizione una matrice rettangolare e procedere con la stima dei parametri facendo uso di v_i , che continua ad essere la somma per colonna, e di d_h che invece diventa la

 $^{^{70}}$ A differenza del metodo chain ladder. 71 In modo equivalente significa che nel triangolo dei dati sono assenti gli elementi a nord-ovest e a nord-est.

somma per riga. Una volta ottenuti i coefficienti si procede alla valutazione dei pagamenti futuri in modo analogo a quanto visto sopra.

I rapporti $\left(\frac{\lambda_{i+j+1}}{\lambda_{i+j}}-1\right)$ possono essere interpretati semplicemente come un tasso che identifica l'aumento dei sinistri. Nel suo lavoro originale, Taylor ha puntualizzato che non necessariamente i rapporti debbano avere il significato che istintivamente se ne deduce, ma

che il rapporto $\frac{\lambda_{i+j+1}}{\lambda_{i+j}}$ è una misura delle influenze esogene specifiche del periodo di

pagamento in questione. Queste influenze includerebbero anche un aumento dei sinistri ma anche altro come, per esempio, cambiamenti nella velocità di liquidazione dei sinistri. Inoltre, tutti gli effetti nel periodo di origine, in generale, come modifiche del portafoglio, complicano la situazione. Per le imprese più piccole sono rilevanti gli errori da campionamento dei rapporti $\frac{\lambda_{i+j+1}}{\lambda_{i+j}}$, pertanto questa classe di aziende deve porre maggiore

attenzione durante le analisi e nell'interpretazione dei risultati. Il metodo in esame cerca di stimare l'aumento dei sinistri piuttosto che considerarlo come noto, contrariamente al metodo chain ladder che basa le previsioni sui dati dell'esperienza passata. Il metodo proposto da Taylor permette di superare gli inconvenienti presenti nel chain ladder e dovuti alle influenze esogene non trascurabili, qualora infatti venissero ignorate il chain ladder restituirebbe delle stime distorte.

Taylor ha proposto anche due varianti. La prima prende il nome di metodo della separazione geometrica in cui si sostituiscono le sommatorie delle (21) e (22) con delle produttorie, e le stime di λ_h e r_k contengono le medie geometriche di varie osservazioni. La seconda variante è il metodo della separazione della regressione avente come equazione base la seguente forma lineare $\log s_{ij} = \log r_j + \log \lambda_{i+j}$. Il modello viene trattato come in un problema di regressione con un insieme di osservazioni dato da s_{ij} e i coefficienti di regressione dati da $\log r_j$ e $\log \lambda_{i+j}$. L'autore ha dimostrato che il criterio dei minimi quadrati ordinari conduce agli stessi risultati del metodo della separazione geometrica. Il metodo della separazione con regressione è stato elencato in questo contesto perché ha la stessa origine degli altri metodi di separazione, ma forse sarebbe più corretto includerlo nei metodi stocastici.

In conclusione si vuole presentare una sintesi dei risultati conseguiti con i tre metodi deterministici più utilizzati nella realtà assicurativa⁷². Il primo schema riporta le riserve sinistri con i metodi analizzati sopra e le riserve residue già accantonate dall'impresa alla data di valutazione, nonché l'importo complessivo

3.3.1. Prospetto riassuntivo della stima della riserva

Carr	Ris.Bilancio	Ris.C-L	Ris.C-L	Ris.C-L	Ris.C-L	Ris.Fisher-	Ris.Taylor	
Gen	Kis.Difaficio	KIS.C-L	Inflation	Costo_medio	Incurred	Lange	Kis. I ayloi	
1993	1.068	1.068	6.073	1.068	1.068	826	1.068	
1994	1.795	2.033	7.907	2.033	1.807	1.578	1.989	
1995	1.853	2.654	7.285	2.656	2.196	1.884	2.607	
1996	1.901	3.676	8.007	3.669	2.529	2.510	3.527	
1997	2.845	4.859	8.509	4.842	3.644	3.996	4.824	
1998	4.926	6.989	11.082	6.941	5.772	5.506	6.898	
1999	7.718	9.439	13.728	9.408	8.768	9.189	9.360	
2000	12.339	11.999	16.017	11.963	13.594	14.742	12.499	
2001	18.725	16.027	19.931	16.102	20.642	21.727	16.510	
2002	29.487	24.981	28.892	25.251	32.518 34.807		25.544	
2003	47.921	48.590	52.428	48.950	51.680	57.127	50.260	
2004	107.822	114.058	117.155	112.651	109.567	106.025	115.566	
Totale	238.400	246.374	297.014	245.531	253.785	259.916	250.654	

Da un primo e superficiale sguardo si desume che l'impresa in oggetto ha una carenza del proprio fabbisogno indipendentemente da quale sia il metodo di stima prescelto. In tutti i casi il valore da accantonare è superiore della somma già riservata dalla compagnia. La differenza è ridotta per il metodo chain ladder che impiega il costo medio dei sinistri denunciati. Questa è la tipica situazione in cui potrebbe trovarsi un'impresa, infatti è molto raro riscontrare una riduzione della riserva sinistri⁷³.

Nella tabella 3.3.2. sono presenti le differenza tra la riserva di bilancio e le riserve stimate per comprendere meglio l'insufficienza e per operare una rivalutazione al fine di non essere dichiarata in liquidazione coatta amministrativa

-

 $^{^{72}}$ Con riguardo al metodo chain ladder si fa riferimento solo al caso classico che impiega come sistema di pesi i valori C_{ii} .

⁷³ In generale si procede con una rivalutazione e non riduzione della riserva sinistri.

3.3.2. Differenze tra la riserva in bilancio e le relative stime

Gen	Bilancio- Chain Ladder	Bilancio-Chain Ladder Inflation	Bilancio-Chain Ladder Costo Medio di Generazione	Bilancio- Chain Ladder Incurred	Bilancio- Fisher-Lange	Bilancio- Taylor
1993	-	-5.005	-	-	242	-
1994	-238	-6.112	-238	-12	217	-194
1995	-801	-5.432	-803	-343	-31	-754
1996	-1.775	-6.106	-1.768	-628	-609	-1.626
1997	-2.014	-5.664	-1.997	-799	-1.151	-1.979
1998	-2.063	-6.156	-2.015	-846	-580	-1.972
1999	-1.721	-6.010	-1.690	-1.050	-1.471	-1.642
2000	340	-3.678	376	-1.255	-2.403	-160
2001	2.698	-1.206	2.623	-1.917	-3.002	2.215
2002	4.506	595	4.236	-3.031	-5.320	3.943
2003	-669	-4.507	-1.029	-3.759	-9.206	-2.339
2004	-6.236	-9.333	-4.829	-1.745	1.797	-7.744
Totale	-7.974	-58.614	-7.131	-15.385	-21.516	-12.254

La necessità di incrementare la riserva è suggerita da tutti i metodi riportati, ma il metodo chain ladder inflation-adjusted fornisce il più alto valore in termini assoluti che deve essere recuperato. Un simile risultato era forse atteso dal momento che il metodo chain ladder inflation-adjusted oltre a proiettare i valori al futuro li rivaluta in base al tasso di inflazione prevista, e come tale è lecito attendersi una riserva sinistri più elevata e una differenza maggiore. In tabella 3.3.3. sono riportati gli scarti percentuali tra la riserva di bilancio e i valori stimati con i differenti metodi

3.3.3. Scarti dalla riserva in bilancio (valori percentuali)

Gen	Basic Chain Ladder	Chain Ladder Inflation-adjusted	Chain Ladder Costo Medio di Generazione	Chain Ladder Incurred	Fisher- Lange	Taylor	
1993	-	-468,62	-	-	22,70	-	
1994	-13,26	-340,50	-13,26	-0,69	12,10	-10,78	
1995	-43,25	-293,14	-43,32	-18,50	-1,68	-40,68	
1996	-93,40	-321,22	-92,98	-33,03	-32,02	-85,54	
1997	-70,80	-199,08	-70,18	-28,09	-40,47	-69,58	
1998	-41,87	-124,96	-40,91	-17,18	-11,77	-40,04	
1999	-22,30	-77,87	-21,89	-13,61	-19,06	-21,28	
2000	2,75	-29,81	3,05	-10,17	-19,47	-1,30	
2001	14,41	-6,44	14,01	-10,24	-16,03	11,83	
2002	15,28	2,02	14,37	-10,28	-18,04	13,37	
2003	-1,40	-9,40	-2,15	-7,84	-19,21	-4,88	
2004	-5,78	-8,66	-4,498	-1,62	1,67	-7,18	
Totale	-3,34	-24,59	-2,99	-6,45	-9,02	-5,14%	

Nonostante tutti i metodi segnalino una carenza nell'accantonamento della riserva sinistri, il metodo chain ladder basato sul costo medio di generazione riporta la percentuale minore. Segue il basic chain ladder con un'insufficienza del 3,34% rispetto alla riserva di bilancio. Il valore più elevato è dato, ovviamente, dal chain ladder inflation-adjusted. E' bene sottolineare che una variazione al rialzo anche di un 2,99% non è un importo di piccole dimensioni considerato il fatto che questa percentuale deve essere applicata a somme espresse in centinaia di milioni di Euro per un'impresa di medie dimensioni. In generale tali percentuali non dovrebbero superare il 20%. Se così non fosse significa che la compagnia sottostima sistematicamente la somma da accantonare.

In conclusione, ciò che dovrebbe essere richiesto da un attuario è un'analisi non distorta, ma, appunto, corretta e oggettiva. Quello che lui stesso dovrebbe pretendere è una minimizzazione dell'incertezza statistica associata alla sua stima finale.

4. Sensitivity analysis

Si vuole di seguito effettuare qualche analisi di sensitività dei metodi riportati sopra.

L'obiettivo è di capire quanto possa incidere una variazione nei parametri sui risultati ottenuti in precedenza.

Si prenderà in esame il basic chain ladder e adottando dei link ratios diversi verranno nuovamente calcolate le riserve. In modo analogo di procederà per il metodo Fisher-Lange i cui cambiamenti interesseranno principalmente la velocità di liquidazione, e per quanto attiene il metodo della separazione di Taylor si adotterà un nuovo criterio per il calcolo dei parametri $\hat{\lambda}_{i+j}$ e sarà presentata una situazione particolare per quanto riguarda il triangolo dei pagamenti.

Gli attuari fanno ampio utilizzo di un particolare software per calcolare le riserve sinistri il cui nome è CROS. In tale software sono presenti differenti modi per calcolare i link ratios del basic chain ladder e di seguito ne verranno presentati alcuni. La presenza di tanti fattori di sviluppo è sintomo che la stima della riserva non termina una volta ottenuto il risultato, ma è necessario e quasi indispensabile che l'attuario interpreti criticamente i valori per comprendere meglio quanto i risultati ottenuti siano coerenti alla realtà aziendale. Per far ciò è necessario proseguire l'analisi facendo variare alcune grandezze coinvolte nel sistema di valutazione. Per esempio si potrebbe optare per la media semplice o ponderata non di tutti i fattori di sviluppo individuali ma soltanto degli ultimi quattro, oppure scegliere il valore maggiore o minore dei coefficienti di proporzionalità per ogni antidurata.

Adottando la stessa terminologia presente nel software richiamato sopra si indica con AM4 la media semplice degli ultimi quattro link ratios, con CSA4 la media ponderata, sempre degli ultimi quattro fattori, con MIN e MAX rispettivamente il minore e il maggiore valore del coefficiente per antidurata.

La tabella che riporta i valori in esame è la seguente

4.1. Link ratio

m_{ij}	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12+
AM4	1,9930	1,1954	1,0728	1,0343	1,0225	1,0151	1,0107	1,0089	1,0068	1,0040	1,0085	1,0125
CSA4	1,9879	1,1951	1,0729	1,0347	1,0226	1,0152	1,0106	1,0087	1,0066	1,0041	1,0085	1,0125
MIN	1,9171	1,1663	1,0522	1,0230	1,0127	1,0099	1,0096	1,0077	1,0048	1,0033	1,0085	1,0125
MAX	2,1296	1,2173	1,0843	1,0445	1,0302	1,0193	1,0151	1,0113	1,0102	1,0048	1,0085	1,0125

Applicando i quattro sets di link ratio al triangolo dei cumulati si otterranno altrettanti triangoli di importi futuri cumulati da cui sarà facile ricavare la stima della riserva sinistri. I dati di input sono raccolti nella tabella 1.3.1.2. che riporta il run-off dei pagamenti cumulati con cui sarà svolta l'analisi.

Impiegando il primo tipo di coefficiente di proporzionalità, AM4, si ottengono le seguenti stime

4.2. Pagamenti incrementali futuri con link ratio AM4 (importi in Euro.000)

C	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												86.841
1994											97.147	98.357
1995										105.431	106.333	107.657
1996									115.455	115.922	116.912	118.368
1997								119.338	120.149	120.635	121.666	123.181
1998							133.549	134.734	135.651	136.199	137.363	139.073
1999						140.377	141.875	143.134	144.107	144.689	145.926	147.743
2000					132.824	134.827	136.266	137.475	138.410	138.969	140.157	141.902
2001				129.063	131.967	133.957	135.386	136.588	137.517	138.072	139.253	140.987
2002			130.665	135.144	138.184	140.268	141.765	143.023	143.996	144.578	145.814	147.629
2003		134.290	144.064	149.002	152.354	154.652	156.302	157.689	158.761	159.403	160.766	162.768
2004	120.301	143.804	154.270	159.558	163.148	165.608	167.375	168.861	170.009	170.696	172.155	174.299

Un confronto dei valori precedenti con quelli inseriti in tabella 1.3.1.5. permette di osservare come le differenze maggiori si riscontrano nei primi anni di differimento. Infatti, se l'antidurata aumenta la differenza tra la media aritmetica degli ultimi quattro link ratios e il fattore di sviluppo classico tenderà a ridursi. Per convincersi di quanto detto è sufficiente notare come gli ultimi due anni di differimento presentino valori molto affini. La differenza è ancor più assottigliata quando si fa riferimento al secondo tipo di link ratio, il CSA4. E' facile notare come a partire dall'ottavo anno di sviluppo i due criteri diano esattamente gli stessi coefficienti. Nonostante questa coincidenza le antidurate più elevate non presentano, salvo che per le prime cinque generazioni, 1993-1997, le stesse proiezioni in merito ai pagamenti cumulati. Le successive generazioni, infatti, risentono della diversità dei primi fattori di sviluppo. Il chain ladder è, appunto, un metodo concatenato quindi eventuali errori, o come in questo caso differenze di valori, si ripercuotono nelle consecutive valutazioni.

Le proiezioni dei pagamenti cumulati sono le seguenti

4.3. Pagamenti incrementali futuri con link ratio CSA4 (importi in Euro.000)

Con	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												86.841
1994											97.147	98.357
1995										105.436	106.337	107.661
1996									115.434	115.905	116.896	118.351
1997								119.322	120.111	120.602	121.633	123.147
1998							133.541	134.709	135.600	136.154	137.317	139.027
1999						140.392	141.882	143.122	144.068	144.657	145.894	147.710
2000					132.837	134.855	136.286	137.477	138.386	138.952	140.140	141.884
2001				129.117	132.035	134.041	135.463	136.647	137.551	138.113	139.294	141.028
2002			130.674	135.209	138.265	140.365	141.855	143.094	144.041	144.629	145.866	147.682
2003		134.257	144.038	149.037	152.406	154.721	156.363	157.729	158.773	159.421	160.784	162.786
2004	119.990	143.397	153.844	159.184	162.781	165.254	167.008	168.467	169.582	170.275	171.730	173.868

L'impiego del valore minimo o massimo dei fattori di sviluppo della tabella 1.3.1.3. per ogni anno di differimento non richiede particolari osservazioni e quindi non sorprende vedere come il range dei risarcimenti abbia come estremi inferiore e superiore rispettivamente i valori calcolati attraverso i link ratios MIN e MAX.

Di seguito sono riportate entrambe le tabelle contenenti gli importi suddetti

4.4. Pagamenti incrementali futuri con link ratio MIN (importi in Euro.000)

C	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												86.841
1994											97.147	98.357
1995										105.356	106.257	107.580
1996									115.225	115.609	116.597	118.049
1997								119.195	119.768	120.166	121.193	122.702
1998							133.407	134.430	135.075	135.525	136.683	138.385
1999						139.661	141.001	142.082	142.764	143.239	144.464	146.262
2000					131.545	132.848	134.122	135.151	135.800	136.252	137.416	139.127
2001				127.658	129.273	130.553	131.806	132.817	133.454	133.898	135.043	136.724
2002			128.158	131.107	132.766	134.081	135.367	136.406	137.060	137.516	138.692	140.419
2003		131.019	137.858	141.030	142.815	144.229	145.613	146.730	147.434	147.925	149.189	151.047
2004	115.720	134.959	142.003	145.271	147.109	148.566	149.992	151.142	151.868	152.373	153.675	155.589

4.5. Pagamenti incrementali futuri con link ratio MAX (importi in Euro.000)

Gen	Ant.											
Gen	1	2	3	4	5	6	7	8	9	10	11	12+
1993												86.841
1994											97.147	98.357
1995										105.506	106.408	107.733
1996									115.850	116.401	117.396	118.858
1997								119.630	120.856	121.431	122.469	123.994
1998							134.141	135.662	137.053	137.705	138.882	140.611
1999						140.966	143.101	144.724	146.208	146.903	148.159	150.004
2000					133.828	136.417	138.483	140.054	141.489	142.162	143.378	145.163
2001				130.338	134.279	136.876	138.949	140.525	141.966	142.641	143.860	145.652
2002			132.068	137.944	142.114	144.863	147.058	148.726	150.250	150.965	152.255	154.151
2003		136.751	148.279	154.877	159.559	162.645	165.109	166.982	168.693	169.496	170.945	173.073
2004	128.546	156.476	169.667	177.216	182.573	186.105	188.924	191.067	193.025	193.943	195.601	198.037

Come fatto sopra, la fase successiva consiste nel calcolare le riserve per ogni anno di generazione e sommarle per ottenere la stima della riserva sinistri complessiva

4.6. Stime delle riserve (importi in Euro.000)

	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
AM4	1.068	2.033	2.650	3.693	4.893	6.934	9.452	12.001	16.201	25.829	50.426	113.938	249.118
CSA4	1.068	2.033	2.654	3.676	4.859	6.888	9.419	11.983	16.242	25.882	50.444	113.507	248.658
MIN	1.068	2.033	2.573	3.374	4.414	6.246	7.971	9.226	11.938	18.619	38.705	95.228	201.396
MAX	1.068	2.033	2.726	4.183	5.706	8.472	11.713	15.262	20.866	32.351	60.731	137.676	302.787

Nei primi due casi la riserva complessiva è prossima al valore trovato impiegando i fattori classici del chain ladder. Invece, come anticipato sopra, i link ratios MIN e MAX restituiscono delle stime piuttosto differenti dalle altre, definendo in tal modo il campo di variazione delle possibili stime per la riserva sinistri.

Il software CROS consente di calcolare altri tipi di coefficienti di proporzionalità. L'illustrazione dettagliata dello specifico software esula dallo scopo della presente trattazione.

Grafico 10. Sensitivity Analysis del Metodo Chain Ladder esculo in Basic Chain Ladder

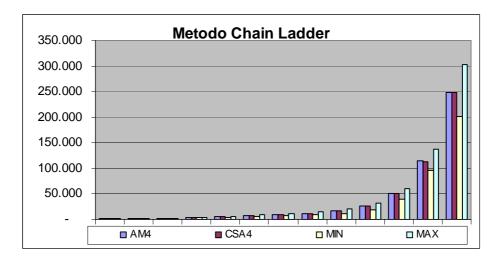
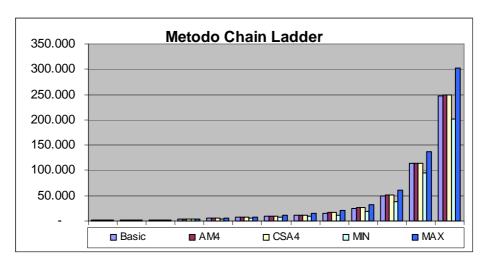



Grafico 11. Sensitivity Analysis del Metodo Chain Ladder incluso il Basic Chain Ladder

I due grafici precedenti mostrano come gli istogrammi rappresentanti le varianti del chain ladder si inseriscono tra le stime ottenute con il valore minimo e il valore massimo dei link ratios. L'andamento dei valori previsti per la riserva sinistri delle varie generazioni è ancora convesso.

Analogamente a quanto fatto per il chain ladder si vuole effettuare un'analisi si sensitività anche per il metodo Fisher-Lange apportando modifiche alle velocità di liquidazione.

Si supponga che l'impresa liquidi i sinistri molto più velocemente nei primi anni. In tal modo le nuove velocità di liquidazione sono le successive

4.7. Velocità di liquidazione caso 1

Anno di differimento	1	2	3	4	5	6	7	8	9	10	11	12+
v_j al 2004	0,8350	0,1000	0,0128	0,0188	0,0150	0,0091	0,0025	0,0016	0,0010	0,0010	0,0010	0,0022
v_j al 2003		0,6061	0,0775	0,1142	0,0909	0,0550	0,0154	0,0095	0,0061	0,0059	0,0061	0,0134
v_j al 2002			0,1967	0,2900	0,2308	0,1396	0,0391	0,0240	0,0156	0,0149	0,0154	0,0339
v_j al 2001				0,3610	0,2873	0,1738	0,0487	0,0299	0,0194	0,0185	0,0192	0,0422
v_j al 2000					0,4496	0,2720	0,0762	0,0468	0,0304	0,0290	0,0300	0,0661
v_j al 1999						0,4942	0,1385	0,0850	0,0552	0,0526	0,0545	0,1200
v_{j} al 1998							0,2738	0,1681	0,1090	0,1041	0,1077	0,2373
v_j al 1997								0,2315	0,1501	0,1433	0,1482	0,3268
v_j al 1996									0,1954	0,1865	0,1929	0,4252
v_j al 1995										0,2318	0,2397	0,5285
v_j al 1994											0,3121	0,6879
v_{j} al 1993												0,6879

In questo primo caso si ipotizza che l'impresa nel 2005 non liquidi il 78,30% dei sinistri avvenuti nel 2004, bensì l'83,50%. Se si volesse fare un confronto tra i dati della tabella 4.7. e quelli ottenuti dall'esempio del paragrafo 2.3., si noterebbe che nella tabella 4.7. alcune delle generazioni successive riportano una percentuale di sinistri liquidati nel 2005 maggiore di quella riscontrata nello stesso paragrafo 2.3. Non si riesce ad avere un comportamento simile per tutte le generazioni perché influisce tanto la percentuale che è stata inizialmente modificata per la prima generazione e a catena ne risentono anche i successivi periodi di origine.

Si ipotizzi invece che esista una politica di chiusura dei sinistri ancora diversa, per esempio la velocità di liquidazione potrebbe essere più ridotta, rispetto ai casi precedenti, per antidurate minori. In cifre si potrebbe avere una situazione riportata di seguito in tabella 4.8.

4.8. Velocità di liquidazione caso 2

Anno di differimento	1	2	3	4	5	6	7	8	9	10	11	12+
v_j al 2004	0,7000	0,1800	0,0540	0,0162	0,0136	0,0133	0,0058	0,0050	0,0046	0,0040	0,0022	0,0012
v_j al 2003		0,6000	0,1800	0,0540	0,0133	0,0074	0,0455	0,0445	0,0193	0,0167	0,0153	0,0040
v_j al 2002			0,4500	0,1350	0,0333	0,0185	0,1137	0,1111	0,0483	0,0417	0,0383	0,0100
v_j al 2001				0,2455	0,0606	0,0336	0,2067	0,2021	0,0879	0,0758	0,0697	0,0182
v_j al 2000					0,0803	0,0446	0,2740	0,2678	0,1165	0,1004	0,0924	0,0241
v _j al 1999						0,0484	0,2979	0,2912	0,1266	0,1092	0,1004	0,0262
v_j al 1998							0,3131	0,3060	0,1331	0,1147	0,1055	0,0275
v_{j} al 1997								0,4455	0,1937	0,1670	0,1537	0,0401
v_{j} al 1996									0,3494	0,3012	0,2771	0,0723
v_j al 1995										0,4630	0,4259	0,1111
<i>v</i> _j al 1994											0,7931	0,2069
<i>v_j</i> al 1993												0,2069

Anche in questo caso valgono le stesse considerazioni fatte prima. Non è possibile effettuare un paragone diretto tra i valori della tabella 4.8. e quelli originali ottenuti nell'esempio del paragrafo 2.3. Poiché le velocità sono state modificate manualmente è naturale attendersi una situazione simile a quella della tabella 4.8. in cui si riscontra una percentuale molto bassa per la prima generazione. In relazione all'anno 1993 l'impresa ha liquidato nei primi undici anni, quindi entro l'esercizio 2004, più dell'80% dei sinistri registrati per la stessa generazione. Invece, per gli esercizi più recenti si stima che dopo undici anni rimane da chiudere una percentuale molto più bassa di sinistri.

Nel caso 1 l'anno 1993 riporta come ultima velocità di liquidazione un valore pari a circa il 69%, cioè l'impresa a fine 2004 avrebbe chiuso non l'80% bensì il 30% dei sinistri appartenenti alla generazione di riferimento.

La stima della riserva sinistri a costo ultimo sarà diversa nei due casi esaminati sopra, e a loro volta differiranno dal caso originale.

4.9. Stima Riserva Sinistri a costo ultimo (importi in Euro.000) caso 1

Com	Ant.											
Gen.	1	2	3	4	5	6	7	8	9	10	11	12+
1993												868
1994											479	1.101
1995										370	464	1.049
1996									460	410	504	1.133
1997								896	580	508	622	1.386
1998							1.207	983	626	544	661	1.474
1999						2.662	1.454	1.164	736	636	772	1.721
2000					3.969	3.281	1.763	1.401	879	760	922	2.056
2001				6.583	4.131	3.359	1.792	1.414	887	766	930	2.074
2002			5.387	10.139	6.258	5.052	2.676	2.111	1.325	1.144	1.389	3.097
2003		25.232	4.677	8.658	5.306	4.252	2.252	1.777	1.115	963	1.169	2.607
2004	59.627	17.080	3.114	5.723	3.482	2.790	1.478	1.166	732	632	767	1.711

4.10. Stima Riserva Sinistri a costo ultimo (importi in Euro.000) caso 2

Con	Ant.											
Gen.	1	2	3	4	5	6	7	8	9	10	11	12+
1993												261
1994											1.217	331
1995										739	824	220
1996									822	661	725	193
1997								1.724	748	592	644	170
1998							1.381	1.789	764	600	648	171
1999						261	3.129	3.987	1.690	1.318	1.424	376
2000					709	537	6.338	8.019	3.374	2.632	2.842	750
2001				4.476	871	650	7.605	9.553	4.019	3.135	3.386	893
2002			12.321	4.721	904	669	7.776	9.767	4.109	3.205	3.462	913
2003		24.980	10.862	4.093	778	572	6.646	8.348	3.512	2.740	2.959	781
2004	49.987	30.743	13.149	4.919	928	682	7.929	9.959	4.190	3.269	3.530	931

Le riserve generazionali nonché la riserva complessiva sono riportate sotto

4.11. Riserve residue e globali (importi in Euro.000)

	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
Caso 1	868	1.580	1.882	2.506	3.991	5.495	9.145	15.032	21.936	38.578	58.009	98.301	257.325
Caso 2	261	1.548	1.783	2.401	3.879	5.352	12.184	25.201	34.589	47.847	66.270	130.217	331.533

Se l'impresa è caratterizzata da un'alta velocità di liquidazione per l'esercizio 2004 (caso 1), la riserva relativa allo stesso anno è inferiore rispetto a quella del caso 2. Quindi,

supporre che molti sinistri saranno liquidati nei primi due anni fa sì che la somma da accantonare per chiudere definitivamente i sinistri della stessa generazione sia piccola. Al contrario, se nei primi anni vengono risarciti pochi sinistri l'importo della riserva è maggiore, e questo è quanto succede nel caso 2.

La velocità di liquidazione, infatti, incide sulla stima del numero di sinistri che saranno liquidati in futuro e a sua volta il numero di sinistri inciderà sull'accantonamento necessario.

