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ABSTRACT 

 

In the general insurance market, insurers need to use the data 

gathered from previous years of experience to make predictions 

about future liabilities.  The statistical analysis can be performed 

using Bayesian methodology, which is increasingly common in 

actuarial science.  We apply Bayesian methods to an aggregate 

risk model using simulation based procedures for estimation and 

use predictive distributions to make inferences about future 

aggregate claims.  We examine and compare different forms of 

the loss distribution that may be used in the aggregate risk model, 

and investigate issues surrounding the application of Bayesian 

analysis and Monte Carlo Markov Chain methodology in this 

context. 
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BAYESIAN ANALYSIS OF AN AGGREGATE CLAIM MODEL 
USING VARIOUS LOSS DISTRIBUTIONS 

 
 

SUMMARY 

In this dissertation, I investigated ways of modelling aggregate claims in general 

insurance.  Insurers need to know the expected level of claims they face in future 

years, and percentiles of the aggregate claim amount so that they can estimate the 

level of reserves required to be held in respect of a certain class of business.  One way 

of doing this is by using an aggregate claim model.  This aims to fit a probability 

distribution to the number of claims received in a year and another distribution to the 

size of the individual claims received and combine them in such a way that an 

approximate distribution can be found to model the aggregate amount of claims.  We 

can then use this aggregate distribution to estimate percentiles and hence the level of 

solvency reserves required in future years. 

In order to fit distributions to the data, I used Bayesian methodology.  This approach 

assumes that all parameters in the distribution are themselves variables.  Bayesian 

methods are very useful in actuarial science as they enable us to learn about the whole 

distributions of quantities rather than just obtain an expected value for each 

parameter.  They allow us to include many levels of randomness in the analysis 

through the use of prior distributions for each parameter, which highlights the 

uncertainty regarding individual distributions or parameters and enables us to 

incorporate any prior knowledge we have.  In addition, we can update the posterior 

distribution obtained when new information becomes available, which helps us to 

increase the reliability of our estimates.  The posterior distribution can be used to give 

us an indication of the expected value of the parameter and the reliability of the 

inference (by considering the variance of the distribution).  With the advent of 

computing technology, Bayesian methods are becoming ever easier to use, which has 

resulted in Bayesian methods becoming more prevalent than ever before. 

To apply the Bayesian methodology, I used simulation-based techniques from the 

WinBUGS software. This implements the Gibbs sampling technique (a special case of 

the Metropolis-Hastings algorithm for Monte Carlo Markov Chains) in the case where 



we use conjugate priors, to obtain Bayesian inference.   To use the software, we need 

to specify the model to be used, the data to analyse and some initial values for the 

parameters and then wait for equilibrium to be reached.  It then outputs distributions 

for each parameter, which can be used to give the posterior distributions of the 

quantities under investigation.  As part of this dissertation, I explained several 

different issues surrounding testing the convergence of the Markov chains used in 

simulation.  To use the posterior distributions output by the program with confidence, 

we need to be sure that equilibrium has been attained.  The WinBUGS software 

provides several ways to test the extent to which this has happened. 

The data I analysed is provided in ‘Estimation in the Pareto distribution’ by Rytgaard 

and relates to the loss amounts from a portfolio of motor insurance policies with an 

excess.   The methods used in this project could, however, be applied to any similar 

set of claims data.  I used a Compound Poisson model for the aggregate claim 

(although other discrete distributions could be used to model the number of claims) 

and a variety of loss distributions to model the size of individual claims.  I compared 

the results derived by using Bayesian methodology with those from classical statistics 

to see which had the best fit with the data.   

The loss distributions that I investigated included both standard distributions (such as 

the Exponential, Gamma, Pareto, Lognormal and Weibull) and their truncated forms 

(as the data was from a form of truncated distribution due to the excess being 

applied).  My findings showed that for these data, using a vague Gamma prior, the 

Pareto distribution had the best fit.  This result was not surprising as the Pareto model 

is often used to model individual claim sizes, particularly where an excess is involved.  

The prior distributions I used were vague, as I had no information regarding the actual 

distribution of the parameters, and of Gamma form, as that is conjugate to the 

Poisson-Pareto model.  In general, among the other loss distributions, those that were 

truncated had a better fit than the standard forms.  There are many other, more 

general, loss distributions that could also be tested, including those with a larger 

number of parameters, and one of these could have an even better fit to the data. 

I then considered the sensitivity of my results to the form of the prior distribution 

used.  For this, I only used the Poisson-Pareto model (as it had the best fit of the 

models I had examined).  The priors I used were all vague (to reflect the lack of 



knowledge about the parameters), but of different forms.  Since the results showed 

similar expected values for the parameters, I concluded that the Pareto model is 

relatively robust to the form of prior used. 

Next, I compared the distributions for individual claim size obtained from Bayesian 

analysis with those found by using the Maximum Likelihood Estimator and Method 

of Moments Estimator from classical statistics.  In general, the Bayesian distributions 

had a much closer fit to the data provided than the classical ones.  Since the Bayesian 

methods had provided us with full distributions for the variables, rather than a point 

estimator, we could then use predictive distributions to find a model for the aggregate 

claims. 