Per comprendere quanto detto si riportano le tabelle della stima del numero di sinistri che avranno diritto ad un pagamento

4.12. Stima del numero dei sinistri liquidati caso 1

Gen.	Ant.											
Gen.	1	2	3	4	5	6	7	8	9	10	11	12+
1993												25
1994											14	30
1995										12	12	27
1996									13	13	13	28
1997								25	15	15	15	33
1998							42	26	16	15	16	34
1999						171	48	30	18	17	18	39
2000					324	199	56	34	21	20	21	45
2001				389	318	195	55	34	21	20	20	44
2002			368	564	461	282	79	49	30	29	30	64
2003		2.061	300	461	376	231	65	40	24	24	24	53
2004	11.598	1.313	191	293	240	147	41	25	16	15	15	33

4.13. Stima del numero dei sinistri liquidati caso 2

Com	Ant.											
Gen.	1	2	3	4	5	6	7	8	9	10	11	12+
1993												7
1994											35	9
1995										24	22	6
1996									23	20	19	5
1997								49	20	17	16	4
1998							48	47	20	17	16	4
1999						17	103	101	42	36	33	9
2000					58	33	200	196	81	70	64	17
2001				264	67	38	232	227	93	81	75	19
2002			841	262	67	37	230	225	93	81	74	19
2003		2.041	697	218	55	31	191	187	77	67	61	16
2004	9.723	2.364	808	252	64	36	221	217	89	78	71	18

Nonostante il numero complessivo di sinistri da liquidare sia simile nei due casi, infatti si stima di risarcire 22.141 sinistri nel primo caso e 22.094 nel secondo caso, la differenza nella somma da riservare è dovuta alla modalità con cui si combinano il costo medio futuro inflazionato della tabella 2.3.20. e la stima dei sinistri da liquidare. Per esempio per la generazione 1993 si registra nel caso 2 un accantonamento di soli 261 migliaia di euro contro le 868 migliaia di euro del caso 1 perché nella seconda situazione si prevede di risarcire solo sette sinistri e non venticinque come per il caso 1. L'ipotesi che la generazione 2004 abbia una velocità di liquidazione più elevata nel primo anno di differimento fa si che il numero di sinistri che saranno risarciti con dodici mesi di ritardo sia maggiore che nel secondo caso, e, ceteris paribus, la somma da accantonare sarà più elevata⁷⁴. Dalla tabella 2.3.20. si nota che i risarcimenti dei primi anni di sviluppo hanno un costo inferiore agli altri, invece il numero di sinistri da pagare decresce se aumenta l'antidurata. Dunque è necessario comprendere come si combinano tra di loro il costo medio futuro e la stima dei sinistri da liquidare per comprendere al meglio l'importo da accantonare per ogni generazione e di conseguenza la somma da inserire nel bilancio di fine esercizio.

⁷⁴ Si confronti la tabella 4.9. con la 4.10.

Grafico 12. Sensitivity Analysis del Metodo Fisher-Lange

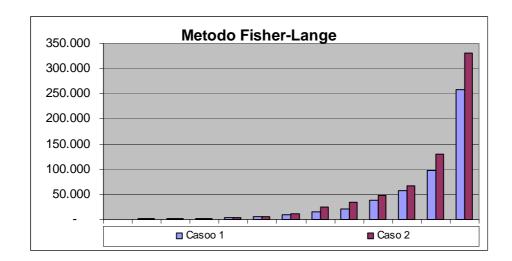
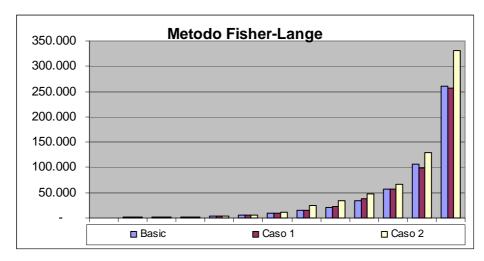



Grafico 13. Sensitivity Analysis del Metodo Fisher-Lange incluso il Basic Fisher-Lange

Le differenze più rilevanti si riscontrano per le generazioni più recenti. Gli ultimi periodi di origine, infatti, mostrano che le stime ottenute dal caso 2 sono sempre più elevate degli altri due casi, come si nota dal grafico 13.

L'andamento della riserva continua ad essere convesso.

Infine, anche per il metodo della separazione aritmetica di Taylor si vuole presentare una variazione rispetto al caso classico illustrato nel paragrafo precedente. Lo stesso autore ha applicato la procedura di stima anche qualora dovessero mancare dei dati nella parte a nord-ovest del triangolo dei pagamenti.

Si supponga che nell'anno 1997 una certa impresa di assicurazione debba redigere il bilancio di fine esercizio in seguito all'acquisizione di un'altra compagnia. La nuova

società non dispone dei pagamenti antecedenti alla data di acquisizione, pertanto il triangolo dei pagamenti sarà il seguente

4.14. Importi incrementali dei pagamenti in Euro.000

Gen	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993					2.727	2.359	1.334	1.238	941	860	282	727	1.068
1994				5.868	2.882	2.422	918	1.076	734	458	456		
1995			12.951	6.034	3.010	1.264	1.250	1.135	904	559			
1996		44.499	15.370	5.594	2.616	1.984	2.137	1.184	873				
1997	44.116	45.490	15.339	5.478	2.541	2.906	1.294	1.124					
1998	50.294	48.040	17.843	7.035	3.934	2.726	2.267						
1999	49.620	49.991	19.570	10.047	5.750	3.313							
2000	46.410	49.694	20.881	8.202	4.714								
2001	48.295	49.354	18.304	8.833									
2002	52.590	50.606	18.604										
2003	58.599	53.743											
2004	60.361												

Come suggerisce lo stesso Taylor, per adattare la metodologia a questa nuova situazione è sufficiente inserire degli zeri nelle celle vuote del triangolo degli elementi s_{ij} come mostrato di seguito

4.15. Triangolo degli elementi s_{ij}

Com	Ant											
Gen	0	1	2	3	4	5	6	7	8	9	10	11
1993	0	0	0	0	0,0477	0,0413	0,0233	0,0217	0,0165	0,0151	0,0049	0,0127
1994	0	0	0	0,1014	0,0498	0,0418	0,0159	0,0186	0,0127	0,0079	0,0079	
1995	0	0	0,2206	0,1028	0,0513	0,0215	0,0213	0,0193	0,0154	0,0095		
1996	0	0,7640	0,2639	0,0960	0,0449	0,0341	0,0367	0,0203	0,0150			
1997	0,7635	0,7872	0,2654	0,0948	0,0440	0,0503	0,0224	0,0195				
1998	0,8417	0,8040	0,2986	0,1177	0,0658	0,0456	0,0379					
1999	0,8443	0,8506	0,3330	0,1709	0,0978	0,0564						
2000	0,8475	0,9075	0,3813	0,1498	0,0861							
2001	0,9692	0,9904	0,3673	0,1773								
2002	1,0979	1,0565	0,3884									
2003	1,1836	1,0855										
2004	1,2332											

Una volta ottenuto il triangolo precedente si prosegue alla determinazione dei parametri r_k e λ_h secondo quanto stabilito dalla logica di stima descritta nel paragrafo precedente. I nuovi valori dei parametri sono i seguenti

4.16. I parametri r_k

r_0	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	<i>r</i> ₁₀	r_{11}
0,3888	0,3621	0,1259	0,0505	0,0244	0,0162	0,0099	0,0073	0,0052	0,0036	0,0021	0,0041

4.17. I parametri λ_h

λ_{1993}	λ_{1994}	λ_{1995}	λ_{1996}	λ_{1997}	λ_{1998}	λ_{1999}	λ_{2000}	λ_{2001}	λ_{2002}	λ_{2003}	λ_{2004}
0	0	0	0	1,9934	2,1560	2,1745	2,2289	2,4860	2,8581	2,9837	3,1293

Si osserva che di fatto, rispetto al caso classico, sono cambiati soltanto alcuni dei coefficienti r_k , infatti, i parametri λ_h sono invariati salvo che per i primi anni in cui valgono zero. Utilizzando la stessa funzione interpolante $\lambda_x = \alpha \beta^x$ si stimano dei coefficienti di valore inferiore. Infatti, i dati della tabella 4.18. sono minori degli stessi presenti in tabella 3.2.4.

4.18. I parametri $\widehat{\lambda}_{i+j}$

λ_{2005}	λ_{2006}	λ_{2007}	λ_{2008}	λ_{2009}	λ_{2010}	λ_{2011}	λ_{2012}	λ_{2013}	λ_{2014}	λ_{2015}	λ_{2016}
3,3529	3,5888	3,8413	4,1115	4,4007	4,7103	5,0417	5,3964	5,7760	6,1823	6,6172	7,0827

Di conseguenza anche i pagamenti futuri saranno di importo inferiore. E' bene sottolineare che r_1 e r_2 sono più piccoli degli originali, invece r_0 e r_3 sono più elevati, ma, nonostante le differenze siano piuttosto irrilevanti, si determina comunque un run-off con risarcimenti decisamente più modesti

4.19. Pagamenti incrementali futuri in Euro.000

Gen	Ant.										
Gen	1	2	3	4	5	6	7	8	9	10	11
1993											
1994											789
1995										413	857
1996									707	438	910
1997								1.007	751	465	966
1998							1.455	1.114	831	515	1.069
1999						1.957	1.531	1.173	875	542	1.126
2000					2.966	1.952	1.527	1.170	873	541	1.123
2001				4.070	2.888	1.901	1.487	1.139	850	527	1.093
2002			8.112	4.187	2.972	1.956	1.530	1.172	874	542	1.125
2003		20.894	8.975	4.633	3.288	2.164	1.693	1.297	967	599	1.245
2004	59.425	22.109	9.496	4.902	3.479	2.290	1.792	1.372	1.024	634	1.317

Avere dei pagamenti incrementali minori determina un accantonamento minore, sia a livello generazionale che complessivo

4.20. Riserve residue per generazione (importi in Euro.000)

1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
1.068	1.948	2.527	3.390	4.607	6.553	8.856	11.798	15.561	24.121	47.581	109.772	237.782

E' inoltre possibile calcolare i futuri valori di $\widehat{\lambda}_{i+j}$ senza far ricorso alla funzione interpolante. Inizialmente è necessario definire i rapporti tra λ_{h+1} e λ_h per capire quale sia il range di variazione e successivamente considerare il valore medio di tale intervallo al fine di definire i successivi parametri $\widehat{\lambda}_{i+j}$. Le suddivisioni tra tutti i coefficienti calcolabili con i dati a disposizione hanno delimitato una percentuale dell'8,55%, che determina l'incremento nel passare da un valore di $\widehat{\lambda}_{i+j}$ al suo successivo. I valori dei nuovi parametri sono inferiori rispetto agli stessi calcolati con l'impiego della funzione interpolante come mostra la tabella successiva

4.21. I parametri $\widehat{\lambda}_{i+j}$

λ_{2005}	λ_{2006}	λ_{2007}	λ_{2008}	λ_{2009}	λ_{2010}	λ_{2011}	λ_{2012}	λ_{2013}	λ_{2014}	λ_{2015}	λ_{2016}
3,3970	3,6875	4,0029	4,3453	4,7169	5,1204	5,5583	6,0337	6,5498	7,1100	7,7181	8,3782

I risarcimenti richiesti alla compagnia per liquidare i sinistri di ogni generazione sono i seguenti

4.22 Pagamenti incrementali futuri in Euro.000

Com	Ant.										
Gen	1	2	3	4	5	6	7	8	9	10	11
1993											
1994											800
1995										418	880
1996									716	450	948
1997								1.020	772	485	1.021
1998							1.474	1.145	866	544	1.146
1999						1.983	1.573	1.222	925	581	1.224
2000					3.004	2.005	1.591	1.236	935	588	1.238
2001				4.123	2.968	1.981	1.572	1.221	924	581	1.223
2002			8.199	4.302	3.097	2.067	1.640	1.274	964	606	1.276
2003		21.215	9.200	4.828	3.475	2.319	1.841	1.430	1.082	680	1.431
2004	60.398	22.767	9.873	5.181	3.729	2.489	1.975	1.534	1.161	729	1.536

Anche in questa particolare circostanza è richiesto alla compagnia un accantonamento inferiore rispetto al caso iniziale presentato nel paragrafo precedente

4.23. Riserve residue per generazione (importi in Euro.000)

	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
]	1.068	1.975	2.592	3.508	4.797	6.858	9.306	12.417	16.389	25.300	49.603	113.629	247.440

Grafico 14. Sensitivity Analysis del Metodo della separazione aritmetica di Taylor

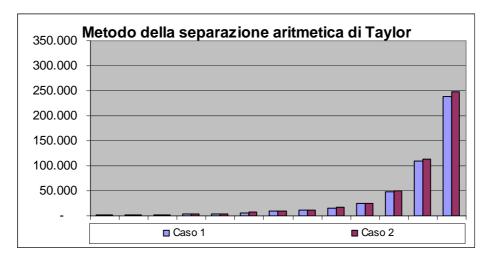
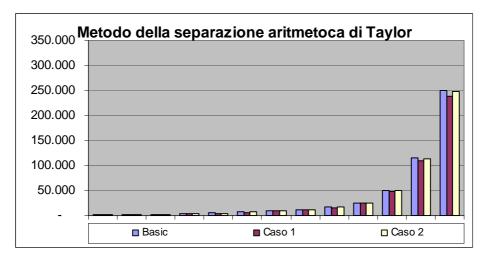



Grafico 13. Sensitivity Analysis del Metodo della separazione aritmetica di Taylor incluso il metodo della separazione aritmetica di Taylor Basic

Anche per questa analisi si può graficamente notare che esistono delle differenze tra le stime ottenute nei tre modi di calcolo della riserva sinistri. Ma sembra di osservare che le previsioni siano tra di loro più congrue rispetto a quanto ottenuto per il metodo chain ladder o per il metodo Fisher-Lange.

CAPITOLO TRE

I metodi stocastici

1. Un passaggio graduale dai metodi deterministici ai metodi stocastici

I metodi stocastici per la stima della riserva sinistri presentano ancora un impiego piuttosto limitato. Le ragioni sono molteplici: una difficoltà generale nel capire tali metodi, l'assenza di flessibilità, l'assenza di software adatti, e così via. Tuttavia, la ragione principale è probabilmente non sentire la necessità di utilizzare i metodi stocastici quando i metodi tradizionali sono sufficienti per la best estimate della riserva dei sinistri non ancora chiusi. I nuovi principi contabili IAS prevedono che le passività di una compagnia di assicurazioni vengano calcolate come il fair value delle stesse. Poiché non esiste il mercato dei sinistri, le imprese che esercitano il ramo danni devono procedere ad una stima delle loro passività che sia *market consistent valuation*. Infatti, nei tempi più recenti è cresciuto l'interesse verso la coda della distribuzione della riserva sinistri, introducendo la misura del risk margin, funzione della volatilità della distribuzione di probabilità, in aggiunta alla best estimate come stima della riserva stessa. A tal proposito è necessario essere in grado di valutare la variabilità della riserva sinistri e, soprattutto, riuscire a definire la distribuzione completa dei risultati dalla quale è possibile calcolare i percentili o anche altre statistiche della distribuzione in esame.

I metodi stocastici permettono di calcolare queste misure di variabilità, e in questo presentano una potenza informativa migliore rispetto alle tecniche tradizionali.

L'obiettivo è cercare degli strumenti che diano informazioni migliori, da qui nasce l'esigenza di considerare congiuntamente i metodi stocastici e deterministici in modo da ottenere una stima della riserva sinistri che, seppur incognita, si avvicini al vero costo che l'impresa sosterrà per chiudere determinati sinistri. Non deve comunque mai essere sottovalutata l'importanza dei dati di input e la scelta dei parametri da cui derivano le

differenti stime, ossia, un errore negli elementi iniziali può compromettere il risultato finale.

Nonostante si presentino in una forma più estesa dei metodi classici, esistono dei casi in cui non è possibile procedere con una stima stocastica della riserva sinistri.

L'utilità dei metodi stocastici è che in molte circostanze possono fornire più informazioni che potrebbero essere utili nel processo di stima della riserva sinistri e per l'intero management della compagnia.

Il chain ladder è una tecnica di stima che si serve di dati cumulati dai quali deriva un insieme di fattori di sviluppo o link ratios. Quando si utilizzano i metodi stocastici è irrilevante sapere se si fa uso di dati cumulati o incrementali al fine della stima della riserva sinistri.

Un criterio scelto per passare dai metodi deterministici ai metodi stocastici potrebbe essere quello di ricercare un metodo che restituisca le stesse stime del chain ladder.

Uno dei più importanti studiosi ad occuparsi delle possibili metodologie stocastiche per la stima della riserva sinistri è stato, e continua ad essere, Thomas Mack che già a partire dal 1991 cercò di capire quale fosse la distribuzione di probabilità sottostante il chain ladder. Dopo di lui molti hanno cercato di definire dei modelli stocastici, anche se l'interesse comune era quello di definire non tanto dei modelli stocastici quanto piuttosto una distribuzione di probabilità completa della riserva sinistri da cui poter trarre le principali statistiche. Infatti, l'obiettivo principale dei metodi stocastici non è di fornire delle previsioni circa il possibile valore da accantonare, soprattutto quando si ricerca un procedimento che dia esattamente gli stessi valori di un metodo non stocastico come potrebbe essere il chain ladder, quanto piuttosto avere delle misure di variabilità delle stime della riserva sinistri.

Molti hanno proposto un'estensione del chain ladder attraverso l'impiego dei modelli lineari generalizzati (GLM, dall'inglese Generalized Linear Model). In questa sede non verranno presentati tali criteri, piuttosto si farà riferimento ad un secondo procedimento possibile per ottenere delle misure di variabilità, la tecnica del Bootstrapping applicata anche a triangoli di run-off che prevedono che i pagamenti futuri si distribuiscano secondo una Normale o una LogNormale.

Prima di procedere con questa tecnica di simulazione sembrerebbe necessario dare una definizione delle misure di variabilità che interessano l'attuario nell'ambito della stima della riserva sinistri. Come già affermato in precedenza, un vantaggio fondamentale dei modelli stocastici in esame è la disponibilità di misure di precisione delle stime della

riserva, e in relazione a ciò, l'attenzione è focalizzata sulla radice quadrata dell'errore quadratico medio di predizione, conosciuto meglio come prediction error.

Nel seguente paragrafo si fornirà la definizione di prediction error e la differenza che intercorre tra quest'ultimo e lo standard error⁷⁵.

2. Il prediction error e lo standard error

La stima della riserva sinistri è un processo predittivo in quanto dai dati a disposizione si cerca di predire gli importi futuri da risarcire.

Nell'ambito della variabilità l'interesse principale è centrato sulla radice dell'errore quadratico medio di previsione (RMSEP, dall'inglese Root Mean Squared Error of Prediction), conosciuto meglio come *prediction error*.

E' importante capire la differenza tra standard error e prediction error.

Lo standard error è la radice quadrata della varianza di stima. Il prediction error ha attinenza con la variabilità di una previsione, prendendo in considerazione l'incertezza nella stima dei parametri e la variabilità inerente ai dati che sono anch'essi frutto di previsione. Se si riesce a trovare l'intera distribuzione di probabilità, la radice dell'errore quadratico medio di previsione può essere ottenuto direttamente calcolando la sua deviazione standard. Il prediction error è influenzato dalle assunzioni sottostanti al modello.

Si consideri una variabile casuale \widetilde{X} e un suo valore previsto \widehat{X} . L'errore quadratico medio di previsione è dato da

$$E\left|\left(\widetilde{X} - \widehat{X}\right)^{2}\right| = E\left|\left(\left(\widetilde{X} - E\left[\widetilde{X}\right]\right) - \left(\widehat{X} - E\left[\widetilde{X}\right]\right)\right)^{2}\right| \tag{1}$$

Sostituendo \widetilde{X} con \widehat{X} nell'ultimo valore atteso e sviluppando il quadrato si ha

$$E\left|\left(\widetilde{X} - \widehat{X}\right)^{2}\right| \approx E\left|\left(\widetilde{X} - E\left[\widetilde{X}\right]\right)^{2}\right| - 2E\left[\left(\widetilde{X} - E\left[\widetilde{X}\right]\right)\left(\widehat{X} - E\left[\widehat{X}\right]\right)\right| + E\left|\left(\widehat{X} - E\left[\widehat{X}\right]\right)^{2}\right|$$
 (1 bis)

Sotto l'assunzione che le osservazioni future siano indipendenti dalle osservazioni passate si ottiene

$$E\left[\left(\widetilde{X} - \widehat{X}\right)^{2}\right] \approx E\left[\left(\widetilde{X} - E\left[\widetilde{X}\right]\right)^{2}\right] + E\left[\left(\widehat{X} - E\left[\widehat{X}\right]\right)^{2}\right]$$
(1 ter)

che a parole è

Varianza di previsione = Varianza del processo + Varianza della stima.

-

⁷⁵ Secondo l'impostazione di England e Verrall.

La varianza del processo $E\left[\left(\widetilde{X}-E\left[\widetilde{X}\right]\right)^2\right]$ è variabilità presente nei dati iniziali da cui si ricavano le future valutazioni. La varianza della stima $E\left[\left(\widetilde{X}-E\left[\widetilde{X}\right]\right)^2\right]$, come è ovvio attendersi, è la variabilità dovuta alla stima e la sua radice quadrata è lo standard error. Dall'ultima relazione si ricava che la varianza di previsione altro non è che l'errore quadratico medio di previsione (MSEP, dall'inglese Mean Squared Error of Prediction), e il prediction error è la radice quadrata della varianza di previsione⁷⁶.

2.1. La versione stocastica del chain ladder

Il metodo chain ladder è probabilmente il più utilizzato per la stima della riserva dei sinistri non ancora pagati e degli IBNR. Il principale motivo di un così ampio impiego è la sua semplicità e il fatto che non ha alcuna distribuzione, cioè sembra che non si basi su alcune assunzioni. In realtà non è così. Infatti, il chain ladder con le sue assunzioni implicite ha delle implicazioni che permettono di misurare la variabilità delle stime della riserva sinistri.

Con l'aiuto di questa statistica è possibile costruire un intervallo di confidenza per l'ammontare ultimo stimato dei sinistri e per le riserve stimate. Un simile intervallo di confidenza è di grande interesse per gli analisti poiché la stima puntuale del valore ultimo del risarcimento può non essere una previsione esatta e pertanto l'intervallo di confidenza ha un valore informativo maggiore. Se poi si considera C_{ij} come una variabile aleatoria continua, la probabilità che C_{ij} sia uguale al valore fornito dal suo stimatore è nulla. Inoltre, un intervallo di confidenza permette l'inclusione della politica di business all'interno del processo di stima della riserva usando una specifica probabilità di confidenza.

Solitamente i fattori di sviluppo individuali osservati, $\frac{C_{i,j+1}}{C_{ij}}$ con $i \leq I - j^{77}$, differiscono da un anno all'altro e dal fattore di proporzionalità f_{j+1} . Questo significa che ogni incremento da C_{ij} a $C_{i,j+1}$ è considerato un disturbo casuale dell'incremento atteso da C_{ij}

-

⁷⁶ Il prediction error si presenta dunque come un momento del secondo ordine dell'intera distribuzione dei possibili risultati.

⁷⁷ Avendo indicato con I l'anno di accadimento più recente.

a $C_{ij}f_{j+1}$, dove f_{j+1} è il vero ma ignoto fattore di incremento che risulta uguale per tutte le generazioni ed è determinato tramite i rapporti⁷⁸ dei dati disponibili.

Il metodo chain ladder assume l'esistenza di fattori indipendenti dal periodo di origine dei sinistri, f_1 ,......, f_I , tali che, dati i valori C_{i0} ,....... C_{ik} , la realizzazione di $C_{i,k+1}$ è prossima a $C_{ik}f_{k+1}$. Quest'ultimo valore, da un punto di vista statistico, è il valore atteso condizionato di $C_{i,k+1}$. Infatti si ha $E[C_{i,k+1} | C_{i0},...C_{ik}] = C_{ik}f_{k+1}$, con 0 < i < I e 0 < k < I - i. Da ciò è facile dimostrare l'assunzione implicita del chain ladder e, considerando l'equazione base del metodo $C_{iI} = C_{i,I-i+1}f_{I-i+1} \cdot \cdot f_I$, dimostrare il duplice aspetto dell'assunzione implicita. Il primo accorgimento è che l'equazione base usa gli stessi coefficienti di proporzionalità per differenti anni di accadimento i = I + 1 - k,....I, pertanto, la media condizionata postula dei parametri f_k che sono uguali per tutte le generazioni. Il secondo appunto è che l'equazione base del metodo usa solo i più recenti valori osservati come base per le proiezioni dei valori ultimi ignorando del tutto i pagamenti cumulati C_{i0} ,....., $C_{i,I-i}$ degli anni precedenti e l'eventualità che $C_{i,I-i+1}$ potrebbe deviare sostanzialmente dal suo valore atteso.

Si noti che sarebbe comunque possibile proiettare anche gli ultimi importi $C_{i0},.....,C_{i,I-i}$ dei primi anni di differimento con l'aiuto dei parametri $f_1,.....,f_I$ e combinare tutti questi importi proiettati insieme con $C_{i,I-i+1}f_{I-i+1}\cdot...\cdot f_I$ all'interno di uno stimatore comune per C_{il} . Inoltre, sarebbe semplice anche impiegare i valori $C_{j,I-i+1}$ delle generazioni più anziane j < i come stimatori addizionali per $E(C_{i,I-i+1})$ traslandoli dentro il periodo di origine i con l'ausilio di una misura del volume per ogni anno di accadimento. Queste possibilità sono ignorate dal chain ladder che fa uso soltanto di $C_{i,I-i+1}$ come base delle proiezioni. Questo significa che il chain ladder deve implicitamente utilizzare un'assunzione che afferma che l'informazione contenuta in $C_{i,I-i+1}$ non può essere migliorata aggiungendo l'impiego di $C_{i0},.....,C_{i,I-i}$ o di $C_{1,I-i+1},.....,C_{i-I,I-i+1}$. Tutto ha un riflesso diretto nel valore atteso condizionato riportato sopra.

⁷⁸ Si riveda la formula (1) del capitolo precedente.

126

L'equazione $E[C_{i,k+1} \mid C_{i0},...C_{ik}] = C_{ik} f_{k+1}^{79}$ può essere riscritta nel seguente modo $E\Big[\frac{C_{i,k+1}}{C_{ik}} \mid C_{i0},...C_{ik}\Big] = f_{k+1}$, in cui si mette in risalto che il valore atteso del fattore di sviluppo individuale $\frac{C_{i,k+1}}{C_{ik}}$ è uguale a f_{k+1} , risultato a cui si perviene non considerando né lo sviluppo precedente degli importi cumulati $C_{i0},....,C_{ik}$, né, in particolar modo, il precedente fattore di sviluppo $\frac{C_{i,k}}{C_{i,k-1}}$. Quanto appena detto implica che due successivi

rapporti $\frac{C_{i,k}}{C_{i,k-1}}$ e $\frac{C_{i,k+1}}{C_{ik}}$ sono incorrelati. In altre parole, dopo un valore piuttosto alto di

$$\frac{C_{i,k}}{C_{i,k-1}}$$
 la dimensione attesa del successivo rapporto $\frac{C_{i,k+1}}{C_{ik}}$ è la medesima se $\frac{C_{i,k}}{C_{i,k-1}}$ fosse

basso. A questo riguardo Mack consiglia di non applicare il metodo chain ladder ad un business in cui si osserva un incremento piuttosto piccolo per $\frac{C_{i,k+1}}{C_{ik}}$ se $\frac{C_{i,k}}{C_{i,k-1}}$ è più elevato

che nella gran parte degli altri anni di accadimento, e viceversa.

Si sa bene che il metodo chain ladder prospetta delle stime per la riserva sinistri che per le generazioni più recenti sono molto sensibili a variazioni nei dati osservati. Nel tempo sono state proposte molte altre procedure di valutazione della riserva sinistri e i risultati di queste procedure variano ampiamente e inoltre differiscono più o meno dal risultato del chain ladder. Pertanto sarebbe davvero molto utile conoscere lo standard error delle stime del chain ladder come una misura dell'incertezza contenuta nei dati e allo scopo di vedere se la differenza tra i risultati del chain ladder e di un qualunque altro metodo è significativa o meno.

Poiché l'algoritmo del chain ladder non prende in considerazione alcuna dipendenza tra i periodi di origine, si può assumere che le variabili C_{ik} di differenti generazioni $\{C_{i0},....,C_{il}\}$ e $\{C_{j0},....,C_{jl}\}$ con $i \neq j$ siano indipendenti. Quanto appena detto può essere considerato come un'ulteriore implicita assunzione del metodo chain ladder. In realtà, l'indipendenza degli anni di accadimento può essere distorta da certi effetti da anno di calendario come per esempio cambiamenti nel management dei sinistri o nella politica di riservazione.

-

⁷⁹ Questa equazione riproduce esattamente le stesse riserve se si calcolano i link ratios nel modo usuale del basic chain ladder.

Il chain ladder permette di calcolare il costo ultimo della generazione o lo sviluppo dei pagamenti in base ai dati che vengono impiegati. Tuttavia, restituisce delle stime puntuali e non una distribuzione di probabilità. Da un punto di vista statistico, data una stima puntuale, il passo successivo consiste nello sviluppare stime della probabile variabilità nei risultati. La misura di variabilità comunemente utilizzata è il prediction error, definito come la deviazione standard della distribuzione dei possibili risultati della riserva. Sarebbe desiderabile prendere in considerazione anche altri fattori, come il verificarsi di eventi imprevisti che possono aggiungere ulteriore incertezza, ma che nello stesso tempo sono difficili da modellizzare.

Per prima cosa è necessario formulare un modello statistico sottostante facendo assunzioni sui dati se si vuole ottenere il prediction error. Se l'obiettivo è di fornire un modello stocastico che sia analogo alla tecnica del chain ladder, allora un primo ovvio requisito da richiedere è che i valori stimati siano gli stessi di quelli del chain ladder. Esistono due modi in cui si può procedere, specificando le distribuzioni per i dati oppure specificando soltanto i primi due momenti della distribuzione. Tra le possibili distribuzioni di probabilità che riproducono gli stessi valori del basic chain ladder ci sono la Over-Dispersed Poisson, la Negative Binomial e la Normal Approximation to the Negative Binomial. Le differenze tra le suddette distribuzioni sono per lo più di implementazione.

Una trattazione approfondita delle tre distribuzioni menzionate esula dagli scopi del presente lavoro, tuttavia si vogliono descrivere le ipotesi e in cosa differiscono rispetto al chain ladder classico.

La Over-Dispersed Poisson differisce dalla Poisson in quanto la varianza non è uguale ma proporzionale alla media, maggiore o minore in base al valore del parametro ϕ . Nell'ambito della stima della riserva sinistri, tale approccio prevede che i pagamenti incrementali P_{ij} siano distribuiti secondo variabili casuali indipendenti con distribuzione data dalla Over-Dispersed Poisson aventi come primi due momenti della distribuzione $E[P_{ij}] = m_{ij} = x_i y_j$ e $Var[P_{ij}] = \phi \cdot x_i y_j$, dove $\sum_{k=1}^n y_k = 1$. Esiste un'analogia tra il chain

ladder classico e il modello Over-Dispersed Poisson. Verrall⁸⁰ ha dimostrato che

$$\widehat{\lambda}_j = \frac{\sum_{k=1}^{j+1} \widehat{y}_k}{\sum_{k=1}^{j} \widehat{y}_k}, \text{ dove } \widehat{\lambda}_j \text{ è lo stimatore di massima verosimiglianza dei fattori di sviluppo del}$$

_

⁸⁰ Nel lavoro del 2000 "An investigation into stochastic claims reserving models and the chain ladder technique" citato in bibliografia.

chain ladder e \hat{y}_j sono le stime di massima verosimiglianza dei parametri di colonna. Infatti, x_i è l'ammontare ultimo⁸¹ atteso per ogni anno di origine e \hat{y}_j è la proporzione del costo ultimo che emerge in ogni anno di sviluppo e come tale deve avere un valore positivo, questo è un limite dell'approccio in esame. Il parametro ϕ è incognito e deve essere stimato dai dati. Una caratteristica della Over-Dispersed Poisson è che non influenza le stime dei parametri, x_i e y_j , ma accresce il loro standard error. Nonostante sia stato presentato come una variante della distribuzione di Poisson, tale approccio può comunque essere applicato qualora si disponga di numeri (valori) non interi, siano essi negativi o positivi, in circostanze simili si farà ricorso alla quasi verosimiglianza. L'assunzione cruciale del modello è che la varianza è stata posta proporzionale alla media e può essere applicato a elementi non necessariamente interi positivi. E' stato dimostrato inizialmente da England e Verrall⁸² e succesivamnete ripreso da De Felice e Moriconi⁸³ che il modello della Over-Dispersed Poisson restituisce esattamente gli stessi valori ottenuti con il metodo classico del chain ladder.

Il modello della Binomiale Negativa ha una qualche relazione con la Over-Dispersed Poisson. La Negative Binomial può essere applicata ai pagamenti incrementali o cumulati. Nel caso di importi incrementali P_{ij} si ha $E[P_{ij}] = (\lambda_j - 1)C_{i,j-1}$ e $Var[P_{ij}] = \phi \lambda_j (\lambda_j - 1)C_{i,j-1}$. Posto che vale $C_{ij} = C_{i,j-1} + P_{ij}$ è facile ottenere la media e la varianza per gli importi cumulati C_{ij} , $E[C_{ij}] = \lambda_j C_{i,j-1}$ e $Var[C_{ij}] = \phi \lambda_j (\lambda_j - 1)C_{i,j-1}^{84}$. Il significato di λ_j è analogo al link ratio standard del chain ladder. Poiché anche la Negative Binomial è una variante della Poisson, le distribuzioni predittive sono essenzialmente le stesse così come anche i valori previsti.

Si noti che se λ_j < 1⁸⁵, la Binomiale Negativa presume una varianza negativa e il modello non può essere più impiegato ai fini della stima della riserva sinistri. Per superare questo inconveniente è possibile sostituire la Negative Binomial con la Normal Approximation to the Negative Binomial la cui media rimane invariata e la varianza viene modificata per tener conto della possibilità che si verifichi il caso λ_j < 1. I pagamenti P_{ij} sono distribuiti

⁸¹ Con il termine ultimo si intende il valore corrispondente all'ultimo anno di differimento previsto nel triangolo di run-off.

⁸² Nell'articolo "A flexible framework for stochastic claims reserving" citato in bibliografia.

⁸³ Nel loro lavoro del 2003 "Risk based capital in P&C loss reserving or stressing the triangle".

 $^{^{84}}$ L'incognito parametro ϕ rende alla distribuzione una dispersione maggiore.

 $^{^{85}}$ Questa disuguaglianza implica che la somma dei pagamenti incrementali nella j-esima colonna è negativa.

approssimativamente secondo una Normale se hanno media pari a $(\lambda_j - 1)C_{ij}$ e varianza $\phi_j C_{i,j-1}$ in cui, a differenza delle altre due distribuzioni, il parametro ϕ dipende dall'antidurata. In modo analogo si ottiene $E[C_{ij}] = \lambda_j C_{i,j-1}$ e $E[C_{ij}] = \phi_j C_{i,j-1}$. England e Verrall suggeriscono di utilizzare la procedura del "joint modelling" per dare un valore al parametro ϕ^{86} . Sia il modello della Negative Binomial che della Normal Approximation to the Negative Binomial sono modelli ricorsivi, pertanto nel calcolare la verosimiglianza è necessario porre i dati in un certo ordine.

Allo scopo di trovare un modello stocastico sottostante il metodo chain ladder è necessario riscrivere l'equazione $\widehat{C}_{i,k} = C_{i,I-i+1}\widehat{f}_{I-i+1} \cdot ... \cdot \widehat{f}_k$ in termini stocastici, ossia $\widehat{C}_{i,k+1} = \widehat{C}_{i,k} \cdot \widehat{f}_{k+1}$, per k > I+1-i. Il modello stocastico è $E[C_{i,k+1}] = E[C_{i,k}] \cdot f_{k+1}$ per $1 \le k \le I-1$, in cui tutti i valori $C_{i,k}$ sono considerate delle variabili casuali e $f_1,...,f_I$ sono parametri ignoti da stimare. Con riferimento agli importi incrementali $S_{i,k} = C_{i,k} - C_{i,k-1}$ è possibile dimostrare che $E[C_{i,k+1}] = E[C_{i,k}] \cdot f_{k+1}$ è equivalente a $E[S_{i,k}] = x_i \cdot y_k$, con $\sum_{k=1}^n y_k = 1$. Entrambi i parametri x_i e y_k non sono noti. Un modo per rendere stocastico il modello $E[S_{i,k}] = x_i \cdot y_k$ è di supporre che le variabili casuali $S_{i,k}$ seguano una delle seguenti possibili distribuzioni di probabilità

- Normale $(x_i \cdot y_k, \sigma^2)$
- Esponenziale $\left(\frac{1}{x_i \cdot y_k}\right)$
- $LogNormale(x_i + y_k, \sigma^2)$

In realtà la possibile scelta per rendere stocastico il modello $E[S_{i,k}] = x_i \cdot y_k$ non si limita alle sole distribuzioni qui presentate.

Come è noto, l'accantonamento per il pagamento futuro dei sinistri è una variabile che presenta un'asimmetria positiva con una coda più pronunciata verso destra, quindi la prima distribuzione non è indicata per il tipo di dati in esame. Dalle rimanti due distribuzioni si evince che tutte le realizzazioni della variabile \widetilde{S} devono essere positive. E' probabile avere dei valori negativi nel run-off iniziale se le compagnie di assicurazione ottengono un recupero sugli esborsi sostenuti in precedenza. Il recupero può essere dovuto dalla

-

⁸⁶ Per ulteriori approfondimenti si rimanda al lavoro di England e Verrall del 2002 citato in bibliografia.

presenza di un massimale o di una franchigia. Lo stesso ragionamento può essere condotto anche per le società che esercitano il lavoro indiretto. In realtà è molto raro trovare degli importi non positivi nel triangolo dei sinistri pagati, pertanto questa critica può essere facilmente superata.

Le tre tipologie di distribuzione forniscono degli stimatori diversi per i parametri x_i e y_k , dunque si otterranno differenti valori da accantonare che differiranno a loro volta anche dalla stima ottenuta dal basic chain ladder.

Mack ha dimostrato che il modello stocastico sottostante il chain ladder è proprio dato $\mbox{dall'equazione} \quad E \Big[C_{i,k+1} \mid C_{i,0}, ..., C_{i,k} \, \Big] = C_{i,k} \cdot f_{k+1} \quad \mbox{per} \quad 0 \leq i \leq I \quad \mbox{e} \quad 0 \leq k \leq I-i \; . \quad \mbox{Questo}$ modello richiede di stimare soltanto n-1 parametri contro i 2n parametri relativi alla distribuzione LogNormale, e quindi si rivela un metodo più robusto del modello LogNormale⁸⁷.

2.2. Il Mean Squared Error of Prediction per il chain ladder

Mack ha proposto una formula per il calcolo dello standard error nell'articolo "Distribution-free calculation of the standard error of chain-ladder reserve estimates" e in questo paragrafo si seguirà la stessa impostazione.

L'autore sottolinea che nella relazione dello standard error a cui è pervenuto, è inclusa anche la varianza del processo perché la riserva sinistri è una variabile casuale e non un parametro⁸⁸.

Si indichi con $D = \{C_{ii} \mid i+j \le I\}$ l'insieme di tutti i dati osservati fino alla data di valutazione. L'errore quadratico medio di previsione per l'ultimo importo cumulato C_{il} è dato da

$$mse(\widehat{C}_{il}) = Var(\widehat{C}_{il} \mid D) + (E(C_{il} \mid D) - \widehat{C}_{il})^{2}$$
(2)

dove \hat{C}_{ij} indica il valore previsto come ultimo risarcimento cumulato.

Dunque il mean squared error è la somma dell'errore stocastico, ossia della varianza del processo, e dell'errore di stima.

⁸⁷ Si può trovare una prova di quanto detto nell'articolo di Mack dal titolo "Which stochastic model is underlying the chain ladder method?".

⁸⁸ A differenza della stima dei premi in cui si fa ricorso all'expected value.

L'errore quadratico medio consente di verificare quanto la previsione su C_{il} sia distante dalla sua realizzazione.

Mack suggerisce l'utilizzo della media condizionata per calcolare il mean squared error del costo ultimo e della riserva sinistri perché nella pratica ricopre un interesse maggiore, e risulta più utile calcolare la misura in questione su un insieme di dati osservati.

La radice quadrata dello MSEP è lo standard error della stessa variabile⁸⁹. Per quanto attiene l'ultimo importo cumulato C_{il} si ha

$$s.e.(\widehat{C}_{il}) = \sqrt{mse(\widehat{C}_{il})} = \sqrt{Var(\widehat{C}_{il} \mid D) + (E(C_{il} \mid D) - \widehat{C}_{il})^2}$$
(3)

Allo stesso modo è possibile calcolare lo standard error della i-esima riserva sinistri. Indicando con \widehat{C}_{ii} la stima del costo ultimo cumulato della i-esima generazione, la stima della relativa riserva è pari a \widehat{R}_i e il suo standard error è esattamente uguale a quello di \widehat{C}_{ii} , cioè in formule vale la seguente relazione

$$s.e.(\widehat{C}_{iI}) = s.e.(\widehat{R}_{i}). \tag{4}$$

Thomas Mack^{90} ha derivato la formula dello standard error per l'ultimo importo cumulato \widehat{C}_{il} , perfezionata e semplificata nel modo seguente

$$(s.e.(\widehat{C}_{iI}))^2 = \widehat{C}_{iI} \cdot \sum_{k=n+1-i}^{n-1} \frac{\widehat{\sigma}_k^2}{\widehat{f}_k^2} \cdot \left(\frac{1}{\widehat{C}_{ik}} + \frac{1}{\sum_{j=1}^{I-k} C_{jk}} \right)$$
 (5)

dove, \hat{f}_k è lo stimatore del k – esimo fattore di sviluppo calcolato per k = 1,...,I – 1, e $\hat{\sigma}_k^2$ è un parametro che ha per stimatore

$$\widehat{\sigma}_k^2 = \frac{1}{I - k - 1} \cdot \sum_{i=1}^{I - k} C_{ik} \cdot \left(\frac{C_{i,k+1}}{C_{ik}} - \widehat{f}_k \right)^2 \tag{6}$$

calcolabile per k=1,...,I-2. Per ottenere il valore di $\hat{\sigma}_{I-1}^2$ si fa ricorso alla relazione secondo la quale vale $\frac{\hat{\sigma}_{I-3}}{\hat{\sigma}_{I-2}} = \frac{\hat{\sigma}_{I-2}}{\hat{\sigma}_{I-1}}$, in tal modo una plausibile stima è

$$\widehat{\sigma}_{I-1}^2 = \min \left(\frac{\widehat{\sigma}_{I-2}^4}{\widehat{\sigma}_{I-3}^2}, \min \left(\widehat{\sigma}_{I-3}^2, \widehat{\sigma}_{I-2}^2 \right) \right) \tag{7}$$

⁹⁰ Per la descrizione di tutti i passaggi si rimanda all'articolo "The standard error of chain-ladder reserve estimates: recursive calculation and inclusion of a tail factor" citato in bibliografia.

132

⁸⁹ Questa affermazione sembra contraddire con quanto detto prima, in realtà molti autori utilizzano il termine *standard error* o *prediction error* in modo indifferente.

Nell'esempio numerico è stata impiegata la formula precedente per calcolare $\hat{\sigma}_{I-1}^2$, invece si è estrapolato il valore di $\hat{\sigma}_I^2$ attraverso una regressione esponenziale.

Per ottenere lo standard error della stima complessiva della riserva sinistri non è sufficiente sommare le relative misure per tutte le riserve generazionali in quanto non vale $s.e.(\widehat{R}) = \sum_{i=0}^{I} s.e.(\widehat{R}_i)$ perché esistono delle correlazioni per via degli stimatori comuni \widehat{f}_k e $\widehat{\sigma}_k$. Per la riserva sinistri vale⁹¹

$$(s.e.(\widehat{R}))^{2} = \sum_{i=0}^{I} \left\{ (s.e.(\widehat{R}_{i}))^{2} + \widehat{C}_{iI} \cdot \left(\sum_{j=i+1}^{I} \widehat{C}_{jI} \right) \cdot \sum_{k=I-i+1}^{I-1} \frac{2\widehat{\sigma}_{k}^{2} / \widehat{f}_{k}^{2}}{\sum_{n=1}^{I-k} C_{nk}} \right\}.$$
 (8)

La distribuzione di probabilità predittiva permetterebbe di ricavare lo standard error come deviazione standard oltrepassando i problemi che si potrebbero incontrare nelle formule proposte da Mack. Citare

La riserva sinistri per ogni periodo di origine presenta una distribuzione asimmetrica, pertanto non si può ipotizzare che le stesse riserve seguano una distribuzione Normale; sarebbe più ragionevole lavorare con una LogNormale. Nei suoi lavori iniziali Thomas Mack aveva ipotizzato una distribuzione LogNormale delle riserve residue e ancora prima aveva proposto un modello parametrico in cui ogni singolo sinistro si distribuiva secondo una Gamma. In entrambi i lavori le supposte distribuzioni dovevano servire per calcolare lo standard error della riserva sinistri. In seguito ha proposto un modello senza distribuzione di probabilità per calcolare lo standard error delle stime della riserva sinistri ottenute tramite il chain ladder.

3. La tecnica del Bootstrapping

Il prediction error è utile per misurare la precisione di una stima della riserva sinistri, che a sua volta è efficace nel definire la somma prudente da accantonare. Per esempio Wright suggerisce di aggiungere un multiplo del prediction error alla best estimate per avere una valutazione prudente della riserva sinistri.

_

⁹¹ Per la dimostrazione dettagliata si rimanda all'articolo di Mack "*Measuring the variability of chain ladder reserve estimates*" menzionato in bibliografia.

Storicamente la variabilità della stima è stata determinata facendo ricorso all'errore di predizione poiché è abbastanza difficile procurarsi la distribuzione predittiva delle stime della riserva, ottenuta come somma di variabili casuali, a causa della variabilità dovuta al processo statistico sottostante e della variabilità dovuta alla stima dei parametri. Con l'avvento di computer più potenti e con tecniche di simulazione più robuste, oggi è possibile ottenere una distribuzione simulata di probabilità che permette di ovviare l'inconveniente di dover trattare con formule complicate per il calcolo del prediction error. Il Bootstrapping è una valida tecnica seppur semplice per ottenere informazioni da un singolo campione di dati che sarebbero altrimenti ottenute con l'ausilio di tecniche analitiche. Il bootstrapping fu introdotto nel 1979 come un metodo per calcolare lo standard error del parametro di interesse di cui si intende ottenere la stima avendo a disposizione un campione di dati provenienti da una distribuzione di probabilità non conosciuta. L'obiettivo del bootstrapping è di ottenere la distribuzione di probabilità del campione dei dati. Non si cerca dunque di ridurre l'errore bensì di stimarlo.

La metodologia è incentrata sul campionamento con ripetizione e, a partire da una lista di dati osservati crea un gran numero di campioni di pseudo dati, che sono coerenti con la stessa distribuzione sottostante. Poiché si fa ricorso al campionamento con reinserimento e poiché in ogni campione creato il numero di elementi è uguale a quello dell'insieme originale, i dati originali possono essere presenti più di una volta in ogni campione ottenuto dal bootstrapping o addirittura non essere mai estratti dal campione. Premesso che ci si avvale del bootstrapping quando si vuole definire il valore di una determinata misura di interesse, una volta ottenuto il numero di campioni stabilito a priori, si calcola per ogni campione il valore della misura di interesse. Il campionamento viene ripetuto un numero sufficientemente elevato di volte e per ogni campione si calcola la funzione in questione, così facendo si avrà un numero elevato di possibili valori della misura in esame che possono essere considerati come sue probabili realizzazioni. La distribuzione di probabilità predittiva è determinata tenendo conto di tutte le possibili realizzazioni e le relative frequenze. Questa è l'idea base del bootstrapping.

La procedura del bootstrapping, e in generale i metodi stocastici arricchiscono le informazioni che l'analista ha a disposizione, e sono in grado di fornirgli una distribuzione di probabilità. E' bene sottolineare che si prevede quale possa essere una probabile distribuzione in quanto la vera distribuzione di probabilità della riserva sinistri non si conoscerà mai, e tanto dipende dalle ipotesi iniziali che vengono poste sui dati di input.

Una fase essenziale del bootstrapping è di effettuare il campionamento sui residui. Allo scopo di ottenere dei risultati consistenti è indispensabile che i dati siano considerati come osservazioni di variabili casuali indipendenti e identicamente distribuite. Per i casi che riguardano problemi di regressione⁹², come potrebbe essere il chain ladder sotto l'assunzione che la distribuzione sia la Over-Dispersed Poisson, si assume che i dati siano indipendenti ma non identicamente distribuiti. Per questa ragione il bootstrapping è eseguito sui residui piuttosto che sui dati stessi. I residui, standardizzati infatti, sono approssimativamente indipendenti e identicamente distribuiti, o almeno possono essere resi tali⁹³. Tuttavia nelle comuni applicazioni si è soliti operare il campionamento con reinserimento direttamente dai dati stessi perché si assume che gli stessi siano indipendenti e identicamente distribuiti.

L'applicazione del bootstrapping a distribuzioni asimmetriche rende la procedura più problematica, soprattutto per le code, e inoltre sottostima gli errori. Questo è un po' il limite del bootstrapping.

3.1. Il chain ladder secondo il bootstrapping

L'utilizzo della procedura del bootstrapping per la stima della riserva sinistri secondo il metodo chain ladder presenta una successione ben precisa di fasi che sono esposte di seguito.

Il run-off dei dati storici permette il calcolo dei fattori di sviluppo che applicati ai dati della diagonale consentono di ottenere un nuovo triangolo superiore di importi cumulati. In formule

$$\hat{C}_{ik} = \hat{C}_{i,k+1} f_{k+1}^{-1} \tag{9}$$

sotto l'ipotesi che valga $\hat{C}_{i,I-i} = C_{i,I-i}$.

Dal nuovo e riadattato triangolo dei dati si calcolano per differenza gli importi incrementali \widehat{m}_{ij} . I residui standardizzati di Pearson per il run-off del passato sono determinati usando la relazione seguente

$$r_{ij}^{(P)} = \frac{P_{ij} - \hat{m}_{ij}}{\sqrt{\hat{m}_{ij}}} \tag{10}$$

 ⁹² In queste circostanze, infatti, le medie, e possibilmente anche le varianze, dipendono dalle covariate.
 ⁹³ Si rimanda all'articolo di England e Verrall (2002) citato in bibliografia.

In realtà il bootstrapping si applica ai cosiddetti residui *adjusted* cioè corretti per tener conto della distorsione derivante dall'uso di un approccio analitico

$$r_{ij}^{adj} = \sqrt{\frac{n}{\frac{1}{2}n \cdot (n+1) - 2n + 1}} \cdot r_{ij}^{(P)}$$
(11)

La fase successiva consiste nell'esecuzione del seguente ciclo da ripetere N volte

- creare un nuovo triangolo dei residui adjusted attraverso un campionamento con reinserimento;
- definire il triangolo degli importi incrementali ottenuti dal bootstrapping, P_{ij}^* , risolvendo la seguente equazione

$$P_{ij}^* = r_{ij}^{*(adj)} \cdot \sqrt{\hat{m}_{ij}} + \hat{m}_{ij} \tag{12}$$

dove $r_{ij}^{*(adj)}$ sono i residui corretti campionati;

- calcolare l'associato triangolo di pseudo dati cumulati;
- applicare il basic chain ladder;
- effettuare le proiezioni allo scopo di ottenere il triangolo futuro dei pagamenti cumulati;
- derivare come differenza il triangolo dei pagamenti incrementali da utilizzare come media nella simulazione della distribuzione di probabilità, \tilde{m}_{ij} ;
- per ogni cella (i,j) del triangolo inferiore ricavare un pagamento dalla distribuzione simulata sottostante avente media \tilde{m}_{ij} e varianza $\phi \cdot \tilde{m}_{ij}$, il parametro ϕ è calcolato nel seguente modo

$$\phi = \frac{\sum_{i+j \le l-i+1} (r_{ij}^{(P)})^2}{\frac{1}{2} n \cdot (n+1) - 2n + 1}$$
(13)

in cui il denominatore rappresenta i gradi di libertà ottenuti come differenza tra il numero delle osservazioni e in numero dei parametri da stimare;

- sommare i pagamenti simulati per ottenere la riserva di ogni generazione e la stima della riserva sinistri generale;
- salvare i risultati ottenuti e ricominciare il ciclo.

L'insieme dei risultati registrati forma la distribuzione di probabilità prevista. La media dei risultati ottenuti dovrebbe essere paragonata con le stime delle riserve ottenute tramite il

chain ladder per verificare eventuali errori. La deviazione standard della distribuzione delle stime delle riserve fornisce la stima del prediction error.

4. La proposta di Mack e Quarg: il Munich Chain Ladder

La stima della riserva per i sinistri IBNR (Incurred But Not Reported), altrimenti sinistri tardivi, è solitamente dedotta dall'impiego dei triangoli di run-off, sia dei pagati che dei pagati e riservati, cioè i cosiddetti incurred. Mack e Quarg hanno dimostrato che tra i due triangoli richiamati esiste una qualche correlazione che viene ignorata dal basic chain ladder applicato separatamente ai pagati e agli incurred. Il Munich Chain Ladder, invece, trasferisce al futuro la correlazione tra pagati e incurred registrata nel passato.

4.1. Introduzione al Munich Chain Ladder

Un modo consueto di determinare la riserva sinistri per gli IBNR di un portafoglio è di applicare il metodo chain ladder separatamente al triangolo dei sinistri pagati e al triangolo degli incurred. Al contrario, il Munich Chain Ladder combina insieme i due tipi di dati prendendo in considerazione nelle proiezioni i rapporti P/I, dove P sta per Paid, sinistri pagati e I per Incurred, sinistri avvenuti. Il rapporto P/I rappresenta la quota degli incurred che è stata pagata fino ad una certa data considerata durante l'analisi.

Il problema che spesso si presenta è che la proiezione basata sui pagati spesso è molto diversa da quella basata sugli incurred. I sinistri pagati possono produrre per un anno di generazione un'ultima proiezione dei sinistri più alta di quella ottenuta tramite i sinistri accaduti, ma la situazione può essere del tutto differente l'anno successivo. La situazione appena descritta è tipica del metodo chain ladder che non tiene conto del fatto che quasi sempre tra i pagati e gli incurred esistono delle correlazioni. Tutto ciò accade perché il metodo chain ladder definisce delle proiezioni separate per il triangolo dei sinistri pagati e per il triangolo dei sinistri pagati e riservati. Il metodo Munich Chain Ladder tiene conto della presenza delle suddette correlazioni e pertanto il vantaggio che se ne ricava è che la

relazione tra sinistri pagati e incurred che c'è stata nel passato può essere trasferita nella proiezione per il futuro.

4.1.1. Il problema del basic chain ladder

Per capire meglio i punti di debolezza del basic chain ladder siano per $i,t=1,...,n^{94}$ P_{it} gli importi pagati cumulati e I_{it} gli importi totali degli incurred appartenenti alla generazione i-esima nel t-esimo anno di differimento. Sulla base di quanto detto, anche nel capitolo precedente, i valori P_{it} e I_{it} sono noti per $1 \le t \le a_i$, avendo posto $a_i := n+1-i$, e devono invece essere proiettati per $a_i < t \le n$. Si ponga inoltre $\left(\frac{P}{I}\right)_{i,t} := \frac{P_{i,t}}{I_{i,t}}$, rapporto tra pagato e incurred della generazione i-esima nell'anno di sviluppo t, e la media dei rapporti P/I in un fissato anno di differimento per tutte le generazioni sia pari a $\left(\frac{P}{I}\right)_{i,t} := \frac{\sum_{j=1}^{n} P_{j,t}}{\sum_{j=1}^{n} P_{j,t}} = \frac{1}{1-t} \cdot \sum_{j=1}^{n} I_{j,t} \cdot \left(\frac{P}{I}\right)$, che rappresenta la media dei rapporti P/I al

$$\left(\frac{P}{I}\right)_{t} \coloneqq \frac{\sum_{j=1}^{n} P_{j,t}}{\sum_{j=1}^{n} I_{j,t}} = \frac{1}{\sum_{j=1}^{n} I_{j,t}} \cdot \sum_{j=1}^{n} I_{j,t} \cdot \left(\frac{P}{I}\right)_{j,t}, \text{ che rappresenta la media dei rapporti } P/I \text{ al}$$

t – *esimo* anno di sviluppo pesata con gli importi degli incurred.

Con altra notazione è possibile definire i link ratios del basic chain ladder per i sinistri pagati e per gli incurred come segue, con s = 1,...,n-1

$$f_{s \to s+1}^{P} := \frac{\sum_{j=1}^{n-s} P_{j,s+1}}{\sum_{j=1}^{n-s} P_{j,s}}$$
 (14)

e

 $f_{s \to s+1}^{I} := \frac{\sum_{j=1}^{n-s} I_{j,s+1}}{\sum_{j=1}^{n-s} I_{j,s}}$ (15)

Per le somme proiettate, cioè per $s \ge a_i$, valgono

$$P_{i,s+1} = P_{i,s} \cdot f_{s \to s+1}^{P} \tag{16}$$

⁹⁴ Di seguito si seguirà la stessa terminologia presente nell'articolo dei due autori citata in bibliografia.

e

$$I_{i,s+1} = I_{i,s} \cdot f_{s \to s+1}^{I} \tag{17}$$

E' lecita l'estensione delle formule precedenti ai rapporti P/I futuri, ossia per $t > a_i$

$$\left(\frac{P}{I}\right)_{i,t} = \frac{P_{i,t}}{I_{i,t}} = \frac{P_{i,a_i} \cdot f_{a_i \to a_i+1}^P \cdot \dots \cdot f_{t-1 \to t}^P}{I_{i,a_i} \cdot f_{a_i \to a_i+1}^I \cdot \dots \cdot f_{t-1 \to t}^I}$$
(18)

Da cui si deriva la seguente relazione

$$\frac{P_{i,a_{i}} \cdot \sum_{j=1}^{n} P_{j,t}}{\sum_{j=1}^{n} P_{j,a_{i}}} = \frac{\sum_{j=1}^{n} P_{j,a_{i}}}{\sum_{j=1}^{n} I_{j,t}} = \frac{\sum_{j=1}^{n} I_{j,t}}{\sum_{j=1}^{n} I_{j,a_{i}}}$$
(19)

Che altrimenti riformulata diventa

$$\frac{\left(\frac{P}{I}\right)_{i,t}}{\left(\frac{P}{I}\right)_{t}} = \frac{\left(\frac{P}{I}\right)_{i,a_{i}}}{\left(\frac{P}{I}\right)_{a_{i}}} \tag{20}$$

Il significato essenziale dell'equazione riportata sopra può essere facilmente spiegato a parole. Per ogni anno di origine il rapporto tra un valore P/I proiettato e la sua corrispondente media è uguale al rapporto tra il valore attuale di P/I e la sua corrispondente media. Dunque, come è già risaputo, questo rapporto rimane costante per il basic chain ladder. Quanto appena detto si ripercuote sulle proiezioni determinando una sistematica debolezza del chain ladder, ossia, se per una generazione si registra un rapporto P/I sopra o sotto la media, il valore proiettato di P/I alla fine dell'ultimo anno di differimento avrà lo stesso comportamento, superiore o inferiore alla media.