Using the Poisson-Pareto model as calculated with the Bayesian techniques, I then 

simulated values from the aggregate distribution using two different methods, to help 

us to obtain a numerical distribution for the aggregate claims.  The simulations both 

involved simulating a number of claims for the year, and then simulating the size of 

each claim before summing them to achieve the aggregate.  I found that the shape of 

the aggregate claims was broadly similar in shape to a loss distribution, but that none 

of the loss distributions I tried had a particularly close fit, due to certain features of 

the aggregate claims distribution caused by the existence of the excess in the data.  If 

needed, we could fit an analytical formula to the aggregate claims distribution (or 

even just to the tail), which would help in estimating points in the tail, and hence 

setting the amount of reserve that the insurer would need to hold. 
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INTRODUCTION 

Insurance is, by nature, a very uncertain subject.  Insured events occur at random times 

and, particularly in the field of general insurance, the amounts of the claims are also 

random.  The act of taking out insurance relieves the insured parties of some of the risk 

involved, instead passing it on to insurers, in return for a stable series of payments – the 

premium.  The insurer must calculate the value of premium it should charge, which will 

be related to the total expenditure it is likely to have in fulfilling the conditions of the 

policies.  In addition to this, the insurer must ensure it has sufficient funds, or reserves, 

in place to pay out claims when they arrive.  In order to do this, they need to learn about 

not only the average amount to be paid out in any one year (which would be sufficient 

to determine the basic premium amount), but also about the whole distribution of the 

aggregate claim for the year.   

We model the aggregate claim in two independent parts – the number of claims that 

occur per year and the size of each claim.  The sum of these individual claims is the 

aggregate claim.  We call this the aggregate risk model. 

In this dissertation, we examine Bayesian methods as they can be applied to forecasting 

future aggregate claims using the aggregate risk model.  Bayesian methods are 

particularly useful in the field of actuarial science, as they enable us to learn about the 

whole distribution of a chosen quantity and also to include the many levels of variation 

involved in the models we use.  Under the Bayesian approach, we assume that all 

parameters in the model are random and have suitable prior distributions, which we 

update with the data.  This approach reflects the uncertainty inherent in estimating these 

unknown values and the posterior distributions derived give us an indication of how 

reliable the inferences are.  With Bayesian methodology we are able to incorporate 

additional data into the analysis, as it becomes available, to refresh the inference made 

and increase the reliability of the estimates.  Once we have found a suitable model and 

learnt about the posterior distributions of the parameters, we may use the information 

gathered to give the distribution of aggregate claims. 

In the first chapter, we examine the theoretical background of the main tools of our 

analysis: Bayesian analysis and Monte Carlo simulation techniques for inference.  We 

take a brief look at the history of Bayesian results and see how this approach has 
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combined with computing methods into techniques often used nowadays in actuarial 

science.  In Chapter 2, we deal with a specific example of aggregate claims and see how 

we can apply the techniques in this instance to learn about the parameters of a variety of 

Compound Poisson models.  We compare the results to those derived from classical 

methods.  Chapter 3 uses the inferences made in the second chapter to make predictions 

about future aggregate claims and to examine the predictive distribution of the 

aggregate claim, which could be used by insurers to set reserves for policies.  The final 

chapter highlights the conclusions of this analysis. 

 2



1 THEORETICAL BACKGROUND 

1.1 Bayesian Inference 

We discuss the problem of estimating an unknown parameter θ (where θ may be 

multivariate), given data y from an experiment, which we consider as a random sample 

from a probability model depending on θ. 

Using the classical or frequentist approach, the form of the experiment is to take a 

sample of size n (where n is large) from the distribution, and we think of θ as a fixed, 

but unknown parameter.  However, in many circumstances it is not possible to sample a 

large number of data points, yet we may still want to make inference about θ.  An 

example would be to estimate the proportion of people who vote for one party in an 

election by using the results of polls.  We have only a small number of data points in 

this case so the classical model may give us a misleading answer, particularly if the poll 

is not a representative sample.  We are also unable to use any previous knowledge about 

likely values of θ within the classical framework.   

An alternative approach is to use Bayesian inference.  We now regard θ as a random 

variable.  The information and beliefs of the investigator about the possible values of θ 

prior to observing the data are summarised in the prior distribution π(θ).  Our aim is to 

combine this with the data y to obtain the posterior distribution π(θ | y).  Bayes’ theorem 

(a simple result from conditional probability – see [1] for details) tells us that: 

( ) ( ) ( )
( ) ( )∑

=

i
ii yf

yfy
θθπ

θθπθπ
|

|| ,      (1) 

where f(y | θ) is the likelihood function.  We can generalise this to the continuous case 

by replacing the sum by an integral.  The denominator is a constant with respect to θ, so 

we may simplify the expression to: 

( ) ( ) ( )θθπθπ || yfy ∝ .      (2) 

By appealing to the likelihood principle (see [2] for a detailed discussion), we see that 

this simplification loses none of the information provided by the data. 
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1.2 A Brief History of Bayesian Methods and Choice of Priors 

The term Bayesian analysis comes from the Rev. Thomas Bayes, whose paper “An essay 

towards solving a problem in the doctrine of chances” [3] was published posthumously in 

1763.  This paper had little influence at the time, and Laplace in fact developed 

independently the roots of what is now termed Bayesian statistics, in his book [4].  He 

attempted to justify the use of uniform prior densities in cases where we have no prior 

information about the distribution of the parameter in question.  Bayes himself chose the 

prior density by using physical reasoning, which works well for some cases, but not for a 

general problem. 

Jeffreys wrote a “Theory of Probability” [5], and in it expounded his theory on Bayesian 

methods, including a general formula for the Jeffreys prior: 

( ) ( )θθπ I∝ ,        (3) 

where ( ) ( )[ ]22
| |log θθθ θ ∂∂−= YLEI Y  is the Fisher Information. 

This prior is designed to be as uninformative as possible, to minimise the possibility that 

it influences the data.  It is very difficult to find a truly uninformative prior, due to the 

requirement that any transformation of the parameter needs to have an equally 

uninformative prior.  For example, if we take the Uniform [0,1] distribution as an 

uninformative prior for a proportion p (which appears to be a natural choice, as we 

attribute an equal probability to each possible value of p), then we would like q = p² to 

have the same prior density, which clearly does not hold.  One problem that may occur 

with Jeffreys priors, and indeed also with uniform priors over an infinite range, is that 

they cannot be normalised, and are hence improper priors.  Provided the posterior density 

is a proper distribution however, most Bayesians accept their use.  The theoretical 

justification for uniform priors is still contentious, but they remain a widely used form of 

prior in practice. 

Some theoreticians, including B. de Finetti, L.J. Savage and D.V. Lindley, rejected 

frequentist methods, as well as the use of the uninformative prior, in favour of subjective 

priors.  In some situations, subjective priors are appropriate, but they claimed that they 

should always be used.  The consequence of this approach is that different statisticians 

may obtain different results from the same data, which is undesirable.   
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Until recently, most statisticians used classical methods, developed by R.A. Fisher and 

Neyman and Pearson (see [6]).  However, with the advent of computing, Bayesian 

methods are becoming more prevalent due to the use of increasing computational power 

to evaluate complicated posterior distributions by numerical integration or Monte Carlo 

methods.  Often we use conjugate priors (priors for which the associated posterior is a 

member of the same family of distributions) in these cases, to simplify the calculations.  

This also makes it easier to obtain a closed form expression for the estimator (see [1] for 

a more detailed discussion of conjugate priors).  Before the arrival of modern 

computational power, use of conjugate priors was the only technique available to apply 

Bayesian methods in a way that was mathematically tractable.  With the aid of 

technology, we are able to implement Bayesian methods far more widely than before. 

1.3 Markov Chain Monte Carlo methods  

To adapt Bayesian methods for computing, we need to find a technique to generate 

samples from our posterior distribution π(θ | y), or more generally from some target 

distribution π, since we cannot sample directly.  One possible way to solve this problem 

is to use Markov Chain Monte Carlo (MCMC) methods as follows.  We aim to construct 

a Markov chain with state space { }iθ=Θ  and equilibrium distribution equal to our target 

distribution, from which we can simulate.  We then run the chain and use the simulated 

values to draw inferences and conclusions. 

The general procedure we use is the Metropolis-Hastings algorithm (for more details of 

which refer to [7]).  We describe the process for discrete univariate θ.  It can be 

generalised easily for any θ.  Let qik be an arbitrary transition probability function, so if 

the chain is currently at state θi, we choose a candidate state θ* = θk with probability qik.  

The next step introduces another level of randomisation.  We decide whether to accept or 

reject this candidate state, so we set the next state to be θ* with probability pacc or θi with 

probability 1 – pacc, where we define pacc by: 

 
( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

=
iki

kik
acc q

q
p

θπ
θπ

,1min . 

It can be proved that this yields a Markov chain with equilibrium distribution π, provided 

we choose q to be irreducible and aperiodic.  The choice of q, within these restrictions, 

does not affect the value to which the chain converges but can reduce the efficiency of 
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the method if it forces pacc to be low in value.  Therefore, we may need to take care in 

choosing q.  Since the target distribution only enters the calculations in the form of ratios, 

it makes the Metropolis-Hastings algorithm particularly useful for Bayesian applications, 

where we often only know the values of π up to a constant of proportionality. 

For multivariate θ, it is often more efficient to update each of the components θi of θ 

individually.  This is referred to as single-component Metropolis-Hastings.  A special 

case of this is Gibbs sampling (developed by Geman and Geman in [8]).  For this 

method, we take q to be the conditional posterior distribution ( )ijy ≠:,| jiθ θπ  to 

update the ith component.  This is easily identified from π(θ | y).  We assume that we are 

able to sample from q.  This method ensures that the value of pacc is always 1.  To 

implement the routine, we follow the following algorithm: 

• Choose arbitrary starting values for all the components . )0()0(
2

)0(
1 ,...,, nθθθ

• For 1 ≤ k ≤ n and t = 1, iterate by drawing  from )(t
kθ

( ))1()1(
1

)(
1

)(
1 ,...,,,...,,| −−

+−
t

n
t

k
t

k
t

k x θθθθθπ .   

• Repeat step 2 for t = 2, 3, … .   

This results in a sequence ( ))()(
2

)(
1 ,...,, t

n
tt θθθ .  By repeating many times we obtain random 

samples from a joint distribution that tends to the target distribution as t increases.  

Usually several thousand iterations are required.  To increase the efficiency of this 

method, we often use conjugate priors to generate the θi. 

We often run multiple copies of the Markov chain to obtain a larger random sample, but 

we may instead run one longer chain.  Doing this means that successive samples are 

likely to be correlated, so in order to obtain a random sample we must thin the chain.  We 

therefore record only every mth state output by the chain.  If we choose a sufficiently 

large value of m then consecutive samples will be approximately independent.  If the 

value of m required for this is small, then we say that the mixing qualities of the chain are 

good.   

When using MCMC methods, we must verify that the chain has indeed reached the 

equilibrium distribution before we take samples to use for inference.  This is because our 

choice of starting values is arbitrary, and particularly for slow-mixing chains there may 

be a long period required for “burn-in”.  The burn-in depends on the speed of 

convergence of the chain and the starting position, as the initial distribution may heavily 
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influence the simulation for a long period.  There are several methods to determine 

whether a chain is converging adequately.  For a discussion, refer to [9].  We discuss this 

problem in more detail in Section 2.4. 

1.4 Comparison of Classical and Bayesian Methods 

The two theories of Statistics often complement each other, as they have different 

strengths and weaknesses.  Some theoreticians do have a strong preference for one of the 

approaches.  A point of criticism of the Bayesian method is the subjectivity inherent in 

the choice of prior.  As mentioned in Section 1.2, there are several different ways in 

which one may choose a prior, some of which can be justified better than others.  In 

practice, the distinction between the two methods may be less important.  Asymptotic 

posterior normality tells us that, under appropriate conditions, our beliefs about θ 

coincide with the “true” parameter value as the amount of data observed increases.  For a 

proof of asymptotic posterior normality, see [1].  This is the Bayesian analogue of the 

Strong Law of Large Numbers.  When the samples are large, the data overwhelms the 

information given by the prior for the Bayesian method and leads to answers very similar 

to those resulting from the classical method.  This also reduces the importance of 

selecting the “correct” prior.   