Il problema del chain ladder è che opera esaminando separatamente i due triangoli, dei pagati e degli incurred, in tal modo ignora la fondamentale correlazione esistente tra i due tipi di dati. A causa di tutto ciò si spiega il suo più rilevante punto debole e il motivo per cui a volte si hanno delle proiezioni non plausibili che contraddicono il passato.

4.1.2. Un'idea per risolvere il problema del basic chain ladder e primo confronto con il Munich Chain Ladder

Se l'obiettivo prefisso è di ottenere delle proiezioni per gli IBNR non si dovrebbe usare lo stesso link ratio per tutte le generazioni, come fa il chain ladder, ma si dovrebbe aderire alla seguente regola basata sull'esperienza passata, ossia: a seconda che l'attuale rapporto P/I sia sotto o sopra la media, si dovrebbe utilizzare rispettivamente un fattore di sviluppo dei pagati sopra o sotto la media, e/o un fattore di sviluppo degli incurred sotto o sopra la media. La regola ora esposta rappresenta la soluzione per risolvere il problema dei rapporti P/I del metodo chain ladder.

Nell'articolo di Mack e Quarg sono riportati due esempi numerici che permettono di dimostrare che ha senso assumere che i link ratios dei pagati abbiano una dipendenza lineare dai precedenti rapporti I/P piuttosto che dai rapporti P/I. Invece, per quanto riguarda i fattori di sviluppo degli incurred può essere mantenuta la dipendenza lineare tra questi e P/I.

Il Munich Chain Ladder conduce le analisi considerando congiuntamente, piuttosto che individualmente, tutti i coefficienti di proporzionalità poiché un rapporto P/I sopra o sotto la media deve essere compensato da un corretto link ratio non soltanto nell'anno immediatamente seguente ma per tutte le successive antidurate.

Poiché si vuole considerare i fattori di sviluppo individuali e i rapporti P/I e I/P per tutti gli anni di differimento è necessario standardizzarli per poterli confrontare con più facilità. Tutto ciò è reso possibile facendo ricorso ai residui dei valori predetti. Il residuo è una misura standardizzata della deviazione del valore dalla media. Più esattamente, misura la deviazione dal rispettivo valore atteso in termini di standard deviation.

La procedura generale del Munich Chain Ladder può essere sintetizzata come segue. Per prima cosa si disegnano per tutti gli anni di differimento due assi cartesiani in cui si rappresentano i residui dei link ratios dei pagati e degli incurred come coordinate e lungo l'asse delle x si ritraggono rispettivamente i residui dei precedenti rapporti I/P e P/I. Poi si raffigura la linea di regressione passante per l'origine di entrambi i grafici. Per un dato rapporto I/P, o P/I, si calcola il residuo, si legge l'associato valore del residuo del link ratio dalla linea di regressione e si fa impiego di tale fattore invece di utilizzare la media di tutti i coefficienti di proporzionalità che hanno residui nulli.

-

⁹⁵ Tuttavia è più probabile avere questo tipo di tendenza per i pagati che per gli incurred.

L'aver imposto l'utilizzo congiunto di tutti gli anni di sviluppo permette di superare due inconvenienti. Il primo è la possibilità di ottenere frequentemente una stima dei coefficienti angolari delle linee di regressione molto incerta e volatile, specialmente laddove sono disponibili pochi anni di origine, il che vale sempre per le ultime antidurate. Il secondo è di estrarre dai calcoli delle inclinazioni illogiche se si paragona il risultato numerico al grafico. Nello stesso articolo sono riportati alcuni esempi che mettono in luce come di fatto il Munich Chain Ladder restituisca delle stime migliori⁹⁶, visibili graficamente; e in alcuni casi la proiezione degli ultimi rapporti P/I basata sui sinistri pagati eguaglia quella degli incurred.

4.2. Il modello del Munich Chain Ladder

In un suo articolo del 1993, Mack aveva trattato lo standard error del basic chain ladder non ipotizzando alcuna distribuzione di probabilità sottostante. Allo stesso modo hanno fatto i due autori del Munich Chain Ladder definendo un modello stocastico comune per i pagati e gli incurred, con una complicata formulazione senza fare alcun ricorso a distribuzioni di probabilità, ma prendendo in considerazione la dipendenza dei link ratios da P/I o da I/P.

4.2.1. Le assunzioni del modello

Sia $n \in N$ il numero degli anni di accadimento dei sinistri e T la durata del differimento con $T \subset N$, di solito vale $T = \{1,2,...,n\}$. Per i=1,...,n sia $P_i = \left(P_{i,t}\right)_{t \in T}$ il processo dei sinistri pagati per l'anno di origine i-esimo e $I_i = \left(I_{i,t}\right)_{t \in T}$ il processo degli incurred. Pertanto la variabile casuale $P_{i,t}$ denota i sinistri appartenenti alla i-esima generazione e pagati con t anni di ritardo, e $I_{i,t}$ denota i sinistri avvenuti nell'anno i che sono stati

_

⁹⁶ Il termine migliore in questo contesto ricopre il significato di meno variabile, infatti per lo stesso insieme di dati iniziali il basic chain ladder produce delle stime che hanno una variazione significativa lungo tutti gli anni di origine. E' comunque possibile ottenere delle stime altamente variabili, ma questo non è causato dalla procedura di valutazione ma dal fatto che il Munich Chain Ladder stesso si basa sui dati osservati per fare le dovute proiezioni. Ciò vuol dire che se i dati originali presentano una variazione rilevante, la stessa variazione si registrerà nelle stime.

pagati e riservati entro la fine del t-esimo anno di sviluppo. I processi P_i e I_i descrivono lo sviluppo dei sinistri pagati e pagati più riservati della generazione i-esima lungo tutti gli anni di differimento. Inoltre si ponga $P_i(s) := \{P_{i,1},...,P_{i,s}\}$, ossia la condizione che lo sviluppo del processo dei pagati è dato per noto con antidurata massima pari all'anno s incluso, e in modo simile vale anche per il processo degli incurred $I_i(s) := \{I_{i,1},...,I_{i,s}\}$.

A differenza di quanto accade per il basic chain ladder in cui si realizzano le proiezioni separatamente per i due triangoli, non definendo nulla circa la relazione tra il processo dei pagati e il processo degli incurred, il Munic Chain Ladder definisce il valore atteso di $P_{i,t}$ e di $I_{i,t}$ sulla base della conoscenza globale di entrambi i tipi di dati. L'interesse è posto nella determinazione dei valori medi condizionati $E\left[\frac{P_{i,t}}{P_{i,s}}|B_i(s)\right]$ e $E\left[\frac{I_{i,t}}{I_{i,s}}|B_i(s)\right]$, dove $B_i(s) = \{P_{i,t}, P_{i,t}, P_{i,t}, P_{i,t}, P_{i,t}, P_{i,t}\}$ è lo sviluppo della conoscenza di entrambi i processi fino alla

 $\mathbf{B}_{i}(s) = \{P_{i,1}, ..., P_{i,s}, I_{i,1}, ..., I_{i,s}\}$ è lo sviluppo della conoscenza di entrambi i processi fino alla fine dell'anno di differimento s.

Nell'articolo del 1993, Mack aveva dimostrato che i pagamenti cumulati per ogni anno di generazione sono indipendenti, allo stesso modo si assume direttamente l'indipendenza stocastica per tutti i periodi di origine dei sinistri pagati e avvenuti. Sostanzialmente, questo significa accettare che esista indipendenza tra gli insiemi $\{P_{1,t},I_{1,t}\mid t\in T\},...,\{P_{n,t},I_{n,t}\mid t\in T\}$. Per una maggiore sintesi di espressione in seguito si farà uso del valore $Q_i:=\frac{P_i}{I_i}=\left(\frac{P_{i,t}}{I_{i,t}}\right)$ che denota il processo di P/I.

Come già affermato, il metodo Munich Chain Ladder pone l'interesse nella definizione del valore atteso condizionato dei fattori di sviluppo dei pagati e degli incurred e dei rispettivi residui, $\operatorname{Re} s\left(\frac{P_{i,t}}{P_{i,s}}|P_i(s)\right)$ e $\operatorname{Re} s\left(\frac{I_{i,t}}{I_{i,s}}|I_i(s)\right)$, una volta che lo sviluppo precedente di entrambi i processi è noto. Il decisivo vantaggio rispetto al basic chain ladder è di formulare specificate assunzioni per $E\left(\operatorname{Re} s\left(\frac{P_{i,t}}{P_{i,s}}|P_i(s)\right)|B_i(s)\right)$ e per $E\left(\operatorname{Re} s\left(\frac{I_{i,t}}{I_i}|I_i(s)\right)|B_i(s)\right)$.

In modo analogo a quanto si fa per il basic chain ladder è possibile definire le relazioni sulla speranza matematica condizionata dei pagati e degli incurred $\forall s, t \in T$ con t = s + 1 e $\forall i = 1,...,n$

> per i pagati

$$E\left(\operatorname{Re} s\left(\frac{P_{i,t}}{P_{i,s}} \mid P_{i}(s)\right) \mid B_{i}(s)\right) = \lambda^{P} \cdot \operatorname{Re} s\left(Q_{i,s}^{-1} \mid P_{i}(s)\right)$$
(21)

o equivalentemente

$$E\left(\frac{P_{i,t}}{P_{i,s}} \mid \mathbf{B}_{i}(s)\right) = f_{s \to t}^{P} + \lambda^{P} \cdot \frac{\sigma\left(\frac{P_{i,t}}{P_{i,s}} \mid \mathbf{P}_{i}(s)\right)}{\sigma\left(Q_{i,s}^{-1} \mid \mathbf{P}_{i}(s)\right)} \cdot \left(Q_{i,s}^{-1} - E\left(Q_{i,s}^{-1} \mid \mathbf{P}_{i}(s)\right)\right)$$
(21 bis)

> per gli incurred

$$E\left(\operatorname{Re} s\left(\frac{I_{i,t}}{I_{i,s}} \mid I_{i}(s)\right) \mid B_{i}(s)\right) = \lambda^{I} \cdot \operatorname{Re} s\left(Q_{i,s} \mid I_{i}(s)\right)$$
(22)

o equivalentemente

$$E\left(\frac{I_{i,t}}{I_{i,s}} \mid \mathbf{B}_{i}(s)\right) = f_{s \to t}^{I} + \lambda^{I} \cdot \frac{\sigma\left(\frac{I_{i,t}}{I_{i,s}} \mid \mathbf{I}_{i}(s)\right)}{\sigma(Q_{i,s} \mid \mathbf{I}_{i}(s))} \cdot (Q_{i,s} - E(Q_{i,s} \mid \mathbf{I}_{i}(s)))$$
(22 bis)

Le equazioni precedenti esprimono la dipendenza dei fattori di sviluppo dei pagati e degli incurred dai precedenti rapporti I/P e P/I rispettivamente.

I parametri λ^P e λ^I rappresentano il coefficiente angolare delle linee di regressione nei rispettivi grafici dei residui e risultano indipendenti dall'antidurata s. Solitamente si verifica che $\lambda^P, \lambda^I \geq 0$. Il secondo tipo di valore atteso, vale a dire la (20 bis) e la (21 bis) esprimo la media condizionata dei fattori di sviluppo come somma del link ratio tipico del chain ladder e un termine di correzione che è funzione di entrambi i tipi di dati, pagati e incurred.

Si analizzi l'ultima relazione. Il valore atteso condizionato $E\left(\frac{I_{i,t}}{I_{i,s}}|\mathbf{B}_i(s)\right)$ è monotonamente crescente e funzione lineare del rapporto P/I, $Q_{i,s}$, e, come detto, è dato dalla somma del coefficiente di proporzionalità tipico del chain ladder, $f_{s \to t}^I$ e di un termine di correzione che è lineare in $Q_{i,s}$. Nel termine di errore sono coinvolti tre fattori che possono essere spiegati come segue:

- il fattore λ^I è il comune, nel senso che è indipendente sia da i che da s, coefficiente di correlazione 97 dei residui dei link ratios e dei residui dei rapporti P/I. Il valore di λ^I solitamente varia tra 0 e 1 e misura la dipendenza dei fattori di sviluppo dai precedenti rapporti P/I. Se tra i dati esiste una relazione lineare molto debole, λ^I sarà prossimo a zero e la proiezione dei fattori di sviluppo sarà uguale a quella del basic chain ladder;
- \clubsuit il fattore della standard deviation è il rapporto tra la standard deviation del link ratio degli indurred e la standard deviation del corrente P/I. Questo fattore causa deviazioni dei rapporti P/I dalla propria media, che devono essere riscalate come deviazioni dei fattori di sviluppo. Più è grande la standard deviation del link ratio, più sarà probabile avere una deviazione significativa dalla media e più grande sarà il termine di correzione;
- ❖ il termine lineare $Q_{i,s} E(Q_{i,s} | I_i(s))$ include il rapporto P/I nella proiezione. Pertanto se i rapporti P/I sono sopra la media, hanno l'effetto di correggere il fattore di sviluppo verso l'alto. La situazione opposta si verifica qualora i rapporti P/I siano al di sotto del valore medio $E(Q_{i,s} | I_i(s))$. Infine, se il rapporto P/I è pari alla media, il link ratio utilizzato sarà la media, coincidente al coefficiente del basic chain ladder.

Possono essere fatte considerazioni analoghe nel caso in cui si prenda in esame il run-off dei pagati.

Pertanto, i parametri di correlazione λ^P e λ^I rappresentano il legame fra il triangolo dei pagati e il triangolo degli incurred. La grandezza di tali parametri indica fino a che punto lo sviluppo dei sinistri pagati o degli incurred è influenzato rispettivamente dall'altro tipo di dati; il che spiega perché questi parametri hanno un'elevata importanza per la dimensione dell'ultima proiezione. Poiché l'approccio dei residui rende possibile operare con tutti gli anni di differimento, in tal modo è disponibile una sufficiente quantità di dati, le stime che si ottengono sono relativamente stabili.

E' bene sottolineare che le assunzioni del metodo in esame non sono soltanto quelle riportate sopra, infatti il Munich Chain Ladder assume implicitamente che valga quanto detto per il chain ladder nell'articolo di Mack. Le relazioni precedenti devono essere considerate congiuntamente all'assunzione di indipendenza degli importi dei pagati e degli

⁹⁷ Detto altrimenti fattore o parametro di correlazione.

incurred lungo tutte le generazioni esaminate e all'assunzione del valore atteso e della varianza sia per i pagati che per gli incurred. Per quanto attiene l'assunzione della media condizionata e della varianza condizionata le assunzioni fatte per il chain ladder sono le seguenti

> per i pagati

$$E\left(\frac{P_{i,t}}{P_{i,s}}|P_i(s)\right) = f_{s \to t}^P \tag{23}$$

$$Var\left(\frac{P_{i,t}}{P_{i,s}} \mid P_i(s)\right) = \frac{\left(\sigma_{s \to t}^P\right)^2}{P_{i,s}}$$
(24)

> per gli incurred

$$E\left(\frac{I_{i,t}}{I_{i,s}} \mid I_i(s)\right) = f_{s \to t}^{I}$$
(25)

$$Var\left(\frac{I_{i,t}}{I_{i,s}} \mid I_i(s)\right) = \frac{\left(\sigma_{s \to t}^I\right)^2}{I_{i,s}}$$
(26)

Gli indici sono tali che t = s+1 con $s,t \in T$, e i = 1,...,n. Inoltre si dimostra che i fattori di sviluppo sono positivi, cioè $f_{s \to t}^P, f_{s \to t}^I > 0$, e le costanti di proporzionalità coinvolte nel calcolo della varianza sono non nulle, cioè $\sigma_{s \to t}^P, \sigma_{s \to t}^I \ge 0$.

4.2.2. La stima dei parametri

Per calcolare i residui è necessario disporre di tutti i parametri coinvolti.

In questa sezione sia ancora t = s + 1. Nonostante si sia già data la formula per determinare i fattori di sviluppo del basic chain ladder, si riprenderanno per conformità di espressione e si definiranno, inoltre, i coefficienti di proporzionalità presenti nelle varianze condizionate, $\sigma_{s \to t}^P$ e $\sigma_{s \to t}^I$.

Per s = 1,...,n-1 gli stimatori dei fattori di sviluppo tipici del chain ladder sono

$$\widehat{f}_{s \to t}^{P} := \frac{1}{\sum_{i=1}^{n-s} P_{i,s}} \cdot \sum_{i=1}^{n-s} P_{i,s} \cdot \frac{P_{i,t}}{P_{i,s}} = \frac{\sum_{i=1}^{n-s} P_{i,t}}{\sum_{i=1}^{n-s} P_{i,s}}$$
(27)

e

$$\widehat{f}_{s \to t}^{I} := \frac{1}{\sum_{i=1}^{n-s} I_{i,s}} \cdot \sum_{i=1}^{n-s} I_{i,s} \cdot \frac{I_{i,t}}{I_{i,s}} = \frac{\sum_{i=1}^{n-s} I_{i,t}}{\sum_{i=1}^{n-s} I_{i,s}}$$
(28)

Per s = 1,...,n-2 i parametri σ sono stimati attraverso

$$\left(\widehat{\sigma}_{s \to t}^{P}\right)^{2} := \frac{1}{n - s - 1} \cdot \sum_{i=1}^{n - s} P_{i,s} \cdot \left(\frac{P_{i,t}}{P_{i,s}} - \widehat{f}_{s \to t}^{P}\right)^{2}$$
(29)

e

$$\left(\widehat{\sigma}_{s \to t}^{I}\right)^{2} := \frac{1}{n - s - 1} \cdot \sum_{i=1}^{n - s} I_{i,s} \cdot \left(\frac{I_{i,t}}{I_{i,s}} - \widehat{f}_{s \to t}^{I}\right)^{2}$$
(30)

Se si vuole ottenere il valore dei residui di P/I e di I/P è necessario disporre degli stimatori per le medie condizionate, $E(Q_{i,s} \mid I_i(s))$ e $E(Q_{i,s}^{-1} \mid P_i(s))$, e per le standard deviation condizionate $\sigma(Q_{i,s} \mid I_i(s))$ e $\sigma(Q_{i,s}^{-1} \mid P_i(s))$.

Con riferimento al rapporto P/I si ottiene il seguente stimatore per $E(Q_{i,s} | I_i(s))$

$$\widehat{q}_{s} := \frac{1}{\sum_{j=1}^{n-s+1} I_{j,s}} \cdot \sum_{j=1}^{n-s+1} I_{j,s} \cdot Q_{j,s} = \frac{\sum_{j=1}^{n-s+1} P_{j,s}}{\sum_{j=1}^{n-s+1} I_{j,s}}$$
(31)

E per il rapporto I/P lo stimatore di $E(Q_{i,s}^{-1} | P_i(s))$ è

$$\widehat{q}_{s}^{-1} := \frac{1}{\sum_{j=1}^{n-s+1} P_{j,s}} \cdot \sum_{j=1}^{n-s+1} P_{j,s} \cdot Q_{j,s}^{-1} = \frac{\sum_{j=1}^{n-s+1} I_{j,s}}{\sum_{j=1}^{n-s+1} P_{j,s}}$$
(32)

che valgono per s = 1,...,n.

Per ottenere $\sigma(Q_{i,s} | I_i(s))$ si sceglie il seguente stimatore

$$\frac{\widehat{\rho}_s^I}{\sqrt{I_{i,s}}} \tag{33}$$

dove $\hat{\rho}_s^I$ è definito nel seguente modo

$$\left(\widehat{\rho}_{s}^{I}\right)^{2} = \frac{1}{n-s} \cdot \sum_{j=1}^{n-s+1} I_{j,s} \cdot \left(Q_{j,s} - \widehat{q}_{s}\right)^{2}$$

$$(34)$$

Lo stimatore di $\sigma(Q_{i,s}^{-1} \mid P_i(s))$ è posto pari a

$$\frac{\widehat{\rho}_{s}^{P}}{\sqrt{P_{i,s}}} \tag{35}$$

Avendo indicato con $\hat{\rho}_s^P$ la seguente quantità

$$\left(\hat{\rho}_{s}^{P}\right)^{2} = \frac{1}{n-s} \cdot \sum_{i=1}^{n-s+1} P_{j,s} \cdot \left(Q_{j,s}^{-1} - \hat{q}_{s}^{-1}\right)^{2}$$
(36)

Alla base dei precedenti stimatori esiste l'ipotesi che i valori attesi condizionati siano costanti, ma in realtà $E(Q_{i,s} | I_i(s))$ e $E(Q_{i,s}^{-1} | P_i(s))$ variano. Di conseguenza si necessita di una struttura degli stimatori più adeguata che nello stesso tempo è più complicata di quella presentata sopra, e pertanto può essere impiegata soltanto per i primi anni di sviluppo di grandi triangoli. La soluzione che si adotta nella gran parte dei casi è di utilizzare gli stimatori forniti dalla (30) e dalla (31) poiché si è constatato che, nonostante $E(Q_{i,s} | I_i(s))$ e $E(Q_{i,s}^{-1} | P_i(s))$ non siano costanti, gli stessi presentano piccole variazioni nella regione di interesse, e quindi ai fini delle analisi, possono essere considerati costanti. Quanto detto non toglie la possibilità di definire stimatori più opportuni in relazione al tipo di dati a disposizione.

Le relazioni precisate prima permettono di stabilire gli stimatori per i residui nel seguente modo per s = 1,...,n-2 e i = 1,...,n-s

$$\operatorname{Re}\widehat{s}(P_{i,t}) = \operatorname{Re} s\left(\frac{P_{i,t}}{P_{i,s}} \mid P_{i}(s)\right) = \frac{\frac{P_{i,t}}{P_{i,s}} - \widehat{f}_{s \to t}^{P}}{\widehat{\sigma}_{s \to t}^{P}} \cdot \sqrt{P_{i,s}}$$
(37)

$$\operatorname{Re}\widehat{s}(I_{i,t}) = \operatorname{Re} s\left(\frac{I_{i,t}}{I_{i,s}} \mid I_{i}(s)\right) = \frac{\frac{I_{i,t}}{I_{i,s}} - \widehat{f}_{s \to t}^{I}}{\widehat{\sigma}_{s \to t}^{I}} \cdot \sqrt{I_{i,s}}$$
(38)

$$\operatorname{Re} \widehat{s} \left(Q_{i,s}^{-1} \right) = \operatorname{Re} s \left(Q_{i,s}^{-1} \mid P_i(s) \right) = \frac{Q_{i,s}^{-1} - \widehat{q}_s^{-1}}{\widehat{\rho}_s^P} \cdot \sqrt{P_{i,s}}$$
(39)

$$\operatorname{Re}\widehat{s}(Q_{i,s}) = \operatorname{Re} s(Q_{i,s} \mid I_i(s)) = \frac{Q_{i,s} - \widehat{q}_s}{\widehat{\rho}_s^I} \cdot \sqrt{I_{i,s}}$$

$$\tag{40}$$

Gli stimatori dei parametri di correlazione sono

$$\widehat{\lambda}^{P} := \frac{1}{\sum_{s=1}^{n-2} \sum_{i=1}^{n-s} \operatorname{Re} \widehat{s}(Q_{i,s}^{-1})^{2}} \cdot \sum_{s=1}^{n-2} \sum_{i=1}^{n-s} \operatorname{Re} \widehat{s}(Q_{i,s}^{-1})^{2} \cdot \frac{\operatorname{Re} \widehat{s}(P_{i,t})}{\operatorname{Re} \widehat{s}(Q_{i,s}^{-1})} = \frac{\sum_{s=1}^{n-2} \sum_{i=1}^{n-s} \operatorname{Re} \widehat{s}(Q_{i,s}^{-1}) \cdot \operatorname{Re} \widehat{s}(P_{i,t})}{\sum_{s=1}^{n-2} \sum_{i=1}^{n-s} \operatorname{Re} \widehat{s}(Q_{i,s}^{-1})^{2}}$$
(41)

e

$$\widehat{\lambda}^{I} := \frac{1}{\sum_{s=1}^{n-2} \sum_{i=1}^{n-s} \operatorname{Re} \widehat{s}(Q_{i,s})^{2}} \cdot \sum_{s=1}^{n-2} \sum_{i=1}^{n-s} \operatorname{Re} \widehat{s}(Q_{i,s})^{2} \cdot \frac{\operatorname{Re} \widehat{s}(I_{i,t})}{\operatorname{Re} \widehat{s}(Q_{i,s})} = \frac{\sum_{s=1}^{n-2} \sum_{i=1}^{n-s} \operatorname{Re} \widehat{s}(Q_{i,s}) \cdot \operatorname{Re} \widehat{s}(I_{i,t})}{\sum_{s=1}^{n-2} \sum_{i=1}^{n-s} \operatorname{Re} \widehat{s}(Q_{i,s})^{2}}$$
(42)

ottenuti minimizzando la distanza quadratica media delle coordinate y dei punti nel grafico dei residui dalla linea di regressione passante per l'origine e avente coefficiente angolare λ^P o λ^I . Contrariamente al basic chain ladder, i coefficienti di correlazione ottenuti secondo questa procedura, non mostrano alcuna tendenza, ma presentano un andamento casuale. La volatilità delle stime supportano la scelta di aver impiegato tutti gli anni di differimento contemporaneamente piuttosto che considerarli uno per volta come avviene per il metodo del chain ladder.

4.2.3. La stima degli importi futuri

Dalle formule dei valori attesi condizionati dei residui si è in grado di ricavare delle formule ricorsive per i pagati

$$\widehat{P}_{i,t} := \widehat{P}_{i,s} \cdot \left(\widehat{f}_{s \to t}^P + \widehat{\lambda}^P \cdot \frac{\widehat{\sigma}_{s \to t}^P}{\widehat{\rho}_s^P} \cdot \left(\frac{\widehat{I}_{i,s}}{\widehat{P}_{i,s}} - \widehat{q}_s^{-1} \right) \right)$$

$$(43)$$

e per gli incurred

$$\widehat{I}_{i,t} := \widehat{I}_{i,s} \cdot \left(\widehat{f}_{s \to t}^{I} + \widehat{\lambda}^{I} \cdot \frac{\widehat{\sigma}_{s \to t}^{I}}{\widehat{\rho}_{s}^{I}} \cdot \left(\frac{\widehat{P}_{i,s}}{\widehat{I}_{i,s}} - \widehat{q}_{s} \right) \right)$$

$$(44)$$

Le relazioni precedenti valgono per $s \ge n-i+1$ con valori iniziali $\widehat{P}_{i,s} := P_{i,s}$ e $\widehat{I}_{i,s} := I_{i,s}$ per s = n-i+1.

Una volta ottenute le stime degli importi futuri è facile determinare la riserva sinistri in base agli importi pagati o in base agli incurred.

4.3. Applicazione del metodo Munich Chain Ladder

Riprendendo gli stessi dati del capitolo precedente si vuole presentare i risultati ottenuti con il metodo Munich Chain Ladder. I dati storici coinvolti sono i sinistri pagati e gli incurred e sono riportati nei triangoli 1.3.1.2. e 1.3.4.2. del capitolo precedente.

Di sotto si rappresentano i triangoli dei processi P/I e I/P.

Dai triangoli di origine è possibile determinare i parametri attraverso le formule elaborate sopra.