The classical method may lead to certain inconsistencies.  The following example 

highlights one such paradox: 

Suppose we observe the following data Y, and we wish to test the null hypothesis that  

Y ~ Poisson(1).  

Table 1.4.1 Observed values of data Y and expected frequencies 

under the null hypothesis Y ~ Poisson(1).  Source: own calculations. 

y 0 1 2 3 or more 

Observed Frequency fy 31 42 23 4 

Expected Frequency ey 36.79 36.79 18.39 8.03 

The value of the Pearson χ² statistic for these data is 4.9315, with 3 degrees of freedom, 

giving a p-value of 0.177, which would lead us to accept the null hypothesis at the 10% 

level.  However, if we hypothesise instead that Y ~ Poisson(λ) with λ unknown, we need 

to estimate λ to proceed.  Using maximum likelihood estimation gives , therefore 

giving the same expected frequencies and χ² value as before.  We now have only 2 

1=λ̂
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degrees of freedom, as we were required to estimate a parameter, so the p-value is thus 

0.084, leading to rejection of the null hypothesis at the 10% level.  To summarise, the 

second version of this test has a smaller p-value than the first, despite having a weaker 

null hypothesis.  This indicates that there is more evidence against the weaker null 

hypothesis than the stronger in this example, which is inconsistent. 

The following outlines the main arguments in favour of and against each method. 

Classical approach: 

i) Good for standard examples using common distributions and usually quick and 

easy to compute the solution.   

ii) Asymptotic Maximum Likelihood theory is useful for large samples. 

iii) Can give rise to paradoxes and subjectivity, for example with p-values and 

confidence intervals, as shown in the example above. 

iv) Predictions are based on long-term repeated events. 

Bayesian approach: 

i) Intuitive method to include prior knowledge (if it is available and can be expressed 

probabilistically). 

ii) Logical way to collate data from several experiments. 

iii) Intellectually coherent, as inconsistencies arise only from different choices of prior 

distribution. 

iv) Easy to judge accuracy of any particular inference and easy to interpret results. 

v) Choice of prior is subjective, and difficult to find a truly uninformative prior.  

Rarely have sufficiently comprehensive prior information. 

vi) Can be computationally heavy. 

To summarise, the Bayesian model requires more input (in the form of additional 

assumptions about the prior) than the classical model, but it is often easier to interpret the 

results, as the inference about θ is given in the form of a distribution. 

1.5 Bayesian Methods in Actuarial Science 

Actuarial science uses Probability Theory and Statistics to analyse data about past 

events in order to make predictions regarding what may happen in the future, 

particularly in relation to financial matters, such as insurance, pensions or investments.  
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We restrict our consideration to events that we can measure in monetary terms, such as 

the destruction or loss of some item or property, which by assumption occur 

independently and at random.   

In risk theory, we aim to learn about the loss process underlying this given series of 

events, for example claims on a motor insurance portfolio.  We use the information 

gathered on the number and severity of claims in previous years to provide inference 

about the distribution of the loss process, and thereby charge a suitable premium for the 

insurance policies.  Insurance claims, as we expect, are uncertain in both frequency and 

amount.  The purpose of insurance is to make the costs to the insured parties more 

stable over time.  To this end, insurers sell large numbers of policies for a set premium, 

with the promise that they will pay for losses sustained.  By pooling all the risks, the 

insurer reduces the risk of loss to itself, and to reduce the risk still further, may 

additionally take out reinsurance for individual or aggregate claims over a certain 

amount. 

The insurer is interested in particular in the aggregate claim St – the sum of all the 

claims it receives in year t – so it may ensure it has sufficient funds to pay for the claims 

it receives.  We assume that St has the same distribution for all values of t.  We call the 

funds that the insurer sets aside for this purpose reserves.  We can find the density 

function of St using classical approaches, such as convolution methods, but this can be a 

very complicated way to proceed and may require lengthy numerical methods for 

integration.  We could instead find point estimates of St, but this can be restrictive.  An 

alternative is to use Bayesian methods, combined with MCMC simulation to perform 

the calculations required for inference.  The form of MCMC that is most used for 

actuarial analyses is the Gibbs sampler [10].  MCMC provides an estimate of the entire 

posterior density of St, from which we may calculate whatever statistics may be of 

interest to us.  We may also predict the future aggregate claim S through use of 

predictive distributions.  For more information about predictive distributions, see 

Section 3.   

Bayes methods impact on a number of other areas of actuarial investigations, including 

generalised linear models and credibility theory in particular, but in this project we 

focus solely on aggregate claims. 
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2 AGGREGATE CLAIMS MODEL 

2.1 Assumptions and Design of Model 

Throughout this project, we aim to analyse data taken from [11].  The data are all single 

loss amounts greater than 1.5 million for the last 5 years (indexed for inflation) from a 

motor portfolio, and are presented in Table 2.1.1. 

Table 2.1.1 Claims (in millions) exceeding 1.5 million over five 

years from a motor portfolio.  Source: Rytgaard (1990). 

Year number 1 2 3 4 5 

Claims 2.495 1.985 3.215 - 19.180 

2.120 1.810 2.105 - 1.915 

2.095 1.625 1.765 - 1.790 

1.700 - 1.715 - 1.755 

1.650 - - - - 

The lower bound of 1.5 million refers to the retention of this excess-of-loss policy.  

Insurers often choose to limit the amount of claims they are required to pay themselves 

by taking out reinsurance.  This ensures that the variation experienced by the insurer is 

not too large.  Reinsurance means that if the claim y is above a certain amount d, called 

the retention or retained part, then the insurer pays only d to the insured party and the 

excess y – d is paid by the reinsurer.  Insurers use a similar process, with the retention 

known instead as a deductible, to prevent small claims being made.  They do this to 

reduce their costs, as processing small claims can be time-consuming and costly relative 

to the amount insured.  Sometimes, they use a franchise deductible, which is very similar 

to a straight deductible, but the insurer pays the full amount y provided y exceeds d. 

To model this data, we shall use a Compound Poisson Distribution, as described in [12].  

Let Nt be the number of claims in year t, and let Yi,t be the amount of the ith claim in year 

t, with i = 1, 2, … , Nt.  Let tNttt t ,,2,1 YYYS + + += … be the aggregate claim amount in 

year t.  We assume that: 

• Nt ~ Poisson(θ), for some 0 < θ < ∞, are iid for all t. 

• Yi,t are iid for all i, t. 

• Nt and Yi,t are independent for all i, t. 
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Then St has the general form of the Compound Poisson Distribution.  The Poisson 

distribution is a natural one to use to model the frequency of claims, as we assume that 

claims occur at a constant rate in time at random.  The distribution of Yi,t for this 

situation must have the form of a loss distribution.  A loss distribution is one that only 

takes positive values and has long tails in order to allow large claims (see [13] for more 

information about loss distributions).  We shall initially use a Poisson-Pareto model; that 

is we assume that: 

Yi,t ~ Pareto(α, β),   α > 0,  0 < β < y.   (4) 

The Pareto distribution is often used to model insurance claims, as it has a fat tail, with 

the density tending to zero like y-α as y tends to infinity.  The form of the Pareto 

distribution that we are using in this analysis is given in Appendix 1, and is particularly 

suitable to model claims with a deductible, as we are able to choose the lower limit of 

observations.  We will consider several other distributions as alternative models in 

Section 2.3. 

2.2 Running the MCMC in WinBUGS 

We will use Bayesian MCMC methods to analyse these data and investigate the 

distribution of St, treating α, β and θ as random parameters in this Poisson-Pareto model.  

Since we know very little about the true values of these parameters, we will use vague 

Gamma priors, as follows: 

α ~ Gamma(1, 0.0001), 

β ~ Gamma(1, 0.0001), with the restriction that 0 < β < min{yi,t}=1.625, 

θ ~ Gamma(1, 0.0001). 

The restriction on the distribution of β is due to the requirement that β < y in the 

specification of the Pareto model (in equation (4)).  These priors each have a variance of 

108, so should not influence the posterior distribution much, and the Gamma distribution 

is a conjugate prior for the Poisson and Pareto distributions, as we will verify later.  A 

large prior variance is indicative of a vague distribution and therefore reflects our 

relative ignorance about the true parameters.  We will consider alternative priors in 

Section 2.5.  We derive the posterior distributions as follows (using equation 2 and the 

same notation as in Chapter 1). 
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  β | α, y ~ Gamma(16α + 1, 0.0001).     (6) 

Similarly, for θ we obtain the following posterior distribution: 
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We see that (5), (6) and (7) are all Gamma distributions, as Gamma priors are conjugate 

for the Poisson-Pareto model.  We will be using a program called WinBUGS to analyse 

the distributions underlying the data (for more information on WinBUGS, see [14]).  

This implements the Gibbs sampling technique in the case where we use conjugate 

priors (described in Section 1.3) to obtain Bayesian inference.  When the priors are not 

conjugate, WinBUGS uses other sampling techniques.  To use WinBUGS, we do not 

need to specify these posterior distributions, but we must input the model and the data 

and we need to give some initial values for α, β and θ.  We use well-dispersed values to 

initialise the model, running three chains in parallel to check for convergence.  If the 

three chains start from differing places yet converge to the same parameter values, then 

that is a good indication that the chains have reached the equilibrium distribution.  We 

list the initial values that we have used in this model in Table 2.2.1. 
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Table 2.2.1 Initial values used for the parameters for the three 

Markov Chains in the Poisson-Pareto Model. 

Chain Number 1 2 3 

α 0.00001 100000 3.076 

β 0.00001 1 1.625 

θ 0.00001 100000 3.2 

The values for the third chain are the Maximum Likelihood Estimates (MLEs) of the 

parameters, as we would expect the posterior mean values to be close to the MLEs.  The 

computer code to be used in WinBUGS for this model is in Appendix 2. 

From examining the various convergence diagnostics, such as Figure 2.2.1 (a segment 

from the trace history of the values of α, which shows the three chains have mixed 

well), we can see that the chain has converged by the 20000th iteration.  More details 

about the convergence diagnostics are contained in Section 2.4. 

Figure 2.2.1 Trace history of the value of α, from the 20000th 

iteration, in the Poisson-Pareto model.  Source: own calculations. 

alpha chains 1:3

iteration
20001 20200 20400

    0.0

    2.0

    4.0

    6.0

Combining the results from the next 30000 iterations yields the results in Table 2.2.2. 

Table 2.2.2 Posterior estimates of the Poisson-Pareto model 

parameters from 30000 iterations of the three Markov Chains 

combined, after a burn-in of 20000.  Source: own calculations. 