Per restare in linea con quanto scritto sopra con antidurata pari a uno si intende lo stesso periodo di origine di riferimento

4.3.1. Il processo P/I

Gen	Ant											
Gen	1	2	3	4	5	6	7	8	9	10	11	12
1993	0,3347	0,6820	0,8446	0,9058	0,9264	0,9464	0,9555	0,9630	0,9678	0,9771	0,9795	0,9877
1994	0,3354	0,7259	0,8671	0,9181	0,9368	0,9558	0,9615	0,9701	0,9769	0,9820	0,9817	
1995	0,3607	0,7534	0,8745	0,9222	0,9454	0,9563	0,9659	0,9760	0,9830	0,9827		
1996	0,3571	0,7614	0,8801	0,9161	0,9364	0,9481	0,9648	0,9738	0,9837			
1997	0,3662	0,7530	0,8676	0,9101	0,9279	0,9484	0,9571	0,9765				
1998	0,3759	0,7262	0,8543	0,8967	0,9194	0,9409	0,9641					
1999	0,3500	0,6904	0,8211	0,8811	0,9181	0,9471						
2000	0,3235	0,6678	0,8144	0,8768	0,9133							
2001	0,3378	0,6849	0,8117	0,8695								
2002	0,3341	0,6782	0,8051									
2003	0,3430	0,7010										
2004	0,3589											

4.3.2. Il processo I/P

Com	Ant											
Gen	1	2	3	4	5	6	7	8	9	10	11	12
1993	2,9880	1,4664	1,1840	1,1041	1,0795	1,0567	1,0466	1,0384	1,0333	1,0234	1,0210	1,0125
1994	2,9818	1,3776	1,1533	1,0892	1,0674	1,0463	1,0400	1,0308	1,0236	1,0184	1,0186	
1995	2,7724	1,3274	1,1435	1,0844	1,0577	1,0457	1,0353	1,0246	1,0173	1,0176		
1996	2,8004	1,3134	1,1362	1,0916	1,0679	1,0548	1,0365	1,0269	1,0166			
1997	2,7304	1,3281	1,1526	1,0987	1,0777	1,0544	1,0449	1,0241				
1998	2,6601	1,3771	1,1705	1,1152	1,0876	1,0628	1,0373					
1999	2,8568	1,4485	1,2178	1,1349	1,0892	1,0558						
2000	3,0913	1,4975	1,2279	1,1405	1,0950							
2001	2,9600	1,4600	1,2320	1,1501								
2002	2,9935	1,4745	1,2421									
2003	2,9158	1,4266										
2004	2,7863											

4.3.3. I fattori di sviluppo e i parametri σ

	$1 \rightarrow 2$	$2 \rightarrow 3$	$3 \rightarrow 4$	$4 \rightarrow 5$	$5 \rightarrow 6$	$6 \rightarrow 7$	$7 \rightarrow 8$	$8 \rightarrow 9$	$9 \rightarrow 10$	$10 \rightarrow 11$	$11 \rightarrow 12$
$f_{s \to t}^{P}$	2,0171	1,1887	1,0679	1,0330	1,0226	1,0146	1,0113	1,0087	1,0066	1,0041	1,0085
$f_{s \to t}^{I}$	0,9872	1,0034	1,0066	1,0045	1,0016	1,0010	0,9996	1,0012	1,0022	1,0031	1,0001
$\sigma_{s o t}^{P}$	13,6161	4,9126	3,3739	2,3715	1,8188	1,2475	0,6381	0,5113	0,8914	0,3032	0,6954
$\sigma^I_{s o t}$	8,6921	3,5742	2,3499	1,8421	1,8665	1,6090	2,1647	1,1315	1,0379	0,8783	0,8207

Si è osservato che $\sigma_{s \to t}^P$ $\sigma_{s \to t}^P$ descrivono una curva esponenziale, pertanto i valori di $\sigma_{11 \to 12}^P$ e di $\sigma_{11 \to 12}^I$ sono stati determinati estrapolando da tali curve un probabile valore attraverso una regressione logaritmica.

4.3.4. I parametri q_s e ρ_s

	1	2	3	4	5	6	7	8	9	10	11	12
q_s	0,3480	0,7085	0,8405	0,8970	0,9267	0,9485	0,9617	0,9724	0,9785	0,9808	0,9806	0,9877
q_s^{-1}	2,8733	1,4115	1,1898	1,1148	1,0791	1,0543	1,0398	1,0284	1,0220	1,0196	1,0197	1,0125
$ ho_s^P$	767,4369	387,1232	176,1733	66,4076	18,2190	3,9510	2,1665	3,2234	5,5401	0,8972	0,2477	
ρ_s^I	32,4974	139,9291	104,7148	47,7532	14,5587	3,3756	1,9229	2,9484	5,1625	0,8447	0,2336	

La stima dei parametri permette di calcolare i residui condizionati da cui è possibile fissare i parametri λ^P e λ^I pari a 0,4892 e 0,3960, rispettivamente.

I triangoli dei residui sono i seguenti

4.3.5. I residui dei pagati, $\operatorname{Re} \widehat{s}(P_{i,t})$

Gen	$1 \rightarrow 2$	$2 \rightarrow 3$	$3 \rightarrow 4$	$4 \rightarrow 5$	$5 \rightarrow 6$	$6 \rightarrow 7$	$7 \rightarrow 8$	$8 \rightarrow 9$	$9 \rightarrow 10$	$10 \rightarrow 11$	$11 \rightarrow 12$
1993	0,1382	1,3351	0,4223	0,3706	1,1753	0,4549	1,7046	1,4664	1,1812	-0,7285	-
1994	1,4769	0,4643	0,3429	-0,0033	0,7028	-1,1440	0,0730	-0,5939	-0,6287	0,6850	
1995	0,6434	-1,2764	-0,1360	-0,2549	-1,7248	-0,5701	-0,1306	-0,0057	-0,4578		
1996	1,2378	-0,4578	-1,1412	-1,1393	-0,7774	1,2656	-0,4365	-0,7049			
1997	0,2161	-1,0685	-1,5113	-1,4010	0,5814	-0,9346	-0,9388				
1998	-1,0204	-0,4638	-0,7460	-0,1600	-0,2232	0,8271					
1999	-0,1581	0,4976	1,6742	1,7409	0,3971						
2000	0,8484	1,8020	0,2203	0,6931							
2001	0,0773	-0,0809	0,8315								
2002	-0,9241	-0,5519									
2003	-1,7780										
2004	-										

4.3.6. I residui degli incurred, Re $\widehat{s}(I_{i,t})$

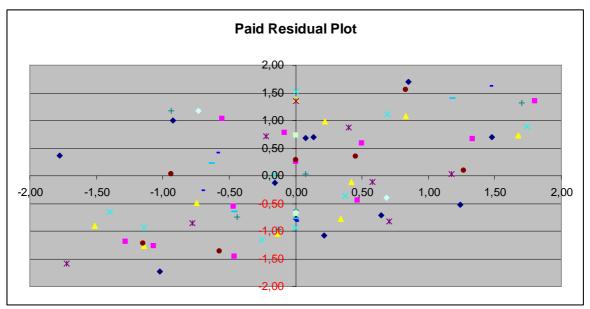
Gen	$1 \rightarrow 2$	$2 \rightarrow 3$	$3 \rightarrow 4$	$4 \rightarrow 5$	$5 \rightarrow 6$	$6 \rightarrow 7$	$7 \rightarrow 8$	$8 \rightarrow 9$	$9 \rightarrow 10$	$10 \rightarrow 11$	$11 \rightarrow 12$
1993	0,2736	-1,7477	-0,7048	1,3525	1,0647	1,0640	1,0377	1,3255	-0,4360	-0,7277	-
1994	-0,1169	-0,0756	0,7614	1,3115	0,8063	0,5464	0,4278	-0,1318	-0,7524	0,6859	
1995	0,0041	0,1183	0,6503	0,2142	-0,0840	0,2673	0,1512	0,0900	1,1152		
1996	-0,0716	1,7139	1,1033	-0,3758	0,7643	0,1419	0,2462	-1,1034			
1997	0,0300	1,2592	-0,5224	-0,2091	0,3732	0,2085	-1,6299				
1998	1,0496	0,0879	0,6036	0,3948	-0,6926	-1,8532					
1999	1,3255	0,2783	0,6319	-0,4438	-1,7339						
2000	0,6916	-0,5546	-2,0351	-1,6932							
2001	0,4388	-0,1396	-0,3246								
2002	-0,9423	-0,9953									
2003	-2,3426										
2004	-										

I valori relativi alla diagonale dell'anno di bilancio sono assenti in base a quanto previsto nelle formule per determinare il residui dei paid e degli incurred. Invece, i residui di I/P e di P/I presentano i valori anche per la generazione 2004.

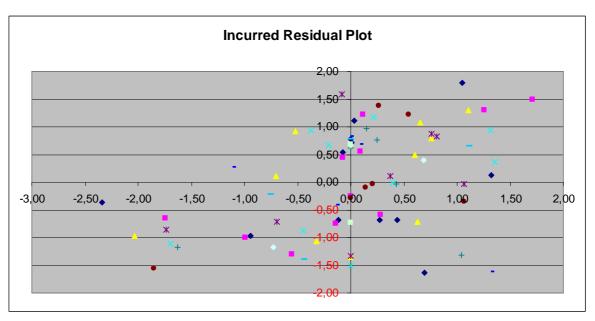
4.3.7. I residui del processo I/P, Re $\widehat{s}(Q_{i,s}^{-1})$

Gen	1	2	3	4	5	6	7	8	9	10	11
1993	0,6985	0,6697	-0,1147	-0,3634	0,0263	0,3436	1,3142	1,6171	1,3928	1,1770	0,7288
1994	0,7002	-0,4488	-0,7837	-0,9291	-0,8176	-1,2215	0,0385	0,4165	0,2159	-0,4030	-0,6848
1995	-0,7075	-1,1933	-1,0511	-1,1630	-1,5798	-1,3684	-0,9688	-0,6741	-0,6435	-0,6725	
1996	-0,5291	-1,4528	-1,2768	-0,9296	-0,8645	0,0881	-0,7525	-0,2763	-0,7742		
1997	-1,0834	-1,2688	-0,9074	-0,6565	-0,1098	0,0323	1,1738	-0,8252			
1998	-1,7259	-0,5484	-0,4947	0,0142	0,7169	1,5568	-0,6237				
1999	-0,1323	0,5929	0,7306	0,8864	0,8685	0,2915					
2000	1,6957	1,3545	0,9823	1,1142	1,3445						
2001	0,6878	0,7705	1,0847	1,5263							
2002	0,9948	1,0290	1,3762								
2003	0,3716	0,2568									
2004	-0,7716										

4.3.8. I residui del processo P/I, $\operatorname{Re} \widehat{s} \left(Q_{i,s}\right)$


Gen	1	2	3	4	5	6	7	8	9	10	11
1993	-0,6834	-0,6517	0,1149	0,3658	-0,0262	-0,3430	-1,3114	-1,6135	-1,3889	-1,1760	-0,7284
1994	-0,6858	0,4506	0,7956	0,9417	0,8204	1,2255	-0,0385	-0,4171	-0,2163	0,4036	0,6852
1995	0,7187	1,2206	1,0717	1,1813	1,5925	1,3732	0,9719	0,6771	0,6467	0,6738	
1996	0,5347	1,4938	1,3059	0,9412	0,8672	-0,0880	0,7545	0,2772	0,7783		
1997	1,1089	1,2974	0,9215	0,6625	0,1097	-0,0322	-1,1722	0,8291			
1998	1,7897	0,5507	0,4985	-0,0142	-0,7126	-1,5496	0,6251				
1999	0,1324	-0,5805	-0,7218	-0,8801	-0,8627	-0,2911					
2000	-1,6311	-1,3044	-0,9665	-1,1036	-1,3320						
2001	-0,6762	-0,7514	-1,0654	-1,5055							
2002	-0,9724	-0,9986	-1,3462								
2003	-0,3681	-0,2533									
2004	0,7818										

I grafici di dispersione possono essere costruiti inserendo nello stesso sistema di assi cartesiani i residui dei pagati, $\operatorname{Re} \widehat{s}(P_{i,t})$, e i residui del processo I/P, $\operatorname{Re} \widehat{s}(Q_{i,s}^{-1})$, ottenendo in tal modo il grafico per i residui dei pagati. Allo stesso modo è possibile creare il grafico


di dispersione degli incurred confrontando i valori dei residui dei dati storici, $\operatorname{Re} \widehat{s}(I_{i,t})$, con i residui del processo P/I, $\operatorname{Re} \widehat{s}(Q_{i,s})$.

I punti dei grafici di dispersione definiscono una la linea di tendenza con un coefficiente angolare nei due casi rispettivamente pari a 0,4892 che rappresenta il paramentro λ^P e 0,3960 per il parametro λ^I

Grafico 1. Paid Residual Plot

Grafico 2. Incurred Residual Plot

La stima dei parametri permette di completare i triangoli dei sinistri pagati e degli incurred conseguendo i risultati delle tabelle 4.3.9. e 4.3.10 in cui la diagonale storica dell'anno di bilancio viene considerata come primo valore stimato in base a quanto detto nel paragrafo 4.3.2. in cui si assume che per i valori iniziali valgano le seguenti relazioni $\widehat{P}_{i,s} := P_{i,s}$ e $\widehat{I}_{i,s} := I_{i,s}$

4.3.9. La stima dei sinistri pagati (importi in Euro.000)

Gen	1	2	3	4	5	6	7	8	9	10	11	12
1993												
1994												97.082
1995											105.407	106.170
1996										115.330	115.709	116.414
1997									119.258	119.968	120.377	121.146
1998								133.574	134.721	135.566	136.053	136.975
1999							140.369	141.986	143.219	144.129	144.653	145.647
2000						133.223	135.627	137.299	138.508	139.401	139.915	140.893
2001					129.470	133.155	135.902	137.670	138.896	139.803	140.325	141.319
2002				130.791	135.879	139.948	143.021	144.932	146.230	147.191	147.744	148.798
2003			133.730	142.990	147.992	151.792	154.544	156.453	157.831	158.850	159.436	160.550
2004		120.616	143.032	152.497	157.427	161.011	163.509	165.415	166.855	167.917	168.529	169.690

4.3.10. La stima dei sinistri incurred (importi in Euro.000)

Gen	1	2	3	4	5	6	7	8	9	10	11	12
1993												
1994												98.199
1995											107.264	107.420
1996										116.935	117.533	117.842
1997									121.405	121.749	122.331	122.617
1998								137.200	137.405	137.751	138.346	138.615
1999							146.088	145.950	146.142	146.497	147.114	147.385
2000						142.109	141.723	141.260	141.414	141.744	142.322	142.567
2001					143.751	143.278	142.496	141.751	141.878	142.198	142.761	142.993
2002				151.810	151.940	151.258	150.222	149.287	149.407	149.737	150.321	150.558
2003			160.661	161.604	162.129	161.966	161.510	160.971	161.145	161.521	162.179	162.458
2004		167.106	167.926	169.199	170.034	170.282	170.283	170.058	170.275	170.686	171.401	171.714

I dati precedenti permettono di valutare la riserva sinistri

4.3.11. La riserva sinistri

	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	Totale
Basic													
Chain	1.068	2.033	2.654	3.676	4.859	6.989	9.439	11.999	16.027	24.981	48.590	114.058	246.374
Ladder													
Incurred													
Chain	1.068	1.807	2.196	2.529	3.644	5.772	8.768	13.594	20.642	32.518	51.680	109.597	253.785
Ladder													
Munich													
Chain	1.068	1.875	2.413	3.167	4.329	6.476	9.094	12.666	18.207	28.758	50.116	111.353	249.522
Ladder													

Il metodo chain ladder applicato separatamente al triangolo dei paid e degli incurred attribuisce dei valori diversi alla riserva sinistri; inoltre tali stime sono differenti da quelle ottenute dal Munich Chain Ladder. Con questo esempio numerico è possibile notare quanto affermato da Mack e Quarg, il metodo classico del chain ladder non è adeguato alla stima dei sinistri tardivi poiché non prende in considerazione l'eventuale correlazione esistente tra gli importi pagati e i valori degli incurred.

Lo scopo del lavoro di Thomas Mack e Gerhard Quarg è di dimostrare che qualora si voglia stimare la riserva sinistri degli IBNR esiste un gap tra le proiezioni basate sui sinistri pagati e sugli incurred, tipico del metodo basic chain ladder. A questo scopo gli stessi autori hanno stabilito un nuovo criterio che definisca l'accantonamento necessario per ogni impresa; tale procedura di stima pone comunque le proprie basi sul metodo chain ladder.

Per dimostrare che effettivamente nel caso del basic chain ladder esiste una certa connessione tra i due tipi di proiezioni, si osservi il grafico seguente in cui vengono rappresentati gli ultimi rapporti P/I calcolati con il Munich Chain Ladder e con il chain ladder classico

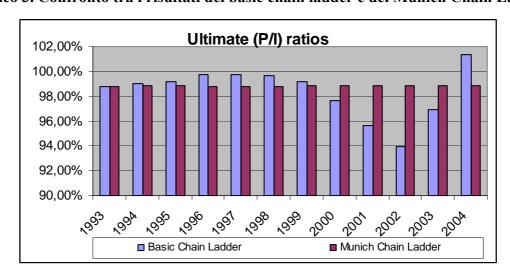


Grafico 3. Confronto tra i risultati del basic chain ladder e del Munich Chain Ladder

Si osserva facilmente che il Munich Chain Ladder presenta dei valori molto più costanti del basic chain ladder.

Di seguito si riporta la tabella dei valori dei rapporti in questione

4.3.12. Ultimi rapporti P/I

	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Basic Chain Ladder	98,77%	99,00%	99,19%	99,74%	99,75%	99,64%	99,22%	97,67%	95,64%	93,95%	96,91%	101,38%
Munich Chain Ladder	98,77%	98,86%	98,84%	98,79%	98,80%	98,82%	98,82%	98,83%	98,83%	98,83%	98,83%	98,82%

I dati del chain ladder variano in un intervallo più ampio di quello del Munich Chain Ladder. Gli estremi del range di variazione sono differenti nei due casi, 93,95% e 101,38% per il basic chain ladder e 98,77% e 98,86% per il Munich Chain Ladder.

Tutto ciò dimostra che i risultati ottenuti per i due tipi di dati, pagati e incurred, sono praticamente gli stessi nel caso del Munich Chain Ladder, e invece differiscono nel caso del bascic chain ladder, a dimostrazione che il secondo metodo di stima per la riserva dei sinistri tardivi non tiene in considerazione la correlazione esistente tra i sinistri pagati e gli incurred.

CAPITOLO QUATTRO

Distribuzioni della riserva sinistri a confronto

1. Introduzione ai modelli di simulazione

In questo capitolo si cercherà di rappresentare più distribuzioni di probabilità per la riserva sinistri.

Come già detto in precedenza, è molto utile disporre di tale distribuzione al fine di poter procedere con analisi più sofisticate che non sarebbero altresì condotte.

Prima di procedere alla descrizione delle simulazioni effettuate è bene ricordare quali sono i rischi in cui si potrebbe incorrere con l'utilizzo di modelli di simulazione. Esistono tre tipi di rischi:

- 1. *model risk*: il rischio che il modello scelto per l'approccio stocastico non sia adeguato a rappresentare la complessità del mondo reale sottostante;
- 2. *parameter risk*: il rischio di assegnare parametri inappropriati al modello, tali che influenzino la solidità e la realizzabilità dei risultati stessi⁹⁸;
- 3. *process risk*: rischio connesso al numero di simulazioni prescelto per condurre lo studio. Quando viene usato un approccio basato sulle simulazioni la robustezza dei risultati del modello è messa in relazione al numero di simulazioni effettuate. Per evitare che gli outputs del modello, soggetti a fluttuazioni casuali, non rappresentino un range corretto dei possibili risultati per l'esperienza futura ma reale, è necessario scegliere un numero opportuno di simulazioni. Poiché il numero di simulazioni, e conseguentemente il tempo di realizzazione, è strettamente correlato alla complessità del modello, il model risk e il process risk si influenzano a vicenda, pertanto l'analista deve scegliere un appropriato trade-off.

156

⁹⁸ In questo caso particolare il rischio da evitare è quello di scegliere dei parametri che non siano coerenti con le caratteristiche dell'impresa.

Un modello di simulazione restituisce tanti risultati probabili che possono avvicinarsi o discostarsi tanto dalla realtà a seconda del tipo di modello e, conseguentemente, del tipo di parametri che sono stati scelti. Pertanto, prima di procedere alla definizione di un modello stocastico è necessario uno studio approfondito della realtà che si vuole simulare.

In particolare, in questa sede è opportuno eseguire uno studio di conoscenza delle caratteristiche tipiche dell'impresa di cui si intende simulare una distribuzione di probabilità della riserva sinistri.

Tale studio è stato ampiamente discusso nei capitoli precedenti. Tuttavia, è bene riprendere alcune caratteristiche della compagnia di assicurazione alla quale si stanno applicando le procedure richiamate in questo lavoro.

L'impresa in oggetto ha dimensioni medie, in data di redazione del bilancio di fine esercizio 2004 deve ancora porre in riserva sinistri della generazione 1993. In base a quanto visto altrove, la generazione più anziana in termini quantitativi impatta moderatamente sull'ammontare complessivo della riserva sinistri. Da un modello di simulazione ci si aspetta che la generazione più anziana, in questo caso l'anno di esercizio 1993, presenti una variabilità di stima maggiore perché i dati da stimare sono decisamente inferiori se messi in relazione con le altre generazioni, pertanto la volatilità di tali importi dovrebbe essere più elevata. In realtà, nelle analisi condotte in questo lavoro, la generazione più anziana presenta una standard deviation minore rispetto agli altri di accadimento. Tutto ciò probabilmente è dovuto al fatto che si attribuisce un'elevata affidabilità alle previsioni riguardo la generazione più anziana. Nonostante ciò, si vuole sottolineare che non devono essere sottovalutate le stime relative alle generazioni più anziane, perché, nonostante ci siano pochi sinistri e l'impresa è quasi certa dell'importo che dovrà porre in bilancio, in un modello di simulazione, poiché ci sono pochi dati, le rispettive distribuzioni di probabilità possono essere più soggetti a fluttuazioni casuali, dovute in parte alla carenza di informazioni.

Sono stati effettuati due tipi di elaborazione. Lo stesso modello è stato fatto girare per un numero di simulazioni pari a 1.000 e a 10.000.

Nel primo caso, ossia con $N = 1.000^{99}$, è stato possibile ottenere contemporaneamente la distribuzione di probabilità per il Bootstrapping, per la Normale e per la LogNormale. Invece, con N = 10.000, poiché era notevole la mole di lavoro, il software non è riuscito ad elaborare i dati per le tre diverse distribuzioni, pertanto il modello è stato suddiviso in tre sottomodelli.

_

 $^{^{99}}$ Con N si indicherà da questo punto in poi il numero di simulazioni.

Inoltre, è stato apportato un cambiamento in base a quanto descritto nella tecnica del bootstrapping. Nel capitolo precedente si è affermato che il campionamento con rimpiazzo viene ripetuto un numero di volte stabilito¹⁰⁰ ottenendo diversi triangoli superiori a cui corrispondo altrettanti triangoli inferiori di importi futuri pseudo campionati. La fase successiva richiede di ottenere per ogni cella del triangolo dei pagamenti futuri un importo derivante da una prescelta distribuzione di probabilità avente media e varianza stabilite, e in rapporto al valore della cella di riferimento.

Nel modello costruito per questo lavoro, quando si fa riferimento alla distribuzione del bootstrapping, si intende analizzare i risultati ottenuti dal campionamento ripetuto senza ipotizzare alcuna distribuzione sottostante per ogni cella del run-off. La fase richiesta dal bootstrapping è stata inserita in un secondo tempo per avere la distribuzione degli importi futuri secondo una Normale o una LogNormale.

¹⁰⁰ In questo caso 1.000 o 10.000 volte.

2. La distribuzione di probabilità secondo il Bootstrapping

La tecnica del bootstrapping è stata descritta nel capitolo precedente, in questa sede saranno presentati i risultati a cui si è pervenuti applicando tale tecnica¹⁰¹.

Per comodità si riportano di seguito i dati di input, la matrice dei pagamenti incrementali

2.1. Importi incrementali dei pagamenti in Euro.000

Com	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	28.446	29.251	12.464,	5.144	2.727	2.359	1.334	1.238	941	860	282	727	1.068
1994	31.963	36.106	13.441	5.868	2.882	2.422	918	1.076	734	458	456		
1995	37.775	40.125	12.951	6.034	3.010	1.264	1.250	1.135	904	559			
1996	40.418	44.499	15.370	5.594	2.616	1.984	2.137	1.184	873				
1997	44.116	45.490	15.339	5.478	2.541	2.906	1.294	1.124					
1998	50.294	48.040	17.843	7.035	3.934	2.726	2.267						
1999	49.620	49.991	19.570	10.047	5.750	3.313							
2000	46.410	49.694	20.881	8.202	4.714								
2001	48.295	49.354	18.304	8.833									
2002	52.590	50.606	18.604										
2003	58.599	53.743											
2004	60.361												

I dati storici permettono di calcolare i link ratios tradizionali del chain ladder

2.2. Fattori di sviluppo classici del chain ladder

m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}	m_{11}	m_{12+}
2,0171	1,1887	1,0679	1,0330	1,0226	1,0146	1,0113	1,0087	1,0066	1,0041	1,0085	1,0125

Fissando i valori lungo la diagonale principale e applicando i coefficienti di proporzionalità si ottiene un nuovo triangolo superiore di importi cumulati calcolato secondo la formula $\widehat{C}_{ik} = \widehat{C}_{i,k+1} f_{k+1}^{-1} \text{, vista nel capitolo precedente}$

-

¹⁰¹ Con le modifiche apportate in base a quanto detto prima.

2.3. Importi cumulati ricalcolati dei pagamenti in Euro.000

Gen	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	30.053	60.621	72.061	76.957	79.498	81.292	82.479	83.414	84.143	84.700	85.046	85.773	86.841
1994	34.038	68.660	81.618	87.163	90.040	92.073	93.416	94.476	95.302	95.932	96.324		
1995	37.258	75.155	89.338	95.408	98.557	100.783	102.253	103.413	104.317	105.007			
1996	40.958	82.618	98.209	104.881	108.343	110.790	112.406	113.681	114.675				
1997	42.617	85.965	102.189	109.131	112.734	115.279	116.961	118.288					
1998	48.148	97.121	115.449	123.293	127.363	130.238	132.139						
1999	51.125	103.12	122.588	130.916	135.238	138.291							
2000	49.107	99.056	117.750	125.750	129.901								
2001	48.731	98.297	116.848	124.786									
2002	50.796	102.463	121.800										
2003	55.694	112.342											
2004	60.361												
Į.													

Dalla matrice precedente si ottengono per differenza gli importi incrementali riadattati

2.4. Importi incrementali ricalcolati (pagamenti in Euro.000)

Gen	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	30.053	30.568	11.440	4.896	2.540	1.795	1.186	936	729	557	346	727	1.068
1994	34.038	34.622	12.957	5.545	2.877	2.033	1.344	1.060	826	630	392		
1995	37.258	37.897	14.183	6.070	3.149	2.225	1.471	1.160	904	690			
1996	40.958	41.660	15.591	6.672	3.462	2.446	1.617	1.275	994				
1997	42.617	43.348	16.223	6.943	3.602	2.545	1.682	1.327					
1998	48.148	48.973	18.329	7.843	4.070	2.876	1.901						
1999	51.125	52.001	19.462	8.328	4.322	3.053							
2000	49.107	49.949	18.694	8.000	4.151								
2001	48.731	49.566	18.550	7.938									
2002	50.796	51.667	19.337										
2003	55.694	56.648											
2004	60.361												
2003	55.694												

Gli importi incrementali del triangolo ricalcolato rientrano nel calcolo dei residui di Pearson secondo la $r_{ij}^{(P)}=\frac{P_{ij}-\widehat{m}_{ij}}{\sqrt{\widehat{m}_{ij}}}$, dove P_{ij} sono i pagamenti incrementali storici e m_{ij} sono gli importi incrementali ricalcolati

2.5. Residui di Pearson

Gen	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	-9,2699	-7,5333	9,5706	3,5481	3,7031	13,3135	4,2892	9,8865	7,8516	12,8610	-3,4433	-	-
1994	-11,2489	7,9769	4,2481	4,3381	0,0888	8,6280	-11,6105	0,5018	-3,1906	-6,8661	3,2355		
1995	2,6768	11,4455	-10,3464	-0,4558	-2,4842	-20,3780	-5,7545	-0,7314	0,0071	-4,9880			
1996	-2,6674	13,9103	-1,7738	-13,1994	-14,3802	-9,3460	12,9398	-2,5507	-3,8238				
1997	7,2588	10,2885	-6,9425	-17,5769	-17,6844	7,1479	-9,4655	-5,5662					
1998	9,7807	-4,2163	-3,5863	-9,1285	-2,1302	-2,7912	8,4064						
1999	-6,6552	-8,8145	0,7759	18,8318	21,7295	4,6965							
2000	-12,1722	-1,1412	15,9971	2,2611	8,7383								
2001	-1,9748	-0,9529	-1,8097	10,0402									
2002	7,9584	-4,6675	-5,2693										
2003	12,3107	-12,2066											
2004	-												

Come già descritto, la procedura del bootstrapping viene applicata ai residui corretti

 $r_{ij}^{adj} = \sqrt{\frac{n}{\frac{1}{2}n \cdot (n+1) - 2n + 1}} \cdot r_{ij}^{(P)} \text{ secondo un fattore strettamente connesso con il}$ $parametro^{102} \phi = \frac{\sum_{i+j \le l-i} (r_{ij}^{(P)})^2}{\frac{1}{2}n \cdot (n+1) - 2n + 1}, \text{ che in questo caso vale } 93,2823. \text{ Il fattore di}$

correzione $\sqrt{\frac{n}{\frac{1}{2}n\cdot(n+1)-2n+1}}$ è pari a 0,44381, pertanto volendo fare una verifica per il

residuo della generazione 2003 con antidurata due si ha, a meno di approssimazioni decimali, $-5,4174 = -12,2066 \cdot 0,44381$

¹⁰² Per il significato dei simboli si rimanda al capitolo precedente.