 Posterior Mean Posterior Standard 
Deviation 

95% Bayesian 
credible interval 

α 3.083 0.7686 (1.759, 4.755) 

β 1.591 0.03489 (1.497, 1.624) 

θ 3.400 0.8217 (1.983, 5.202) 

Average 
Claim 

2.506 1.333 (2.022, 3.648) 
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We can see that these values are quite close to the MLEs.  The sample mean for Y is 

3.058, which lies comfortably within the 95% Bayesian credible interval for the average 

claim amount (which is the mean single claim loss calculated at each iteration from the 

observed values of α and β).  The sample mean is larger than the posterior mean, 

because of the large value of 19.180 in the data set, which is an outlier and skews the 

results.  By comparison, the mean of Y calculated using the posterior estimates of α and 

β is 2.355, which is close to the median value of the posterior mean, 2.381.  The 95% 

Bayesian credible intervals for the parameters are quite wide.  This reflects the 

relatively small amount of data we have available.  The credible interval for β contains 

the whole range we would expect, since we know that β is less than 1.625 (as that is the 

minimum value of y observed) and we know the data points have 1.5 as the lower limit, 

so we anticipate that β ≥ 1.5.  Figure 2.2.2 illustrates the posterior distributions of these 

variables.  

beta chains 1:3 sample: 90000alpha chains 1:3 sample: 90000

30.0
20.0  0.4
10.0  0.2
  0.0  0.0

Figure 2.2.2 Posterior densities for α, β, θ and the average claim amount.  

Source: own calculations. 

We can see in Figure 2.2.2 that the posterior densities of the parameters do look like 

Gamma distributions (with the density for β truncated at 1.625).  This is due to the 

conjugacy of the priors.  The posterior mean density can have some very large values 

(albeit with very small probability), corresponding to values of α near to 1 in value. 

We can adjust the Pareto distribution slightly in the model, for example by using only 

one parameter (and hence setting β = 1.5, as we know that the lower bound for the data 

is in fact 1.5).  This model gives the Bayesian estimate of α as being equal to 2.623, and 

theta chains 1:3 sample: 90000
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that of the average claim amount as being equal to 2.668, which is similar to before.  

Figure 2.2.3 compares the density of Y using the two different Pareto distributions with 

the data.  
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Figure 2.2.3 Graph of cumulated data yi with cumulative 

density functions of Pareto(3.083, 1.591) and Pareto(2.623, 1.500) 

superimposed for comparison.  Source: own calculations. 

We can see that there is little difference between the two models, although the one with  

β = 1.5 fixed has a slightly fatter tail and consequently would have more chance of large 

values.  It is difficult to tell which model fits the data best from this graph, however in 

this project we prefer to estimate the β parameter, as this provides a more flexible 

model.  Both Pareto models have a very close fit to the data.   

Similarly, we can compare the Poisson(3.4) distribution to the data nt.  The comparison 

is in Figure 2.2.4.  This seems to fit fairly well.  The data set is obviously small, but it 

follows the general shape of this Poisson distribution.  Despite the fact that the data is 

effectively censored, with points less than 1.5 million in value not being recorded, the 

Poisson distribution still fits the data well.  This is due to the splitting property of 

Poisson processes, which means that, for example, if the occurrence of claims in any 

year is Poisson(λ), and if the probability of a claim being greater that 1.5 million is p, 

then the occurrence of claims greater than 1.5 million in any year is Poisson(λp).  This 

is one benefit of using the Poisson distribution to model these data. 
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Figure 2.2.4 Graph of cumulated data nt with density Poisson(3.4) 

superimposed for comparison.  Source: own calculations. 

2.3 Alternative Models for the Loss Distribution 

There are many other loss distributions that we may consider to model the individual 

claim amount Y for these data.  Some of the simplest to use (since they contain at most 

two parameters to be estimated) are the Gamma, Exponential (a one parameter version 

of the Gamma), Lognormal and Weibull.  There are of course many other variations we 

could also try, such as the Burr (which is closely related to the Pareto distribution) or 

Loggamma distributions, but we shall only examine these four in this project.  The 

method is the same as for the Pareto model and we will use the same vague Gamma 

priors for these distributions too (except for the parameter α of the Lognormal 

distribution, which can take any real value, and for which we shall use a vague Normal 

prior).  A slight modification to these distributions is to use truncated forms of the 

densities.  Since all the observations must be greater than 1.5 due to the form of the 

data, we may be able to ensure a better fit if we truncate the distributions before fitting 

them to the model, rather than fitting a distribution and then truncating it.  We truncate 

the distribution by restricting the support to y > 1.5, rather than y strictly positive, and 

then normalising the density function by dividing it by the probability that Y > 1.5.  

Therefore, the general form of a density truncated to 1.5 (where the cumulative 

distribution function is denoted F(y) and the probability density function is f(y)) is: 

( ) ( )
( )5.11 F
yfyh

−
=        (8) 

The forms of the densities used for both varieties of these distributions are displayed in 

Appendix 1.  As the densities of the truncated distributions are not supported in 
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WinBUGS, we used a technique that specifies a likelihood proportional to that of the 

truncated model.  An example of the code used is in Appendix 3.  For the Truncated 

Gamma distribution, we had to use the Incomplete Gamma function.  To do this, we 

calculated an approximation based on the infinite series expression in equation 9. 

( ) ( )
( )∑

∞

=

−

++Γ
Γ

=Γ
0 1

;
n

nx x
n

xex
α

αα α      (9) 

We do not attempt to truncate the Lognormal distribution, because the equation for its 

cumulative density is very complicated to use when programming.   

The posterior mean (μ), standard deviation (σ) and 95% equal-tailed Bayesian credible 

intervals of the parameters are shown in Table 2.3.1. 

Table 2.3.1 Posterior parameter values for the Exponential, Gamma, 

Weibull and Lognormal distributions.  Source: own calculations. 

α β 
Claim size model μ σ 95% Interval μ σ 95% Interval 

Exponential(α) 0.348 0.084 (0.203, 0.532) N/A N/A N/A 

Trunc. Exponential(α) 0.682 0.165 (0.398, 1.043) N/A N/A N/A 

Gamma(α, β) 2.074 0.625 (1.047, 3.492) 0.699 0.236 (0.314, 1.226)

Trunc. Gamma(α, β) 0.328 0.318 (0.009, 1.178) 0.514 0.173 (0.231, 0.904)

Weibull(α, β) 0.277 0.108 (0.113, 0.531) 0.920 0.683 (0.899, 1.465)

Trunc. Weibull(α, β) 0.251 0.242 (0.024, 0.908) 0.320 0.179 (0.054, 0.726)

Lognormal(α, β) 0.810 0.15 (0.511, 1.107) 0.357 0.140 (0.177, 0.710)

By comparing the parameter values for the Truncated Gamma, Truncated Weibull and 

also the original form of the Pareto (from Table 2.2.2) to the values in [15], we can see 

that these estimates are close to the posterior values found by Pai.  Figure 2.3.1 displays 

the cumulative densities of the distributions detailed in Table 2.3.1, compared to the 

cumulated data.  From examining the graphs, we can see that in general the truncated 

distributions do have a better fit than the standard distributions, as we would expect.  

The Gamma distribution fits better than the Exponential, as it is a more general function.  

We could probably find distributions that have a superior fit than these, by investigating 

those with three parameters, but we restrict ourselves to two for ease of calculation.  

From this set of distributions, it appears that any of the truncated distributions may be 

considered optimal, but the fit of all three is inferior to that of the Pareto model.  The 
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standard Weibull distribution has a very different fit to the others, since it appears to 

model the smaller claims better, but has too thin a tail to model this loss distribution.  If 

we wished, we could test the fit to the data more formally by using Bayes factors, 

comparing deviances or performing χ² tests after discretising the distributions. 

Figure 2.3.1 Cumulative density functions of fitted loss distributions 

compared to data.  Source: own calculations. 

To summarise, the Pareto appears to model the claim size substantially better than the 

other distributions considered.  This supports the fact that this distribution is often used 

as a loss distribution.  The other distributions examined here do fit the data reasonably 

well, with the two-parameter distributions generally fitting better than the single 

parameter Exponential distribution, although the fit is improved in all cases if we aim to 

fit a truncated distribution to the data.  This is because we know that all the data points 

listed are greater than 1.5 million, as they are claims from a policy with retention or 

deductible of 1.5 million.  If we had the full set of data points, we would be able to 

provide a superior model, and then truncate that to provide inference about the aggregate 

claims.  Unfortunately, it is often the case that data are censored in some way. 
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In addition to comparing the cumulative distribution functions, we can also compare the 

distribution of the average claim using different models.  In Figure 2.3.2, we show the 

posterior densities of the average claim for three different models: the two-parameter 

Pareto, the Truncated Exponential and the Lognormal.   
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Figure 2.3.2 Posterior densities of the average claim amount for 

three different models.  Source: own calculations. 

We chose these models as they have a reasonable fit to the data, and the calculation of 

the average claim amount is straightforward.  We see that the distribution of the 

posterior mean does vary across the distributions, although the values are all quite 

similar.  The average claim amount using the Pareto model has a smaller posterior mean, 

as the claim size distribution with the Pareto has a thinner tail than the others do.  The 

models will thus give slightly different results. 

2.4 Convergence Issues 

As mentioned before, it is imperative that we ensure convergence of the Markov Chains 

used before we take results from them.  In WinBUGS, there are several different 

methods to check for convergence.  Here, we describe some of those methods.   

We first need to estimate the length of the burn-in period, before we can take a sample 

from the converged chain.  To estimate the burn-in, we may look at the trace of the 

chains to see whether they have mixed well.  As an example for this section, we shall use 

the Gamma model from Section 2.3.  All graphs come from the output of WinBUGS.  

Figure 2.4.1 shows a segment of the trace history of parameter α for iterations from 

10000.  As we can see, the chains appear to have mixed well by this stage. 
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 Figure 2.4.1 Trace history for Gamma model, after burn-in of 10000. 

A more precise method to verify convergence is to look at the Gelman-Rubin statistic 

(described in [16]).  WinBUGS uses a modified form of the original Gelman-Rubin 

statistic, called the Brooks-Gelman-Rubin (or BGR) test.  To perform this test, we need 

to run two or more chains in parallel, with initial values over-dispersed relative to the 

true posterior.  The BGR test compares the variances within and between the chains.  In 

the plots of the BGR statistic in Figure 2.4.2, the lower two lines represent the within 

and between chain variations respectively and the upper line is the ratio of the between 

and within chain variations.  When the lower two lines stabilise (in these diagrams at 

approximately 10000 iterations) and the upper line converges to 1, then we accept that 

the chain has converged.  
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 Figure 2.4.2 BGR diagrams for α and β. 

There are several other convergence diagnostic tests that we may use, including Geweke 

(1992), Raftery & Lewis (1992) and Heidelberger & Welch (1983).  For more details on 

these and on the BGR test, see [17]. 

To obtain an independent sample, we may wish to thin the converged chain, so that the 

correlation between successive states is small.  The auto-correlation functions for 

parameters α and β for the Gamma model are shown in Figure 2.4.3. 
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 Figure 2.4.3 Auto-correlation functions for α and β, before thinning. 
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Figure 2.4.3 shows us that α and β both have some auto-correlation.  This is undesirable, 

as we would like the samples to be approximately independent, so we thin the chain by 

using only every mth value from the output as described in Section 1.3.  Thinning the 

output by 10 reduces the auto-correlation to less than 0.07 for all lags greater than or 

equal to one.  This is an acceptably low level of auto-correlation and thus we accept this 

thinned chain as representing an independent random sample from the required 

distribution.  Thinning the sample does have potential problems.  It does create an 

approximately independent sample, although it may also disguise flaws inherent in the 

model and does not in itself improve the rate of convergence.  It also means that in order 

to obtain a sample of a given size, we need to perform a considerably larger number of 

iterations, which may be costly in terms of computing time.  The models we have been 

examining in this project do not take long to run, and therefore this is not a problem here. 