2.6. Adjusted Residui di Pearson

C	Ant.												
Gen	0	1	2	3	4	5	6	7	8	9	10	11	12+
1993	-4,1141	-3,3434	4,2476	1,5747	1,6435	5,9087	1,9036	4,3878	3,4846	5,7079	-1,5282	-	-
1994	-4,9924	3,5402	1,8853	1,9253	0,0394	3,8292	-5,1529	0,2227	-1,4160	-3,0473	1,4359		
1995	1,1880	5,0797	-4,5919	-0,2023	-1,1025	-9,0440	-2,5539	-0,3246	0,0031	-2,2137			
1996	-1,1838	6,1735	-0,7872	-5,8581	-6,3821	-4,1479	5,7428	-1,1320	-1,6971				
1997	3,2215	4,5661	-3,0812	-7,8008	-7,8486	3,1723	-4,2009	-2,4704					
1998	4,3408	-1,8713	-1,5916	-4,0514	-0,9454	-1,2388	3,7309						
1999	-2,9536	-3,9120	0,3443	8,3578	9,6438	2,0844							
2000	-5,4022	-0,5065	7,0997	1,0035	3,8782								
2001	-0,8764	-0,4229	-0,8032	4,4560									
2002	3,5320	-2,0715	-2,3386										
2003	5,4637	-5,4174											
2004	-												

Gli adjusted residui di Pearson vengono ricampionati un numero definito di volte e restituiscono differenti triangoli di residui a cui corrispondono un ugual numero di triangoli di importi cumulati campionati.

E' bene sottolineare che ogni triangolo superiore campionato ha il diretto corrispettivo inferiore. La somma per riga dei pagamenti incrementali¹⁰³ del triangolo inferiore restituisce la riserva per generazione. Il numero di riserve stimate è pari al numero di simulazioni fissato a priori.

In base alle formule sui residui, si osserva che l'anno di chiusura di bilancio ha il residuo nullo, e la generazione 1993 presenta dei valori nulli per gli ultimi anni di differimento. Nel modello di simulazione questo risultato è stato ripreso e modificato. Infatti, sono stati posti pari a zero i residui per le generazioni 2004, con antidurata nulla, e 1993 con la massima antidurata, lasciando libero di variare il residuo, del periodo di origine 1993, con undici anni di sviluppo. Sono state poste queste ipotesi per evitare di imporre eccessivi vincoli che non avrebbero altresì ridotto la casualità e offerto al modello un grado di libertà minore ¹⁰⁴.

A differenza della procedura presentata da England e Verrall, nel modello proposto in questa sede si è considerato anche il tail factor. Inizialmente, nel modello non era stato considerato alcun fattore di coda e ciò causava una stima della riserva sinistri sistematicamente sotto la media. Il confronto viene condotto con il basic chain ladder in

-

¹⁰³ Ottenuti semplicemente per differenza dei pagamenti cumulati campionati.

¹⁰⁴ Dovuto al fatto che si sarebbe imposto il valore di una cella nel triangolo di run-off.

cui si include il tail factor, non considerarlo nel modello di simulazione non permetteva il paragone con quanto ottenuto con il chain ladder deterministico.

Di seguito sono esposti i grafici ottenuti. Si nota subito l'assenza della generazione 1993. Poiché per questa generazione il residuo con la massima antidurata è stato sempre posto uguale a zero, si ricava un valore di accantonamento sempre pari al dato di input, ossia pari a 1.068 migliaia di Euro. In tal modo si accetta come certa la previsione eseguita per il primo periodo di origine. Per lo stesso motivo non sono state calcolate le principali statistiche, a parte la media che coincide con l'importo da riservare

Grafico 1. Riserva Sinistri generazione 94 N=1.000

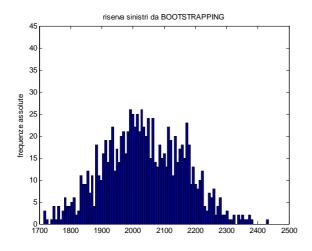


Grafico 2. Riserva Sinistri generazione 95 N=1.000

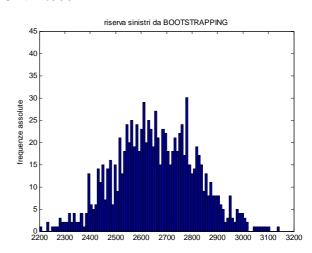


Grafico 3. Riserva Sinistri generazione 96 N=1.000

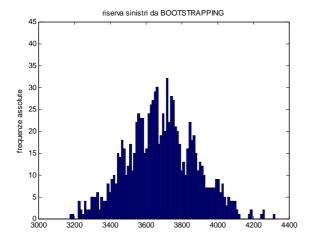


Grafico 4. Riserva Sinistri generazione 97 N=1.000

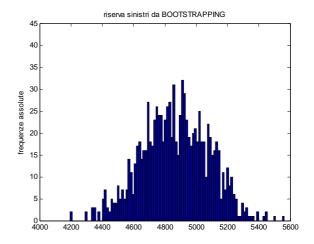


Grafico 5. Riserva Sinistri generazione 98 N=1.000

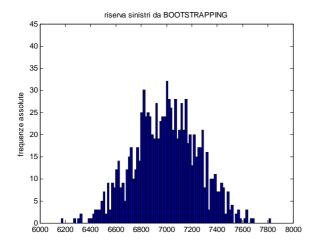


Grafico 6. Riserva Sinistri generazione 99 N=1.000

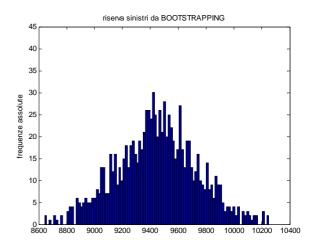


Grafico 7. Riserva Sinistri generazione 2000 N=1.000

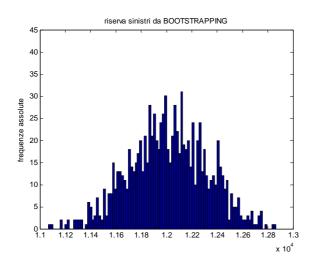


Grafico 8. Riserva Sinistri generazione 2001 N=1.000

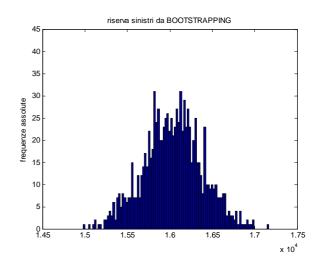


Grafico 9. Riserva Sinistri generazione 2002 N=1.000

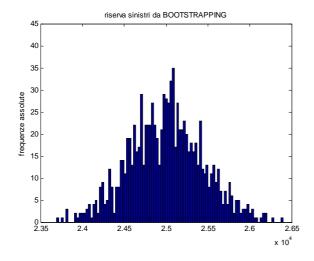


Grafico 10. Riserva Sinistri generazione 2003 N=1.000

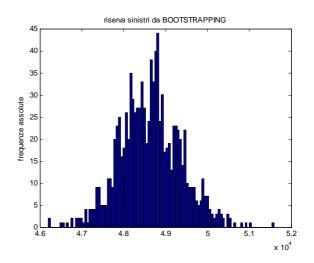


Grafico 11. Riserva Sinistri generazione 2004 N=1.000

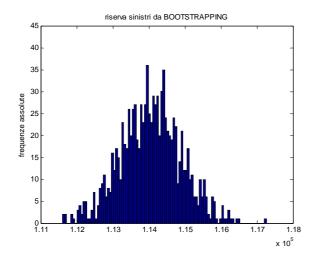


Grafico 12. Riserva Sinistri Totale N=1.000

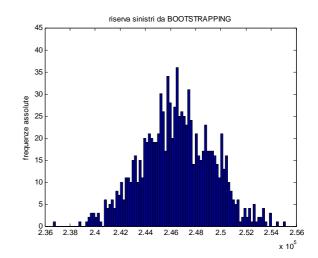


Grafico 13. Riserva sinistri generazione 1994 N=10.000

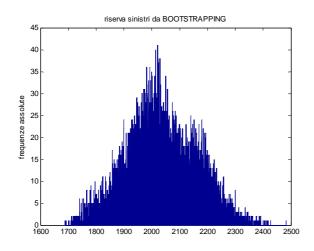


Grafico 14. Riserva sinistri generazione 1995 N=10.000

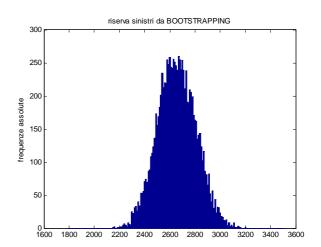


Grafico 15. Riserva sinistri generazione 1996 N=10.000

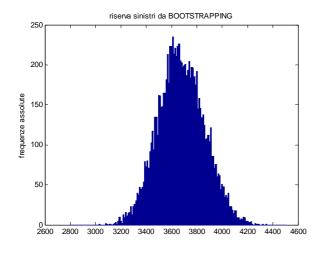


Grafico 16. Riserva sinistri generazione 1997 N=10.000

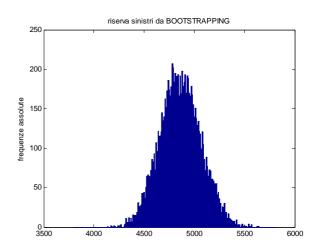


Grafico 17. Riserva sinistri generazione 1998 N=10.000

180 riserva sinistri da BOOTSTRAPPING
160 - 120

Grafico 18. Riserva sinistri generazione 1999 N=10.000

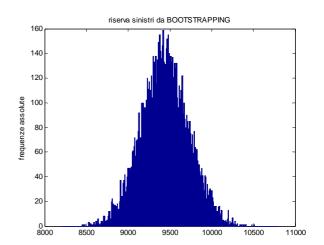


Grafico 19. Riserva sinistri generazione 2000 N=10.000

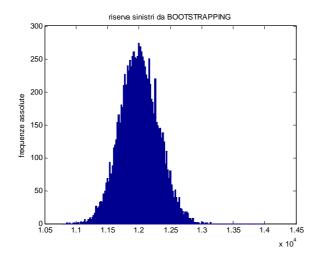


Grafico 20. Riserva sinistri generazione 2001 N=10.000

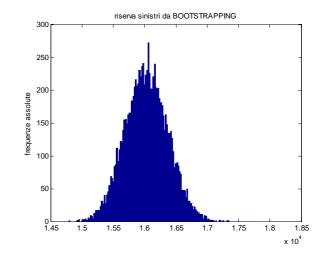


Grafico 21. Riserva sinistri generazione 2002 N=10.000

Grafico 22. Riserva sinistri generazione 2003 N=10.000

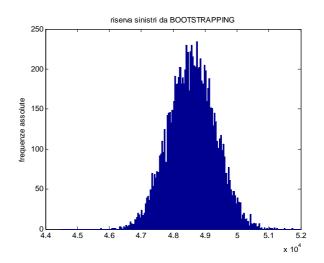


Grafico 23. Riserva sinistri generazione 2004 N=10.000

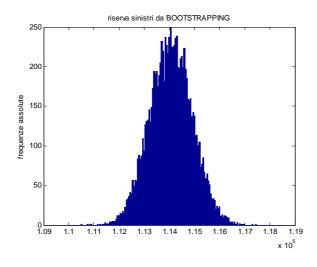
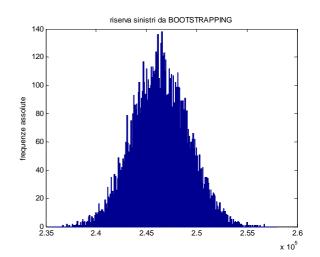



Grafico 24. Riserva sinistri totale N=10.000

Dalla tabella 2.7. possono essere apprese le principali statistiche ottenute con il modello, nei due casi, N = 1.000 e N = 10.000, al fine di avere una comprensione migliore delle distribuzioni.

Fatta eccezione per il periodo di origine 1993, tutte le generazioni, compresa la riserva complessiva, migliorano la precisione di stima, avvicinandosi maggiormente al valore ottenuto tramite il metodo della catena, con l'aumento delle simulazioni effettuate, fa eccezione la generazione 2004 che presenta una stima migliore con N = 1.000 e non con N = 10.000. Questo risultato non deve essere causa di preoccupazioni perché ottenere dal modello degli outputs che si discostano tanto o poco dal valore di riferimento dipende dalla casualità delle simulazioni; non si dimentichi che i risultati del modello sono soggetti a fluttuazioni casuali, che non possono essere in alcun modo eliminate o almeno ridotte (simulation error¹⁰⁵).

La deviazione standard presenta valori più elevati per le generazioni più recenti. Infatti, il modello è stato programmato per campionare dei residui da cui si ottiene la stima dei pagamenti futuri attraverso i coefficienti di proporzionalità. Poiché il numero di pagamenti da stimare per le generazioni più lontane è minore, questo comporta una standard deviation maggiore per le riserve degli ultimi anni di origine. In termini relativi la situazione è capovolta.

Il coefficiente di variazione ricopre un interesse maggiore, in quanto esprime una variabilità relativa e non assoluta, e risulta decrescente per i periodi di origine più recenti, così come è ovvio attendersi. La variabilità relativa delle generazioni più anziane è maggiore perché il numero dei pagamenti da stimare è minore, e gli stessi presentano per loro natura una variabilità intrinseca maggiore (es. grandi sinistri).

L'indice di asimmetria e di curtosi non seguono un particolare andamento essendo le riserve frutto di un campionamento con reinserimento. Una situazione diversa si avrà negli altri due casi.

_

¹⁰⁵ Si veda quanto detto nel primo paragrafo relativamente al process risk.

2.7. Principali statistiche ottenute dal Bootstrapping

Gen	Numero simulazioni	Media (importi in Euro.000)	Standard Deviation (importi in Euro.000)	Coefficiente di Variazione	Skewness	Curtosi	Chain ladder (importi in Euro.000)
1993	N = 1.000	1.068	-	-	-	-	1.068
	N = 10.000	1.068	-	-	-	-	1.000
1994	N = 1.000	2.035	127,62	6,27%	0,0661	2,6431	2.033
	N = 10.000	2.034	125,11	6,15%	0,0831	2,6984	2.033
1995	N = 1.000	2.658	158,50	5,96%	0,0204	2,7766	2.654
	N = 10.000	2.655	151,91	5,72%	0,0713	2,8314	2.034
1996	N = 1.000	3.686	190,97	5,18%	0,0926	2,8533	3.676
	N = 10.000	3.677	182,47	4,96%	0,0950	2,8859	3.070
1997	N = 1.000	4.867	213,46	4,39%	-0,0518	2,8207	4.859
	N = 10.000	4.860	205,89	4,24%	0,0777	2,9322	4.037
1998	N = 1.000	6.997	253,64	3,63%	-0,0234	2,7909	6.989
	N = 10.000	6.988	248,87	3,56%	0,0387	2,9072	0.707
1999	N = 1.000	9.447	285,85	3,03%	0,0074	2,8687	9.439
	N = 10.000	9.439	287,01	3,04%	0,0425	2,9682	7.437
2000	N = 1.000	12.016	307,44	2,56%	-0,0619	2,7681	11.999
	N = 10.000	12.004	303,24	2,53%	0,0683	2,9649	11.777
2001	N = 1.000	16.037	347,44	2,17%	-0,0044	2,9346	16.027
	N = 10.000	16.031	341,65	2,13%	0,0493	2,9100	10.027
2002	N = 1.000	25.001	441,76	1,77%	0,0596	2,9523	24.981
	N = 10.000	24.985	445,16	1,78%	0,0582	2,9765	24.901
2003	N = 1.000	48.638	727,14	1,50%	0,1471	3,3995	48.590
	N = 10.000	48.593	731,30	1,50%	0,0279	2,9328	1 0.570
2004	N = 1.000	114.050	845,44	0,74%	0,0262	3,1186	114.058
	N = 10.000	114.070	850,10	0,76%	0,0103	2,9657	114.050
Totale	N = 1.000	246.500	2.813,10	1,14%	0,0041	2,8977	246.374
- 332-3	N = 10.000	246.400	2.803,30	1,14%	0,0421	2,9452	240.374

Nel terzo capitolo si è accennato all'importanza di conoscere lo standard error. Si è anche detto che qualora si conoscesse la distribuzione di probabilità, lo standard error, non sarebbe altro che la relativa deviazione standard. Di seguito è presentata una tabella che

riporta i valori dello standard error ottenuti applicando le formule di Mack¹⁰⁶, nonché quelli relativi alla distribuzione di probabilità data dal bootstrapping

2.8. Standard error

Gen	Numero simulazioni	Bootstrapping	Mack
1993	N = 1.000	-	
1993	N = 10.000	-	-
1994	N = 1.000	127,62	22.01
1774	N = 10.000	125,11	32,01
1995	N = 1.000	158,50	124.22
1993	N = 10.000	151,91	134,32
1996	N = 1.000	190,97	290.65
1550	N = 10.000	182,47	389,65
1997	N = 1.000	213,46	449,09
255.	N = 10.000	205,89	449,09
1998	N = 1.000	253,64	555 27
	N = 10.000	248,87	555,27
1999	N = 1.000	285,85	785,60
	N = 10.000	287,01	785,00
2000	N = 1.000	307,44	1.071,47
	N = 10.000	303,24	1.071,47
2001	N = 1.000	347,44	1.440,12
	N = 10.000	341,65	1.440,12
2002	N = 1.000	441,76	2.031,82
	N = 10.000	445,16	2.031,82
2003	N = 1.000	727,14	2.987,48
	N = 10.000	731,30	2.707,40
2004	N = 1.000	845,44	5.912,26
	N = 10.000	850,10	3.712,20
Totale	N = 1.000	2.813,10	8.191,61
- 55525	N = 10.000	2.803,30	0.171,01

L'andamento dello standard error ottenuto tramite la formula di Mack è monotono e risulta quasi sempre maggiore rispetto alla standard deviation della distribuzione. Il motivo di tale

_

¹⁰⁶ Si rimanda al terzo capitolo, formule (4), (5) e (8).

differenza probabilmente è dovuto al fatto che le generazioni più recenti presentano in valore assoluto una variabilità maggiore perché le informazioni di cui dispone l'impresa sono ridotte, e pertanto le stime saranno più soggette all'errore. Gli ultimi anni di origine, inoltre, hanno un peso rilevante nella definizione della riserva sinistri e di conseguenza nel calcolo del valore dello standard error della riserva globale. Questo spiega perché secondo quanto proposto da Mack nei suoi lavori, lo standard error della riserva sinistri totale stimata in base a tecniche deterministiche è nettamente superiore alla standard deviation del bootstrapping. Se ne conclude che, secondo quanto proposto da Mack, la riserva sinistri stimata attraverso il metodo del basic chain ladder è soggetta ad una forte variabilità.

3. La distribuzione di probabilità della Normale

Per ottenere la distribuzione di probabilità della riserva sinistri secondo una Normale è necessario ipotizzare che i pagamenti incrementali siano distribuiti secondo una Normale di media P_{ij} e varianza $\phi \cdot P_{ij}$, dove il parametro ϕ è stato già calcolato allo scopo di conseguire gli adjusted residui di Pearson. Tale parametro viene determinato sulla base dei dati storici, pertanto risulta fortemente correlato alle caratteristiche dell'impresa, variando quindi tra le differenti compagnie di assicurazione.

I valori fissati come media e varianza della distribuzione Normale provengono dalle simulazioni effettuate per il bootstrapping. In pratica gli importi incrementali che vengono ripetutamente campionati per avere diversi triangoli nel bootstrapping, sono quelli coinvolti nelle simulazioni per ottenere una distribuzione predittiva della riserva sinistri con pagamenti distribuiti secondo una Normale. England e Verrall¹⁰⁷ sottolineano che è inappropriato simulare dei pagamenti futuri come variabili casuali indipendenti. Sebbene la media e il prediction error dei pagamenti simulati possano essere corretti, la standard deviation delle riserve simulate potrebbe essere sottostimata. In questo lavoro si è imposto al modello che i pagamenti futuri avessero tutti la stessa distribuzione 108, ma con media e varianza diversa, pertanto sono stati trattati come variabili casuali indipendenti ma non identicamente distribuite. Un diretto riscontro è visibile nel confronto tra lo standard error delle distribuzioni predittive e lo standard error calcolato secondo la formula di Mack.

 $^{^{107}}$ Si rimanda al loro articolo del 2002 citato in bibliografia. 108 Sia essa Normale o LogNormale.

La somma per riga nel triangolo dei pagamenti simulati restituisce la riserva sinistri di una particolare generazione da cui è facile ottenere la riserva complessiva.

Come fatto per il bootstrapping, anche per le simulazioni ottenute da una Normale, si presentano i grafici per tutte le generazioni e per la riserva complessiva.

A differenza del caso precedente, è presente anche il primo periodo di origine, l'anno 1993. Nonostante si sia fissato pari a zero il relativo residuo, il modello vuole che si simuli da una Normale con determinate statistiche un probabile pagamento, pertanto, poiché il numero di simulazioni è elevato, è logico attendersi una distribuzione di probabilità anche per la generazione più anziana.

Grafico 25. Riserva Sinistri generazione 1993 N=1.000

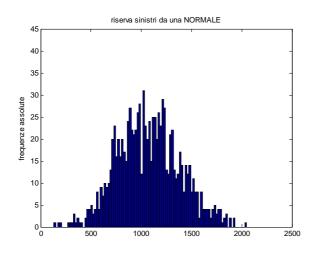


Grafico 26. Riserva Sinistri generazione 1994 N=1.000

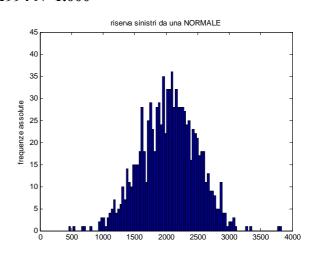


Grafico 27. Riserva Sinistri generazione 1995 N=1.000

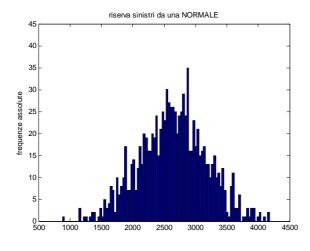


Grafico 28. Riserva Sinistri generazione 1996 N=1.000

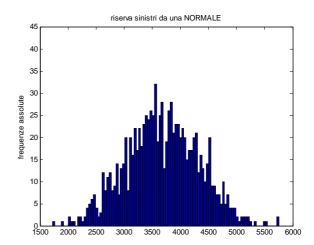


Grafico 29. Riserva Sinistri generazione 1997 N=1.000

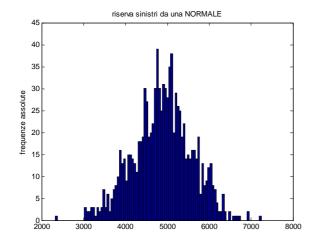


Grafico 30. Riserva Sinistri generazione 1998 N=1.000

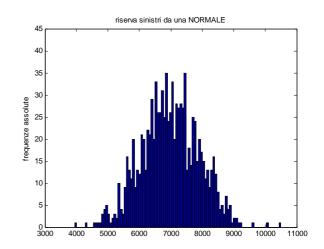


Grafico 31. Riserva Sinistri generazione 1999 N=1.000

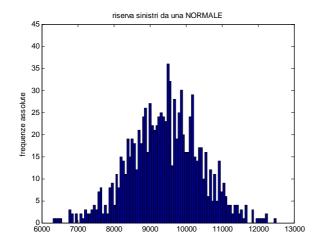


Grafico 32. Riserva Sinistri generazione 2000 N=1.000

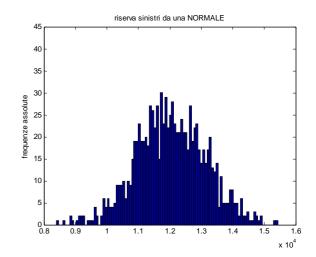


Grafico 33. Riserva Sinistri generazione 2001 N=1.000

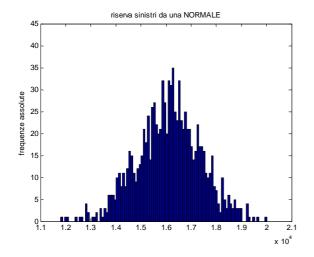


Grafico 34. Riserva Sinistri generazione 2002 N=1.000

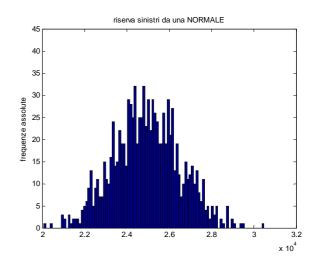


Grafico 35. Riserva Sinistri generazione 2003 N=1.000

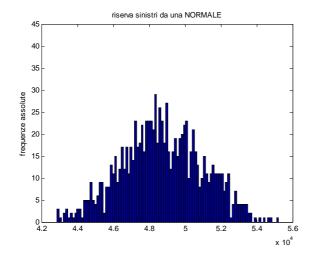


Grafico 36. Riserva Sinistri generazione 2004 N=1.000

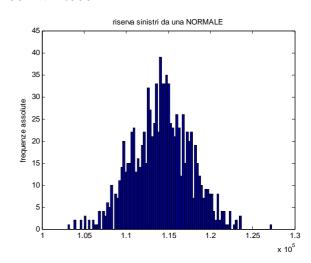


Grafico 37. Riserva Sinistri Totale N=1.000

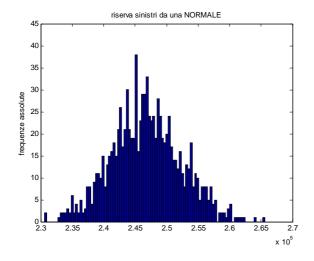


Grafico 38 Riserva Sinistri generazione 1993 N=10.000

Grafico 39 Riserva Sinistri generazione 1994 N=10.000

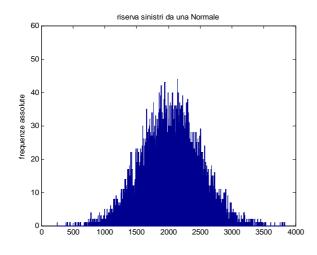


Grafico 40 Riserva Sinistri generazione 1995 N=10.000

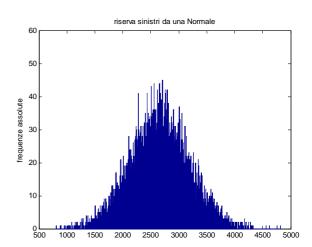


Grafico 41 Riserva Sinistri generazione 1996 N=10.000

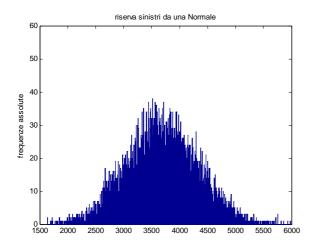


Grafico 42 Riserva Sinistri generazione 1997 N=10.000

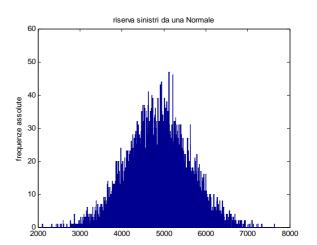


Grafico 43 Riserva Sinistri generazione 1998 N=10.000

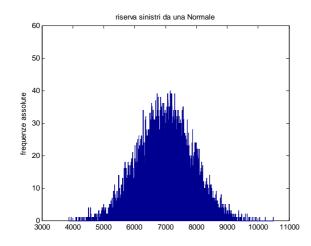


Grafico 44 Riserva Sinistri generazione 1999 N=10.000

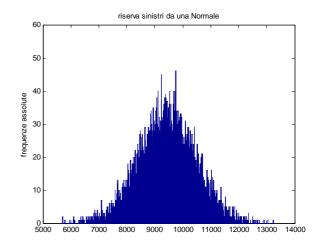


Grafico 45 Riserva Sinistri generazione 2000 N=10.000

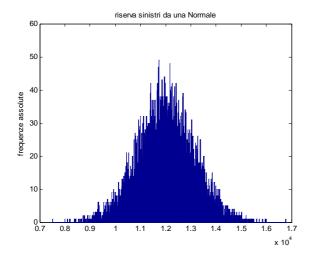


Grafico 46 Riserva Sinistri generazione 2001 N=10.000

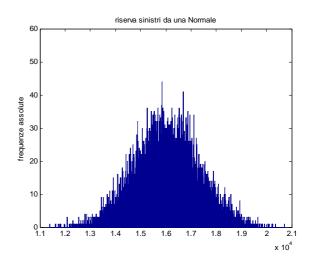


Grafico 47 Riserva Sinistri generazione 2002 N=10.000

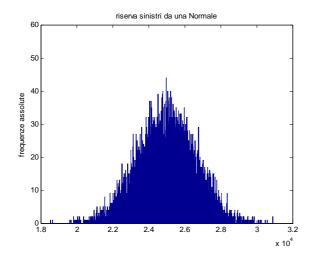


Grafico 48 Riserva Sinistri generazione 2003 N=10.000

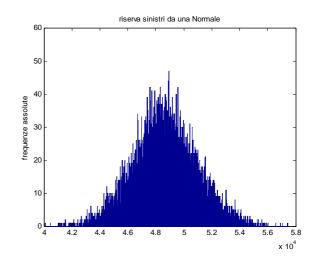
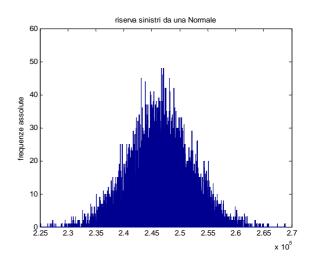


Grafico 49 Riserva Sinistri generazione 2004 N=10.000

riserva sinistri da una Normale

60


40

40

10

1.15

Grafico 50 Riserva Sinistri totale N=10.000

Analogamente a quanto fatto per il bootstrapping, si riporta una tabella riassuntiva dei principali momenti della distribuzione.

x 10⁵

Le distribuzioni di probabilità in media hanno gli stessi valori, certamente l'approssimazione migliora, anche se di poco, laddove si effettuano 10.000 simulazioni.

La deviazione standard è maggiore per le generazioni più recenti in quanto nel modello 109 si è posto di simulare dei pagamenti con varianza pari a $\phi \cdot P_{ij}$, che risulta maggiore per gli ultimi anni di origine perché questi hanno degli importi individuali maggiori, restando fisso il parametro ϕ per tutte le generazioni. Al contrario, il coefficiente di variazione, che esprime la variabilità relativa, segue l'andamento opposto, decresce se si considerano gli anni di generazione più recenti. Il coefficiente di variazione si riduce grazie alla legge dei grandi numeri. Gli ultimi esercizi necessitano della stima di un numero più elevato di pagamenti futuri, a differenza dei primi anni di origine in cui i risarcimenti da valutare sono pochi quantitativamente ma con variabilità elevata. La combinazione congiunta di pochi sinistri da liquidare ma con importi elevati causa una dispersione minore intorno alla media, ma una variabilità relativa maggiore.

L'indice di asimmetria si aggira intorno allo zero, come è logico attendersi dal momento che la distribuzione è una gaussiana. Aumentando il numero di simulazioni la bontà del modello migliora poiché restituisce una skweness ancora più vicina allo zero¹¹⁰.

Ouesti miglioramenti si ottengono maggiormente per le generazioni più recenti.

179

¹⁰⁹ In base a quanto suggerito dalla tecnica del bootstrapping.

La distribuzione di probabilità è normocurtica e pertanto l'indice di curtosi si attesta intorno a tre, la precisione migliora con un numero di simulazioni più elevato.

Infatti, più si aumenta l'ordine del momento che si vuole stimare, più deve essere maggiore il numero di simulazioni. La media è abbastanza centrata anche con N = 1.000, per gli altri momenti è necessario ricorrere al caso N = 10.000.

Nella tabella 3.2. sono riportati i valori dello standard error ottenuti dal modello, simulando una Normale, e quelli calcolati secondo la formula di Mack.

La distribuzione predittiva permette di calcolare lo standard error in maniera immediata, poiché è sufficiente riferirsi alla standard deviation della distribuzione. Nell'ipotesi che i pagamenti provengano da una Normale lo standard error è maggiore di quello ottenuto tramite le formule di Mack soltanto per le prime generazioni. Anche in questo caso valgono le stesse considerazioni fatte in merito al bootstrapping, malgrado la differenza tra i due metodi sia inferiore rispetto a quanto visto nella tabella 2.8.

3.1. Principali statistiche ottenute dalla distribuzione Normale

Gen	Numero simulazioni	Media (in Euro.000)	Standard Deviation (in Euro.000)	Coefficiente di Variazione	Skewness	Curtosi	Chain ladder (importi in Euro.000)
1993	N = 1.000	1.075	311,42	28,98%	0,1439	2,8606	1.068
1,50	N = 10.000	1.068	312,91	29,30%	0,0193	2,9632	1.000
1994	N = 1.000	2.042	446,98	21,89%	-0,0644	3,2550	2.033
	N = 10.000	2.036	456,35	22,41%	0,0510	3,0752	21000
1995	N = 1.000	2.641	531,83	20,14%	-0,0337	2,9166	2.654
	N = 10.000	2.648	515,58	19,47%	0,0370	3,0481	2100
1996	N = 1.000	3.681	645,59	17,54%	0,0195	2,7935	3.676
	N = 10.000	3.686	617,09	16,74%	0,0409	2,9734	
1997	N = 1.000	4.886	696,25	14,25%	-0,0927	3,0391	4.859
	N = 10.000	4.860	711,26	14,63%	0,0278	2,9561	
1998	N = 1.000	6.983	908,33	13,01%	0,0110	2,9687	6.989
	N = 10.000	6.996	849,91	12,15%	0,0025	2,9883	
1999	N = 1.000	9.423	990,60	10,51%	-0,0408	3,0930	9.439
	N = 10.000	9.438	997,86	10,57%	0,0126	3,0596	,
2000	N = 1.000	12.040	1109,10	9,21%	-0,0333	3,0098	11.999
	N = 10.000	12.013	1108,50	9,23%	0,0147	3,0565	
2001	N = 1.000	16.110	1269,00	7,88%	-0,0990	3,1087	16.027
	N = 10.000	16.039	1279,00	7,97%	0,0069	2,9603	
2002	N = 1.000	24.941	1568,60	6,29%	0,0637	2,8934	24.981
	N = 10.000	24.999	1599,90	6,40%	-0,0177	2,9862	,
2003	N = 1.000	48.729	2250,40	4,62%	0,0021	2,6283	48.590
	N = 10.000	48.637	2255,40	4,64%	0,0395	3,0113	
2004	N = 1.000	114.220	3434,70	3,01%	-0,0124	3,0976	114.058
	N = 10.000	114.040	3356,10	2,94%	-0,0043	3,0531	
Totale	N = 1.000	246.770	5555,90	2,25%	0,1203	2,9347	246.374
Tourc	N = 10.000	246.460	5576,40	2,26%	0,0144	3,0687	2.0.07.

3.2. Standard error

	Numero			
Gen	simulazioni	Normale	Mack	
1993	N = 1.000	311,42	_	
1773	N = 10.000	312,91		
1994	N = 1.000	446,98	32,01	
1551	N = 10.000	456,35	32,01	
1995	N = 1.000	531,83	134,32	
2550	N = 10.000	515,58	,	
1996	N = 1.000	645,59	389,65	
	N = 10.000	617,09	007,00	
1997	N = 1.000	696,25	449,09	
	N = 10.000	711,26	, , , ,	
1998	N = 1.000	908,33	555,27	
	N = 10.000	849,91		
1999	N = 1.000	990,60	785,60	
	N = 10.000	997,86		
2000	N = 1.000	1109,10	1.071,47	
	N = 10.000	1108,50	1.0,1,1,	
2001	N = 1.000	1269,00	1.440,12	
	N = 10.000	1279,00	,	
2002	N = 1.000	1568,60	2.031,82	
	N = 10.000	1599,90	,	
2003	N = 1.000	2250,40	2.987,48	
	N = 10.000	2255,40	,	
2004	N = 1.000	3434,70	5.912,26	
	N = 10.000	3356,10		
Totale	N = 1.000	5555,90	8.191,61	
	N = 10.000	5576,40	,	

4. La distribuzione di probabilità della LogNormale

Nel modello si è poi ipotizzato che i pagamenti futuri fossero distribuiti secondo una LogNornale a due parametri. La distribuzione LogNormale è strettamente relazionata alla Normale. Infatti, una variabile casuale \widetilde{X} ha distribuzione LogNormale con parametri μ e σ , se $\ln(\widetilde{X})$ ha distribuzione Normale con media μ e deviazione standard σ . Equivalentemente $\widetilde{X} = \exp(\widetilde{Y})$ dove \widetilde{Y} è distribuita normalmente con media μ e deviazione standard σ .

La media e la varianza di \widetilde{X} valgono

a.
$$E(\widetilde{X}) = \exp\left(\mu + \frac{\sigma^2}{2}\right)$$

b.
$$Var(\widetilde{X}) = \exp[2 \cdot (\mu + \sigma^2)] - \exp(2 \cdot \mu + \sigma^2)$$
.

I parametri μ e σ assumono i seguenti valori

a.
$$\mu = \ln(m) - \frac{1}{2}\sigma^2$$

b.
$$\sigma^2 = \ln\left(1 + \frac{s^2}{m^2}\right)$$

avendo indicato con m e s^2 rispettivamente la media e la varianza della LogNormale¹¹¹. La media della distribuzione è posta pari a P_{ij} e la varianza pari a $\phi \cdot P_{ij}$, dove P_{ij} è il pagamento stimato per la generazione i-esima sostenuto con j anni di ritardo e ottenuto tramite il campionamento con rimpiazzo dei residui, a cui si applicano i fattori di sviluppo del basic chain ladder, calcolati per tutti i campionamenti.

Di seguito sono riportati i grafici per le dodici generazioni, nonché il grafico della riserva globale nei due casi, N = 1.000 e N = 10.000

.

¹¹¹ Si noti che $\frac{s}{m}$ è il coefficiente di variazione.

Grafico 51. Riserva Sinistri generazione 1993 N=1.000

riserva sinistri da una LOGNORMALE

45

40

35

30

25

10

5

0

500

1000

1500

2000

2500

Grafico 52. Riserva Sinistri generazione 1994 N=1.000

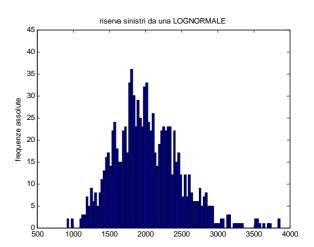


Grafico 53. Riserva Sinistri generazione 1995 N=1.000

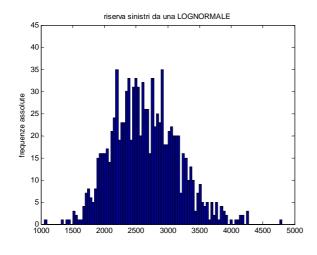


Grafico 54. Riserva Sinistri generazione 1996 N=1.000

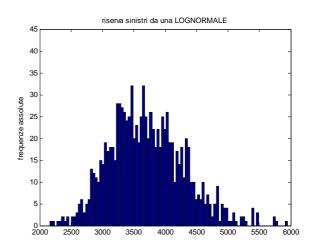


Grafico 55. Riserva Sinistri generazione 1997 N=1.000

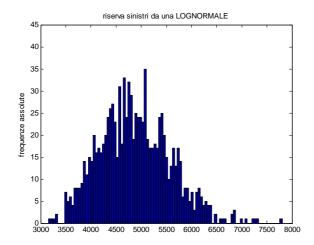


Grafico 56. Riserva Sinistri generazione 1998 N=1.000

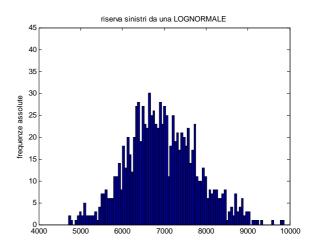


Grafico 57. Riserva Sinistri generazione 1999 N=1.000

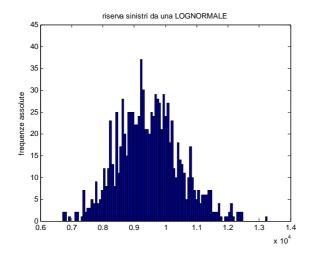


Grafico 58. Riserva Sinistri generazione 2000 N=1.000

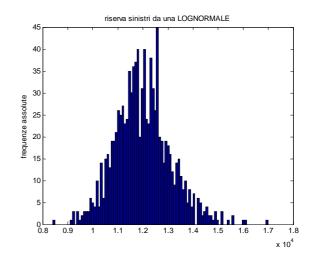


Grafico 59. Riserva Sinistri generazione 2001 N=1.000

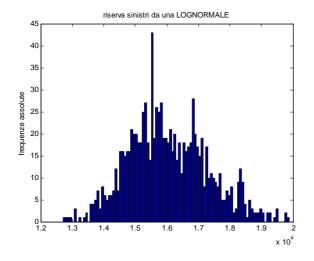


Grafico 60. Riserva Sinistri generazione 2002 N=1.000

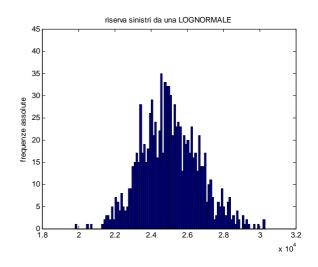


Grafico 61. Riserva Sinistri generazione 2003 N=1.000

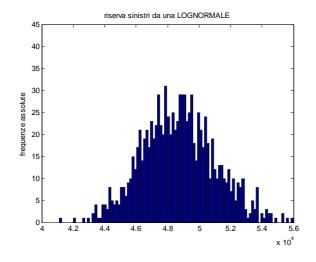


Grafico 62. Riserva Sinistri generazione 2004 N=1.000

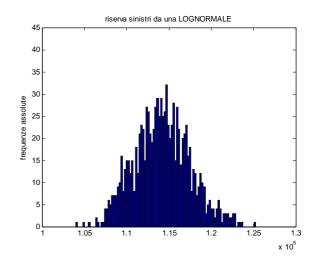


Grafico 63. Riserva Sinistri Totale N=1.000

riserva sinistri da una LOGNORMALE

45

40

35

30

25

20

225

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

x 10⁵

Grafico 64. Riserva Sinistri generazione 1993 N=10.000

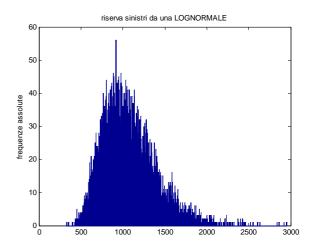


Grafico 65. Riserva Sinistri generazione 1994 N=10.000

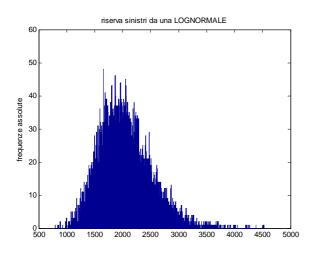


Grafico 66. Riserva Sinistri generazione 1995 N=10.000

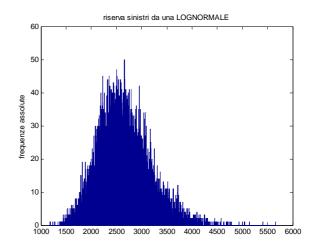


Grafico 67. Riserva Sinistri generazione 1996 N=10.000

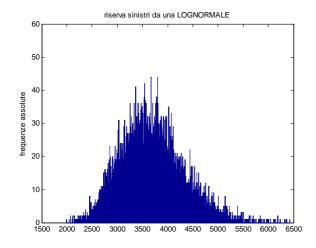


Grafico 68. Riserva Sinistri generazione 1997 N=10.000

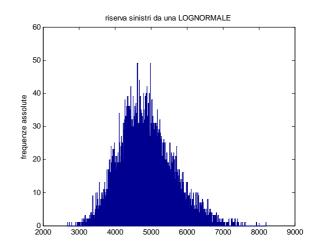


Grafico 69. Riserva Sinistri generazione 1998 N=10.000

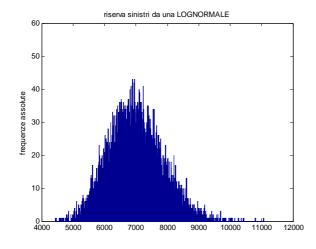


Grafico 70. Riserva Sinistri generazione 1999 N=10.000

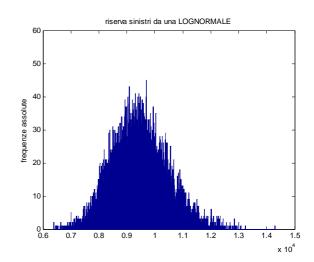


Grafico 71. Riserva Sinistri generazione 2000 N=10.000

riserva sinistri da una LOGNORMALE

60

40

40

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 × 10⁴

Grafico 72. Riserva Sinistri generazione 2001 N=10.000

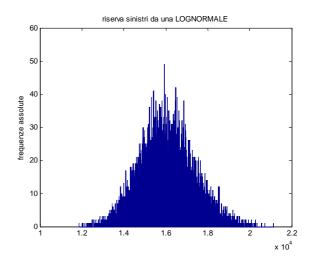


Grafico 73. Riserva Sinistri generazione 2002 N=10.000

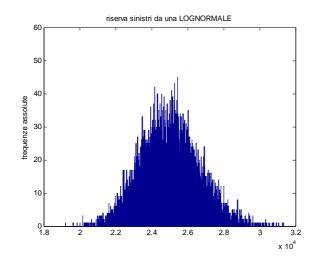


Grafico 74. Riserva Sinistri generazione 2003 N=10.000

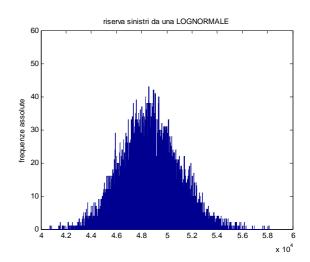


Grafico 75. Riserva Sinistri generazione 2004 N=10.000

riserva sinistri da una LOGNORMALE

60

40

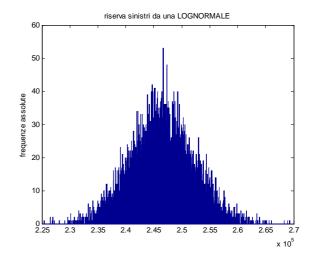
40

10

1.05

1.1

1.15


1.2

1.25

1.3

× 10⁵

Grafico 76. Riserva Sinistri totale N=10.000

Nella tabella 4.1. sono stati riassunti i momenti calcolati per le varie distribuzioni.

Valgono le stesse considerazioni fatte prima, ossia che la media risulta stimata abbastanza bene anche con un numero di simulazioni piuttosto piccolo, invece i momenti di ordine superiore sono centrati in maniera migliore nel caso N = 10.000.

Un valore superiore della standard deviation per le generazioni più recenti è dovuto alle ipotesi del modello in cui si è posto di simulare dei pagamenti da una LogNormale con varianza pari a $\phi \cdot P_{ij}$, e quindi variabilità maggiore per le riserve degli ultimi anni di esercizio poiché P_{ij} è un importo che cresce se ci si sposta verso generazioni meno anziane. Ciononostante, la variabilità relativa, che è quella su cui si deve porre l'attenzione, è minore per gli anni di accadimento più vicini, in termini temporali, alla data di valutazione.

La distribuzione LogNormale a due parametri presenta un indice di asimmetria positivo, con una lunga coda a destra. Questa caratteristica si adatta meglio ai dati esaminati nel presente lavoro dal momento che gli stessi fanno riferimento alla R.C.Auto. Il suddetto ramo, soprattutto per le generazioni più anziane¹¹², riserva pochi sinistri con elevati importi di risarcimento, da qui si ricava la presenza nella distribuzione di probabilità di estremi valori positivi. La presenza di dati estremi contribuisce a rendere ancora più instabile la stima e ad avere una distribuzione del tipo descritto sopra. Per dimostrare quanto detto si osservi il coefficiente di variazione e nello stesso tempo la standard deviation. Nel caso in cui si ipotizza che i pagamenti si distribuiscano secondo una LogNormale si ottengo risultati analoghi a quelli del Bootstrapping o della Normale. Dunque valgono le stesse considerazioni fatte in precedenza: le prime generazioni mostrano una variabilità assoluta minore delle altre, ma hanno una variabilità relativa maggiore; un trend opposto presentano le generazioni meno anziane.

L'indice di curtosi è nettamente superiore al valore tre, di conseguenza la distribuzione è leptocurtica.

La tabella 4.2. riporta un confronto tra i valori dello standard error della distribuzione LogNormale e i risultati conseguiti applicando ai dati di input le relazioni proposte da Thomas Mack.

Nel caso della LogNormale lo standard error è superiore al valore ottenuto tramite le formule di Mack per le prime generazioni e più precisamente fino all'anno 2000, risultando inferiore per le restanti generazioni. Le considerazioni che possono essere fatte a riguardo

_

¹¹² Per gli anni di origine più lontani nel tempo si devono prevedere dei risarcimenti di importo sicuramente più contenuto ma con variabilità relativa maggiore.

non sono differenti da quelle viste per gli altri casi. Il basic chain ladder è soggetto ad una variabilità di stima maggiore di quanto lo sia l'aver ipotizzato che i pagamenti provenissero da una LogNormale.

4.1. Principali statistiche ottenute dalla distribuzione LogNormale

Gen	Numero simulazioni	Media (in Euro.000)	Standard Deviation (in Euro.000)	Coefficiente di Variazione	Skewness	Curtosi	Chain ladder (importi in Euro.000)
1993	N = 1.000	1.062	305,64	28,78%	0,7362	3,6353	1.068
	N = 10.000	1.068	313,28	29,33%	0,9042	4,4029	
1994	N = 1.000	2.028	460,69	22,72%	0,6078	3,7609	2.033
	N = 10.000	2.037	457,67	22,47%	0,6616	3,9084	
1995	N = 1.000	2.644	516,26	19,53%	0,3787	3,2045	2.654
	N = 10.000	2.648	512,55	19,36%	0,5437	3,6344	
1996	N = 1.000	3.709	594,57	16,03%	0,4490	3,2735	3.676
	N = 10.000	3.685	619,17	16,80%	0,4698	3,3587	
1997	N = 1.000	4.876	703,21	14,42%	0,3913	3,1851	4.859
	N = 10.000	4.862	712,20	14,65%	0,3937	3,1674	
1998	N = 1.000	6.960	849,99	12,21%	0,2440	3,0235	6.989
	N = 10.000	6.994	846,30	12,10%	0,3058	3,1706	
1999	N = 1.000	9.484	1004,50	10,59%	0,2451	3,1319	9.439
	N = 10.000	9.440	997,11	10,56%	0,2948	3,1636	
2000	N = 1.000	11.998	1110,80	9,26%	0,3916	3,7084	11.999
	N = 10.000	12.013	1.111,70	9,25%	0,2702	3,2027	
2001	N = 1.000	16.046	1264,00	7,88%	0,3020	2,8278	16.027
	N = 10.000	16.036	1.276,60	7,96%	0,2020	3,0168	
2002	N = 1.000	25.064	1598,70	6,38%	0,2201	3,0301	24.981
	N = 10.000	25.000	1.599,70	6,40%	0,1502	3,0391	
2003	N = 1.000	48.696	2316,90	4,76%	0,1354	2,9294	48.590
	N = 10.000	48.633	2.258,90	4,64%	0,1550	3,0426	
2004	N = 1.000	114.200	3299,70	2,89%	0,1692	2,9230	114.058
	N = 10.000	114.040	3.355,70	2,94%	0,0746	3,0603	
Totale	N = 1.000	246.760	5573,10	2,26%	0,1014	2,9361	246.374
	N = 10.000	246.460	5.571,50	2,26%	0,0470	3,0851	

4.2. Standard error

Gen	Numero simulazioni	LogNormale	Mack	
1002	N = 1.000	305,64		
1993	N = 10.000	313,28	-	
1994	N = 1.000	460,69	32,01	
1994	N = 10.000	457,67	32,01	
1995	N = 1.000	516,26	134,32	
1773	N = 10.000	512,55	134,32	
1996	N = 1.000	594,57	389,65	
	N = 10.000	619,17	505,00	
1997	N = 1.000	703,21	449,09	
	N = 10.000	712,20	, ,	
1998	N = 1.000	849,99	555,27	
	N = 10.000	846,30		
1999	N = 1.000	1004,50	785,60	
	N = 10.000	997,11	·	
2000	N = 1.000	1110,80	1.071,47	
	N = 10.000	1.111,70		
2001	N = 1.000	1264,00	1.440,12	
	N = 10.000	1.276,60		
2002	N = 1.000	1598,70	2.031,82	
	N = 10.000	1.599,70	ŕ	
2003	N = 1.000	2316,90	2.987,48	
	N = 10.000	2.258,90		
2004	N = 1.000	3299,70	5.912,26	
	N = 10.000	3.355,70		
Totale	N = 1.000	5573,10	8.191,61	
	N = 10.000	5.571,50		

Di seguito si riporta una tabella riassuntiva dello standard error calcolato nei tre casi, Bootstrapping, Normale e LogNormale, e messi a confronto con i risultati di Mack.

Nel paragrafo precedente è stato osservato che uno standard error elevato è causato dall'aver imposto al modello che i pagamenti futuri fossero considerati come variabili casuali indipendenti. Infatti, nonostante la media della distribuzione nei tre casi, Bootstrapping, Normale e LogNormale, sia stimata in modo corretto, l'ipotesi scelta per il

modello definisce una dispersione minore se confrontata con la deviazione standard ottenuta dalla formula di Mack. La differenza dei valori dello standard error ottenuti dal modello di simulazione e quelli di Mack è ancora più evidente per le ultime generazioni in cui si evince una varianza decisamente più piccola rispetto al caso analitico

4.3. Sintesi dei valori dello standard error

Gen	Numero	Bootstrapping	Normale	LogNormale	Mack	
Gen	simulazioni	Dootstrapping	TVOTIMALE	Logi (of mare	WHER	
1993	N = 1.000	-	311,42	305,64	-	
	N = 10.000	-	312,91	313,28		
1994	N = 1.000	127,62	446,98	460,69	32,01	
	N = 10.000	125,11	456,35	457,67	32,01	
1995	N = 1.000	158,50	531,83	516,26	134,32	
	N = 10.000	151,91	515,58	512,55	134,32	
1996	N = 1.000	190,97	645,59	594,57	389,65	
	N = 10.000	182,47	617,09	619,17	369,03	
1997	N = 1.000	213,46	696,25	703,21	449,09	
	N = 10.000	205,89	711,26	712,20	449,09	
1998	N = 1.000	253,64	908,33	849,99	555,27	
	N = 10.000	248,87	849,91	846,30	333,27	
1999	N = 1.000	285,85	990,60	1004,50	785,60	
	N = 10.000	287,01	997,86	997,11	705,00	
2000	N = 1.000	307,44	1109,10	1110,80	1.071,47	
	N = 10.000	303,24	1108,50	1.111,70	1.071,47	
2001	N = 1.000	347,44	1269,00	1264,00	1.440,12	
	N = 10.000	341,65	1279,00	1.276,60	1.440,12	
2002	N = 1.000	441,76	1568,60	1598,70	2.031,82	
	N = 10.000	445,16	1599,90	1.599,70	2.031,62	
2003	N = 1.000	727,14	2250,40	2316,90	2.987,48	
	N = 10.000	731,30	2255,40	2.258,90	2.707,40	
2004	N = 1.000	845,44	3434,70	3299,70	5 912 26	
	N = 10.000	850,10	3356,10	3.355,70	5.912,26	
Totale	N = 1.000	2.813,10	5555,90	5573,10	8.191,61	
	N = 10.000	2.803,30	5576,40	5.571,50	0.171,01	

Per le ultime generazioni il numero di pagamenti da stimare è maggiore, dunque, viene accentuata la differenza tra i valori dello standard error ottenuti nel caso stocastico con i relativi risultati conseguiti nel caso analitico.

Il modello di simulazione restituisce uno standard error della riserva complessiva decisamente inferiore a quello ottenuto analiticamente dalle formule di Mack. Il motivo sta nel fatto che Mack ha pensato che tra le stime dei vari anni di accadimento esiste una qualche correlazione che deve essere tenuta in conto qualora si valuti lo standard error della riserva globale. Dunque non è corretto sommare lo standard error delle riserve generazionali per ottenere quello relativo alla riserva sinistri totale.

Facendo attenzione alla riserva complessiva, il bootstrapping presenta una variabilità di stima minore; al contrario, il procedimento di Thomas Mack restituisce il più elevato standard error e quindi una probabile variabilità più elevata nell'aver stimato la riserva sinistri.

England e Verrall¹¹³ sottolineano la differenza che intercorre tra standard error e prediction error, sebbene molti tendono a usare i due termini per indicare il medesimo concetto.

England e Verrall affermano che lo standard error delle riserve, ossia l'errore di stima, fornisce una misura di variabilità, ma l'interpretazione che ne fanno è differente. Lo standard error rappresenta la deviazione standard delle riserve medie che si otterrebbe se si ripetesse diverse volte un esperimento ripetendo l'esperienza passata dei sinistri, ogni volta stimando la media della riserva. Sebbene questa misura potrebbe essere interessante, il prediction error riveste un interesse maggiore, rappresentando non la standard deviation delle riserve attese, ma la standard deviation delle passività correnti per i sinistri non pagati. Conseguentemente il prediction error avrà un valore più elevato dello standard error.

I due studiosi hanno voluto sottolineare la differenza che intercorre tra la definizione di standard error e prediction error; nonostante ciò molti utilizzano i due termini, e di conseguenza la definizione di essi, in modo indistinto.

_

¹¹³ Si veda in merito l'articolo del 2002 riportato in bibliografia.

5. Il risk margin

L'European Commission ha chiesto alla Committee of European Insurance and Occupational Pension Supervisors (CEIOPS) di preparare una guida che trattasse le regole del Solvency II per le sottoscrizioni degli assicuratori europei.

Il CEIOPS ha deciso di condurre il Quantitative Impact Study 2 (QIS 2) allo scopo di studiare quale effetto può avere sulle polizze assicurative il valore richiesto sia per le attività che per le passività, secondo la struttura del Solvency II.

Per la valutazione delle riserve tecniche il CEIOPS in questo lavoro ha proposto come determinarla, lasciando all'European Commission, agli Stati Membri e al Parlamento Europeo la scelta della base su cui le riserve tecniche devono essere determinate.

L'obiettivo del QIS 2 è triplice. Il CEIOPS spera che questo esercizio possa dare informazioni sulla facilità o meno dei calcoli coinvolti. In secondo luogo, il CEIOPS cerca indicazioni del possibile impatto sul bilancio d'esercizio e dell'ammontare del capitale necessario qualora uno degli approcci del QIS 2 dovesse essere adottato come Solvency II. Il terzo compito è la ricerca di informazioni quantitative e qualitative sulla correttezza dei possibili approcci per il calcolo del Solvency Capital Requirement (SCR).

Il QIS 2 è un esercizio che cerca di definire una stima quantitativa dell'impatto complessivo del nuovo sistema di solvibilità, e come tale si occupa

- di valutare le assunzioni delle attività e delle passività;
- del Solvency Capital Requirement (SCR) calcolato secondo la standard formula;
- del Solvency Capital Requirement calcolato secondo gli internal model dei vari assicuratori;
- del Minimum Capital Requirement (MCR).

Un'analisi approfondita del QIS 2 esula dallo scopo della trattazione, pertanto ci si soffermerà solo sul primo punto.

Per quanto riguarda le attività, queste dovrebbero essere valutate al loro valore di mercato. Laddove non si disponesse di tale dato, possono essere adottati approcci alternativi purché siano consistenti alle rilevanti informazioni di mercato.

Le passività per una compagnia di assicurazione sono suddivise tra riserve tecniche e altre passività, in questo contesto interessa definire uno strumento di stima delle prime, e più precisamente della riserva sinistri. Come già detto nel primo capitolo, le riserve tecniche sono date dalla somma tra la riserva premi e la riserva per i sinistri non ancora pagati. Per quanto riguarda la valutazione delle riserve tecniche, la metodologia è duplice

- a valori market-consistent per rischi quotati, come per esempio i rischi finanziari;
- la best estimate + il risk margin al 75° percentile per altri tipi di rischi come quelli assicurativi.

La determinazione percentile non è l'unico metodo per definire il risk margin; è possibile ricorrere all'approccio del Cost of Capital (CoC) proposto dall'autorità di vigilanza svizzera nello Swiss Solvency Test.

Poiché non esiste un mercato in cui sono quotati i sinistri, per determinare la riserva sinistri occorre impiegare il secondo approccio.

La best estimate è definita come il valore attuale atteso dei futuri cash-flows¹¹⁴. La determinazione dovrebbe essere fatta polizza per polizza, ma il CEIOPS autorizza ad utilizzare ragionevoli metodi attuariali e approssimazioni. Le assunzioni fatte per determinare il valore atteso dei cash-flows devono essere ritenute realistiche rispetto al business dell'impresa; inoltre, per quanto riguarda le distribuzioni di probabilità di ogni fattore di rischio dovrebbero basarsi sull'esperienza, o riferendosi ai dati del settore se l'esperienza dovesse essere insufficiente o non abbastanza credibile.

In questo ambito, il termine best estimate è inteso come il valore atteso della distribuzione dei possibili risultati per le passività non ancora pagate. Essenzialmente altro non è che la media della distribuzione predittiva.

Nel QIS 2 è richiesto l'impiego di metodi statistici compatibili con la pratica attuariale corrente, prendendo in considerazione tutti i fattori che potrebbero avere un impatto sull'esperienza futura dei sinistri. Tutto ciò richiede l'utilizzo di due triangoli di run-off che sintetizzino i dati sia per anno di accadimento che per anno di denuncia.

Per valutare la riserva sinistri è necessario conoscere il risk margin.

L'European Commission ha dato la seguente definizione di risk margin, "The risk margin covers the risks linked to the future liability cash flows over their whole time horizon. Two possible ways to calculate the risk margin should be considered as working hypotheses. It can be calculated as the difference between the 75th percentile of the underlying probability distribution until run-off and the best estimate. [...]. Alternatively, the risk margin can be calculated based on the cost of providing SCR capital to support the business-in-force until run-off. Further quantitative impact information should be collected to assess the merits of the two methods."¹¹⁵.

197

¹¹⁴ L'attualizzazione dovrebbe essere condotta sulla duration attraverso il tasso di sconto risk-neutral.

¹¹⁵ EIOPC (2006) "Draft Amended Framework for Consultation on Solvency II", Annex to MARKT/2511/06-EN.

Nel modello di simulazione il risk margin richiesto per i rischi non quotati è stato calcolato come differenza tra il valore atteso e il valore necessario per raggiungere un dato livello di confidenza, costruito secondo una certa ampiezza, includendo l'incertezza sulle distribuzioni coinvolte.

Il risk margin è quell'importo che l'impresa può accantonare per tutelarsi da eventuali errori di stima della riserva. All'aumentare del livello di sicurezza, cresce anche la somma che prudenzialmente l'impresa decide di sommare alla best estimate della riserva sinistri.

Di seguito sono riportate le tabelle con i percentili di varie entità, e precisamente il 25-esimo, 50-esimo, 75-esimo, 90-esimo, 95-esimo e 99-esimo

5.1. Percentili ottenuti dal modello con N=1.000 (importi in Euro.000)

	25%	50% (mediana)	75%	90%	95%	99%	media
Bootstrapping	244.590	246.500	248.500	250.130	250.930	253.290	246.500
Normale	242.990	246.610	250.440	254.120	256.190	260.080	246.770
LogNormale	242.890	246.650	250.460	253.830	256.030	259.620	246.760

Se si suppone che l'impresa decide di raggiungere un livello di prudenza del 75%, dovrà accantonare un valore che oscilla tra 248.320 e 250.630 migliaia di Euro. La scelta è riposta nelle decisioni dell'attuario incaricato che opterà per un determinato valore in base alle caratteristiche della società.

Il 50-esimo percentile è la mediana. In questo contesto è stata introdotta anche la mediana perché ancora non si è stabilito cosa intendere come best estimate, anche se l'idea che sta prevalendo è di considerare la media, piuttosto che la mediana, come best estimate. La mediana non fornisce alcuna informazione circa il rischio di downside. La media della distribuzione predittiva ha un'attinenza più importante con l'interpretazione che si fa circa la best estimate. Anche nel caso in cui si dovesse scegliere la media come best estimate non va dimenticato che la somma accantonata potrebbe essere sufficiente "in media".

5.2. Percentili ottenuti dal modello con N=10.000 (importi in Euro.000)

	25%	50% (mediana)	75%	90%	95%	99%	media
Bootstrapping	244.480	246.380	248.300	250.010	251.080	252.890	246.400
Normale	242.770	246.440	250.130	253.690	255.630	259.660	246.460
LogNormale	242.750	246.400	250.130	253.670	255.640	259.690	246.460

Nel caso in cui si siano effettuate 10.000 simulazioni e l'impresa decida di accantonare una somma che preveda sia sufficiente nel 75% dei casi, allora l'attuario della compagnia dovrà indicare il valore da porre nel passivo del bilancio scegliendo in un range di [248.300,250.130].

Con i percentili è possibile calcolare il risk margin secondo quanto detto prima.

I valori sono ovviamente diversi per le due simulazioni svolte

5.3. Risk margin con N=1.000 (importi in Euro.000)

	25%	50% (mediana)	75%	90%	95%	99%	media
Bootstrapping	-1.910	0	2.000	3.630	4.430	6.790	0
Normale	-3.780	-160	3.670	7.350	9.420	13.310	0
LogNormale	-3.870	-110	3.700	7.070	9.270	12.860	0

5.4. Proporzione del risk margin (in percentuale) N=1.000

	25%	50% (mediana)	75%	90%	95%	99%	media
Bootstrapping	-0,80	-0,01	0,86	1,47	1,83	2,69	0,00
Normale	-1,70	-0,07	1,55	2,86	3,84	5,33	0,00
LogNormale	-1,60	-0,02	1,50	2,81	3,52	5,48	0,00

5.5. Risk margin con N=10.000 (importi in euro.000)

	25%	50% (mediana)	75%	90%	95%	99%	media
Bootstrapping	-1.920	-20	1.900	3.610	4.680	6.490	0
Normale	-3.690	-20	3.670	7.230	9.170	13.200	0
LogNormale	-3.710	-60	3.670	7.210	9.180	13.230	0

5.6. Proporzione del risk margin (in percentuale) N=10.000

	25%	50% (mediana)	75%	90%	95%	99%	media
Bootstrapping	-0,79	-0,01	0,77	1,44	1,86	2,57	0,00
Normale	-1,52	-0,01	1,47	2,85	3,59	5,08	0,00
LogNormale	-1,53	-0,02	1,47	2,84	3,59	5,09	0,00

Il risk margin al livello dei primi due percentili può risultare negativo poiché è possibile che la media della distribuzione sia maggiore del valore restituito dal percentile. Per i percentili più elevati il valore del risk margin è positivo.

La proporzione del risk margin in relazione alla somma da accantonare varia in corrispondenza della tecnica di simulazione e della scelta del percentile. Con riferimento ai differenti percentili, la proporzione più modesta si riscontra nel bootstrapping. A parità di procedure di simulazione applicate ai dati, la proporzione indubbiamente è maggiore per i percentili superiori. In generale si può affermare che l'incidenza del risk margin sulla riserva sinistri varia da un minimo dello 0,77% ad un massimo del 5,09%.

La compagnia può scegliere a quale livello definire il risk margin.

Si dimostra un interesse maggiore nei confronti del 75 – esimo percentile perché i valori relativi al 95 – esimo o al 99 – esimo percentili sono troppo estremi.

Conclusioni

Il presente lavoro non ha l'obiettivo di fornire dei nuovi metodi di stima per la riserva sinistri, ma analizzare in modo critico le principali procedure di valutazione cercando di porre l'accento sui punti di forza e di debolezza di ciascun criterio. Nella prima parte sono stati esposti alcuni metodi deterministici con le relative dimostrazioni numeriche. In una fase successiva si è cercato di costruire un modello che simulasse una ragionevole distribuzione di probabilità secondo le caratteristiche dell'impresa di cui si dispongo i dati. Anche per i metodi deterministici si è fatto uso dello stesso database iniziale.

Si è dimostrato che non esiste un metodo migliore di un altro e che, come tale, può essere impiegato in ogni circostanza. La riserva riguardante un determinato sinistro resterà aperta fino a quando il sinistro non verrà risarcito interamente. E' possibile che l'impresa nel tempo riesca a procurarsi ulteriori e nuove informazioni che possono essere utili ai fini della stima della riserva sinistri. L'attuario non conoscerà mai il vero ammontare della riserva, da ciò nasce l'esigenza di poter aggiornare la stima in modo tale che l'accantonamento sia quanto più prossimo ai reali impegni della compagnia. La determinazione della stessa è contraddistinta da un carattere dinamico e non statico a causa dell'aggiornamento continuo a cui è sottoposta.

I metodi deterministici presentati nel secondo capitolo sono tutti caratterizzati da ipotesi necessarie al fine di ottenere la somma da accantonare. Le ipotesi presuppongono che ci siano alcune regolarità nello sviluppo del processo di liquidazione dei sinistri. Nonostante tali regolarità siano riscontrabili più facilmente nei rami di massa¹¹⁶, è necessario che ogni realtà imprenditoriale verifichi l'esistenza o meno delle ipotesi principali di ogni metodo. Un'approfondita analisi preliminare evita il ricorso ad una determinata procedura se i dati iniziali non sono adatti all'applicazione in esame, in tal modo si elude la possibilità di ottenere una stima della riserva non corretta.

Non esiste il metodo migliore, sia esso deterministico o stocastico. Un particolare modello potrebbe essere adatto per uno specifico problema o data set. I dati dovrebbero essere esaminati in maniera dettagliata, piuttosto che utilizzare lo stesso approccio in ogni circostanza. Questo accorgimento è valido sia per i metodi stocastici che deterministici.

E' stato dimostrato che applicare differenti metodi deterministici allo stesso insieme di dati fornisce un range di plausibili valori della riserva. Nonostante tale intervallo non sia

_

¹¹⁶ Si ricordi che i rami di massa sono caratterizzati da un numero elevato di unità assicurate.

estremamente ampio, non sarebbe comunque ragionevole porre in bilancio come stima della riserva sinistri l'estremo inferiore del range di variazione. Sarà compito dell'attuario scegliere il valore da apporre in bilancio secondo il reale processo di liquidazione dei sinistri e nel rispetto del principio della prudenza.

I metodi che si qualificano tra la classe dei procedimenti più applicati ai triangoli di run-off delle compagnie di assicurazione sono, tra quelli presentati in questo lavoro, il basic chain ladder e il metodo di Fisher-Lange. A dire il vero, nella pratica assicurativa un ampio impiego caratterizza più il chain ladder che non il Fisher-Lange. Il chain ladder non richiede elevate elaborazioni, la procedura di calcolo è molto più semplice e immediata di quando lo sia il metodo del costo medio. L'approccio proposto da Fisher e Lange richiede di poter disporre di molti dati, e può succedere che la compagnia di assicurazione non abbia a disposizione tutti i triangoli di run-off necessari per poter stimare l'importo da riservare. Inoltre, per i rami più volatili è molto più rischioso applicare il Fisher-Lange.

Si osservi che non sarebbe comunque corretto affermare che i metodi stocastici superino i limiti previsti dai metodi attuariali. Infatti, il grande vantaggio che se ne ricava dall'applicazione dei modelli stocastici è l'acquisizione della distribuzione predittiva della riserva sinistri. Tuttavia, è necessario interpretare accuratamente i risultati che si ottengono e soprattutto analizzarli in maniera critica, in base alle aspettative e alle caratteristiche fondamentali della compagnia. Il problema comune a tutti i metodi, deterministici e stocastici, riguarda le ipotesi iniziali. Infatti, se il modello poggia su basi non valide si rischia di ottenere una distribuzione di probabilità predittiva abbastanza distante dalla vera, ma ignota, distribuzione della riserva sinistri, e di conseguenza è presumibile che la stima della somma da accantonare non sarà adeguata ai reali impegni della compagnia. Se le ipotesi non sono fallaci la stima potrebbe essere più esatta e rispecchierebbe in maggior misura il processo di liquidazione caratteristico dell'impresa. L'interesse nei confronti dei metodi stocastici è cresciuto nel tempo perché hanno una potenza informativa superiore rispetto alle procedure deterministiche e riescono a fornire il valore del risk margin da sommare alla best estimate e definire in tal modo l'impegno tecnico da accantonare. I metodi deterministici, al contrario, non permettono di determinare quale debba essere l'importo aggiuntivo da accantonare per essere maggiormente prudenti nella stima della riserva sinistri.

Non deve essere dimenticato che c'e' una parte di variabilità, come per esempio i cambiamenti nella legislazione, che non possono essere previsti e facilmente incorporati nel modello ma questo non e' un buon motivo per non utilizzare i metodi stocastici.

Piuttosto si deve capire meglio quali siano le assunzioni sottostanti e testare differenti modelli. Come avviene anche per i deterministici, l'applicazione di diversi metodi stocastici conduce a dei differenti risultati.

Il bilancio di fine esercizio deve rappresentare in maniera veritiera e corretta la situazione economica e finanziaria dell'impresa al termine dell'anno di attività. I metodi attuariali o stocastici non assicurano però che il valore stimato per la riserva sinistri mostri la situazione veritiera e corretta di cui sopra. Sarà compito del personale preposto a tale ruolo scegliere il metodo più adatto alla situazione corrente della compagnia, verificare se esistono le condizioni per poter applicare un particolare metodo e controllare le fasi intermedie della stima, nonché accertare che la stima finale rifletta con alto grado di attendibilità lo stato reale dell'impresa.

La riserva sinistri è influenzata dai movimenti di portafoglio come: cessione di parte di rischi assunti, accettazione in riassicurazione dei rischi di altre imprese, trasferimento di alcuni rischi da un ramo ad un altro e così via. In tutte queste situazioni si originano movimenti di portafoglio in entrata o in uscita nella riserva sinistri di cui bisogna tener conto nel momento in cui si stima un suo valore. Pertanto si può ben capire quanto sia difficile la valutazione degli accantonamenti tecnici considerati i tanti fattori che influiscono sul valore della riserva sinistri. Il contributo di alcuni fattori può essere determinato e quindi incidere in modo sottile sul valore finale della riserva; invece, per altri fattori, l'influenza è più rilevante. Per questi ultimi bisogna osservare attentamente i loro mutamenti nel tempo congiuntamente all'evoluzione della riserva, o dei dati coinvolti nella previsione di un suo probabile valore futuro, per poter disporre di una stima meno distorta.

La stima di un valore futuro non facilmente prevedibile è di per sé molto difficile da definire, l'ulteriore difficoltà nella previsione della riserva sinistri è da ricercare nel fatto che gli accantonamenti tecnici rientrano nel passivo del bilancio di una qualsiasi impresa di assicurazione. Un valore stimato molto diverso da quello reale può compromettere l'attività della compagnia. Se infatti, la riserva sinistri venisse sopravvalutata si dovrebbe investire di più, perché a fronte di un aumento delle passività è richiesto un aumento pari nelle attività di copertura, il che non è sempre ben acconsentito dagli azionisti dal momento che viene loro richiesto un capitale maggiore. Se, al contrario, gli accantonamenti non dovessero risultare sufficienti, l'impresa non avrebbe i mezzi necessari per risarcire i danni, cioè si troverebbe nella situazione di insolvenza e rischia di essere dichiarata in liquidazione coatta amministrativa.

Infatti, la riserva sinistri assume un ruolo essenziale nella valutazione della forza finanziaria di una compagnia di assicurazione.

Bibliografia

Fisher W. H., Lange J. T. "Loss reserve testing: a report year approach" PCAS, 1974

Taylor G. C. "Claims reserving in non-life insurance", North-Holland, 1986

Mack Thomas "A simple parametric model for rating automobile insurance or estimating IBNR claims reserves" Astin bulletin vol.21 n°1, 1991

Daboni Luciano "Lezioni di tecnica attuariale delle assicurazioni contro i danni" Lint Trieste, 1993

Efron B., Tibshirani R. J. "An introduction to the bootstrap" Chapman and Hall, 1993

Mack Thomas "Measuring the variability of chain-ladder reserves estimates" Meeting of the Casualty Actuarial Society, maggio 1993

Mack Thomas "Distribution-free calculation of the standard error of chain-ladder reserve estimates" Astin bulletin vol.23 n°2, 1993

Mack Thomas "Which stochastic model is underlying the chain-ladder method?" Insurance: Mathematics and Econimics n°15, 1994

Decreto legislativo n.175 del 17 marzo 1995

D'Amario Silvia "La versione stocastica del Chain-Ladder: 'Il metodo di Bühlmann-Schnieper-Straub'" Università degli studi di Roma 'La Sapienza', dipartimento di Scienze Attuariali e Finanziarie, anno I n°8, 1996

Decreto legislativo n.173 del 26 maggio 1997

Circolare Isvap n.346/S del 29 ottobre 1998 e suoi allegati

Provvedimento Isvap n. 1059 G.del 4 Dicembre 1998

England P., Verrall R "Standard errors of prediction in claims reserving: a comparison of methods" 1998

Selleri Luigi "Il bilancio di esercizio delle imprese di assicurazione" Etas, 1998

Circolare Isvap n.360/D del 21 gennaio 1999

Gismondi F., Curti G., Di Gregorio T. "Il bilancio d'esercizio delle imprese di assicurazione" Il sole 24 ore, 1999

Mack Thomas "The standard error of chain-ladder reserve estimates: recursive calculation and inclusion of a tail factor" Astin bulletin vol.29 n°2, 1999

England P., Verrall "Analytic and bootstrap estimates of prediction errors in claims reserving" Insurance: Mathematics and Economics, n°25, 1999

Rapporto annuale Isvap del 1999

Circolare Isvap n.395/S del 20 gennaio 2000 e suoi allegati

Mack T., Venter G."A comparison of stochastic models that reproduce chain ladder reserve estimates" Insurance: Mathematics and Economics, n°26, 2000

Verrall "An investigation into stochastic claims reserving models and the chain ladder technique" Insurance: Mathematics and Economics, n°26, 2000

Mack Thomas "Credible claims reserve: the Benktander method" Astin bulletin vol.30 n°2, 2000

Rapporto annuale Isvap del 2000

Provvedimento Isvap n.1978 G del 4 dicembre 2001

Conferenza Europea delle Autorità di vigilanza "Rapporto finale: Gli accantonamenti tecnici nelle assicurazioni danni" Isvap, 2001

Pucci Sabrina "Il bilancio di esercizio delle imprese di assicurazione in una prospettiva europea" Giappichelli, 2001

England P., Verrall R. "A flexible framework for stochastic claims reserving" Maggio 2001

AA.VV. "Fundamentals of casualty actuarial science" 4th edition, Casualty Actuarial Society, 2001

England P. D., Verrall R. J. "Stochastic claims reserving in general insurance" presented to the Institute of Actuaries, 28 January 2002

Schiegl M. "On the safety loading for chain ladder estimates: a monte carlo simulation tudy" Astin bulletin vol.32 n°1, 2002

Circolare Isvap n.493/S del 24 dicembre 2002 e suoi allegati

Circolare Isvap n.516/S del 5 novembre 2003 e suoi allegati

De Felice M., Moriconi F. "Risk based capital in P&C loss reserving or stressing the triangle" working paper n.1, December, 2003

Quarg Gerhard, Mack Thomas "The Munich chain ladder" 2003

Taylor Greg "Chain ladder bias" Astin bulletin vol.33 n°2, 2003

Selleri Luigi "Impresa di assicurazione e strategia di valore" Etas, 2003

Ferrara Giovanna "Appunti di tecnica assicurazioni danni", a.a. 2003-2004

Circolare Isvap n.528/D del 9 marzo 2004

Rubino Teresa "Solvency II il primo pilastro i requisiti quantitativi", Master A.R.M.A., Analista del risk management assicurativo Università "La Sapienza", a.a. 2004-2005

Circolare Isvap n.555/D del 14 maggio 2005

Buhkmann et also "Legal valuation portfolio in non-life insurance" 17 giugno 2005

Taylor Greg, McGuire Gráinne "Synchronous bootstrapping of seemingly unrelated regressions" agosto 2005

Mack Thomas "Recent developments in claims reserving" Astin 6 settembre 2005

Circolare Isvap n.563/S dell'8 settembre 2005 e suoi allegati

Circolare Isvap n.565/S del 30 settembre 2005 e suoi allegati

Circolare Isvap n.568/S del 31 ottobre 2005 e suoi allegati

Circolare Isvap n.569/S del 18 novembre 2005 e suoi alegati

Circolare Isvap n.575/D del 29 dicembre 2005

Mack Thomas "Parameter estimation for Bornhuetter-Ferguson" versione del 27 gennaio 2006

De Felice Massimo, Moriconi Franco "Best estimate delle riserve techiche e risk margin" ANIA, Roma, 5 luglio 2006

Pinheiro Paulo J. R., Andrade e Silva João M., Centino Maria de Lourdes "Bootstrap Methodology in Claim Reserving", www.actuaries.org

Quantitative impact study I, www.ceiops.org

Quantitative impact study II, www.ceiops.org

Ringraziamenti

Desidero ringraziare il Professore Savelli per la fiducia che ha riposto in me durante la stesura della tesi. Lo ringrazio perché è stato fonte di nuovi stimoli che mi hanno permesso di crescere professionalmente oltre che a livello personale. Grazie perché in questi anni ha avuto nei miei riguardi molta pazienza.

Un ringraziamento speciale va alla mia Famiglia che mi ha permesso di raggiungere questo traguardo. Senza di loro non sarei qui a fare questi ringraziamenti. Grazie. Grazie. Sono grata ai miei genitori perché mi hanno dato la possibilità di studiare e di conseguire un titolo di studio così importante. Vi ringrazio per tutti i sacrifici che avete fatto per me e per quello che ogni giorno mi date. Avete fatto in modo tale che la distanza che ci separava non pesasse tanto ma vi siete dimostrati capaci di farmi vivere serenamente anche quando la vita ci ha messo a dura prova. Grazie perché mi avete detto che sono il vostro orgoglio, farò di tutto per non deludervi mai, ma ricordate che siete voi il mio orgoglio. Grazie Papà perché hai dimostrato di avere una stima infinita in me e nelle mie capacità. Ti ringrazio perché hai sempre creduto in me e mi hai dato la forza di andare avanti. Mi hai fatto sentire molto importante, e continui a farlo. Ti sono grata perché sei stato un padre premuroso e non mi hai fatto mai mancare nulla, in particolar modo il tuo amore. Grazie Mamma per essere stata sempre presente soprattutto nei momenti difficili. Anche se abbiamo trascorso gli ultimi anni un po' lontane non mi sono mai sentita sola, hai sempre avuto la soluzione giusta a tutti i miei problemi e ti ho sentita sempre vicina. La lontananza forse ci ha fatto avvicinare ancora di più rendendoci complici e grandi amiche. Credo proprio che tu ormai sia la mia migliore amica. Grazie perché siete due splendidi genitori e per me i migliori al mondo. Grazie Elena. Se tu non ci fossi stata credo che la mia vita sarebbe stata molto diversa. In questi anni mi hai dimostrato che ci tieni tanto a me e hai continuato a dirmi di non partire, di non andare lontano. Mi hai sempre detto di non lasciarti e sola, e io non lo farò mai. Anche se non possiamo vederci tutti i giorni, ricordati che io ci sarò sempre, sarò sempre vicina alla sorellina che ho tanto desiderato e che finalmente dopo tanti anni è arrivata. Grazie Vincenzo. Sei stato un fratello molto speciale. Nonostante i tuoi silenzi e la tua timidezza nel dimostrarmi il tuo affetto, mi hai fatto capire quanto mi vuoi bene. Quando sono partita la prima volta per Milano eri ancora un bambino, o quasi. Dopo anni mi accorgo che sei diventato un uomo che si batte per i suoi valori. Ti ringrazio perché mi hai fatto capire molte cose della vita a cui io non davo il giusto significato. A Irene, la cugina con la quale ho trascorso quattro anni della mia vita. Abbiamo condiviso la stessa camera, e non solo quella. Siamo riuscite a farci forza nei momenti più difficili quando la disperazione sembrava avere il sopravvento, invece noi abbiamo unito le nostre forze e siamo riuscite a superare anche i momenti più duri e tristi. A mia zia Brigida perché non ho mai sentito mancare il suo affetto, anzi mi ha curata quasi come una figlia. Grazie perché mi hai voluto bene e continui a volermene. A mio zio Rocco che ha cercato di sdrammatizzare le situazioni più tristi prendendomi in giro perché ero diventata ormai una "milanese". Grazie perché sei stato di conforto con la tua allegria e la tua voglia di guardare le cose, a volte, con più leggerezza per non farsi prendere dal panico. A Giuseppe, il cugino con cui sono cresciuta e ho giocato da bambina. Grazie perché tutte le volte che sono tornata a casa dai tuoi abbracci ho capito che la distanza non può e non deve rovinare i sentimenti più veri. A mia nonna Rosa. Una nonna speciale. Si è presa cura di me dal primo minuto in cui sono venuta alla luce e continua a farlo con la stessa dedizione di sempre. Anzi, ogni giorno mi rende importante grazie all'amore e alla stima che prova nei miei confronti. A Michol, la mia compagna di avventure in collegio nonché amica con cui condividere la casa e parte della mia vita. Ti ringrazio perché in questo ultimo periodo mi hai dato la forza di andare avanti e di non abbattermi mai. Hai usato poche parole ma sono state molto efficaci. Spero che il tempo non rovini questa bella amicizia. A Teresa che mi ha sopportato nei lunghi giorni di crisi e che ha condiviso con me le ansie nella preparazione della tesi. Grazie perché sei sempre stata disponibile, non ti sei mai tirata indietro quando avevo bisogno di aiuto. Ti ringrazio per l'amicizia che ci lega. A Michael, grazie per la tua gioia di vivere, perché riesci a contagiare tutti quelli che ti circondano. A Stefano, grazie per le lunghe chiacchierate fatte da amici, grazie per esserti fidato di me. A Francesco, un carissimo amico che mi è stato vicino per tanti anni e che con i suoi consigli mi ha aiutata a crescere e a imparare che la vita a volte ci mette a dura prova ma noi dobbiamo essere capaci di superare tutti gli ostacoli. A tutti i miei colleghi, Andrea, Giorgio, Sarah, Luca, Michela, Umberto, Marco e Laura. Pochi ma buoni. Vi ringrazio per l'amicizia che nel tempo è maturata e per tutti i bei momenti trascorsi insieme, e anche per quelli meno belli. A chi da lassù mi ha protetta e ha pregato per me, grazie di cuore.

A tutti quelli che sono entrati nella mia vita e l'hanno segnata. Grazie. Grazie di vero cuore.