One final, and straightforward, way to check for convergence is to look at the Monte 

Carlo standard error of the posterior mean, which can be obtained from WinBUGS.  The 

method used to calculate it is the batch means method, described in [9].  We want these 

values to be less than 5% of the sample standard deviation.  In all our examples, it is in 

fact less than 1%. 

2.5 Prior Sensitivity 

As described in Section 1.2, we could use a variety of methods to choose a suitable prior 

to apply before undertaking Bayesian analysis procedures.  In this project, we are 

focussing solely on vague priors, as we have no prior information about the parameters.  

One restriction with the WinBUGS program is that we cannot use any improper priors.  

Therefore we could not use, for example, a Uniform[0, ∞) distribution as a prior; instead 

we must use distributions that naturally have support on [0, ∞) and integrate to 1.  So 

far, we have concentrated on using a vague Gamma(1, 0.0001) prior to analyse the data.  
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This is effectively an Exponential(0.0001) distribution but written in the Gamma form to 

exploit the conjugate nature of the Gamma distribution to the Poisson-Pareto model.  

Now we investigate the sensitivity of the Pareto model to the form of prior used.  For 

more discussion about prior sensitivity in Bayesian inference, see [1].   

We will compare the convergence and the resulting posterior distributions of the 

parameters using Gamma(0.001, 0.001), Exponential(0.001), Uniform(0, 10000), 

Lognormal(0, 1000) and Normal(0, 1000) (truncated to positive values only) as priors.  

For β, we restrict the range to [0, 1.625] as before.  These distributions all have large 

variances, so are suitably vague, but the distributions themselves have different shapes.  

We do not consider a Pareto prior, as we do not wish to force a lower bound on the 

possible parameter values.  The posterior distributions for α, β, θ and the average claim 

are illustrated in Figure 2.5.1.  
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Figure 2.5.1 Posterior distributions of the parameters in the 

Poisson-Pareto model using different forms of prior distributions.  

Source: own calculations. 
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As we can see, these different priors all give very similar distributions, suggesting that 

the model is not very sensitive to changes in the prior distribution.  We can separate the 

distributions into two groups.  The Exponential, Uniform and Normal priors have 

posterior means of approximately 3.08 for α, 1.591 for β and 2.50 for the average claim 

(which is very similar to the results in Table 2.2.2), whereas the Gamma and Lognormal 

priors have 2.88 for α, 1.588 for β and 2.64 for the average claim.  The posterior 

variances for all the parameters are very similar.  It is quite interesting that if we 

compare the posterior means for the parameter θ, the distributions divide into two 

different groups.  The Gamma, Uniform and Lognormal priors have the posterior mean 

for θ clustered around 3.2 (the sample mean), and the other two prior distributions have 

posterior mean close to 3.4 (the value given by the model we used in Section 2.2 and 

also the posterior mean from equation 7).  There does not appear to be a pattern for 

either split.  For example, the Gamma and Exponential distributions give different 

values for all the parameters, yet are closely related and have the same prior variance of 

1000, so are equally “vague”. 

Comparing the rate of convergence of the chains using the different starting 

distributions is also quite informative.  We estimate the burn-in period from the BGR 

diagram, and look for the first iteration for which the between and within chain 

variations are stable in value.  This is an approximate method, but gives us a good 

indication of the speed of convergence.  Out of the priors we have used here, the fastest 

to converge was the Exponential, closely followed by the Normal.  The Lognormal was 

the slowest to converge, followed by the Uniform.  There does not appear to be any 

relationship between the speed of convergence and the converged values.  The values 

listed above are all taken from the chains once they have converged, and are the means 

calculated from 60000 iterations. 

To summarise, the Poisson-Pareto method seems to be robust against the distribution of 

the vague prior selected. 

2.6 Comparing Classical and Bayesian results 

We can also compare the posterior mean results with estimates derived from classical 

methods.  Examples include the Method of Moments Estimate (MME), in which we 

equate the first k moments to estimate k parameters, and the Maximum Likelihood 
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Estimate (MLE), in which we calculate the values of the parameters that will maximise 

the likelihood of observing the data.  We have calculated the MME and MLE 

analytically for the standard distributions mentioned in Sections 2.2 and 2.3 when 

possible.  We do not include the Weibull distribution, as we can only estimate the 

parameters numerically, and we discount the truncated forms of the distributions for this 

section.  The estimates are given in Table 2.6.1. 

Table 2.6.1 MLEs and MMEs for Pareto, Gamma, Exponential 

and Lognormal distributions.  Source: own calculations. 

α β 
Claim size model 

MLE MME MLE MME 

Pareto 3.076 2.225 1.625 1.683 

Exponential 0.3271 0.3271 N/A N/A 

Gamma - 0.5014 - 0.1640 

Lognormal 0.8106 0.5691 0.9921 1.097 

In addition, as mentioned in Section 2.2, the MLE (and MME) of the Poisson 

distribution is 3.2.  Figures 2.6.1 and 2.6.2 compare the distributions with these 

parameters to those with parameters equal to the posterior means (listed in Tables 2.2.2 

and 2.3.1).   
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Figure 2.6.1 Comparison of fitted Poisson distributions to cumulated 

distribution of data nt.  Source: own calculations. 
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Figure 2.6.2 Cumulative density functions of various fitted loss 

distributions compared to cumulated distribution of data yi,t.   

Source: own calculations. 

From examining these graphs, we can see that for these data, the Bayesian estimates 

from the MCMC method generally provide distributions with a better fit to the data than 

the simple classical methods.  This is because the Bayesian approach takes account of 

more levels of variability in the model.  Some of the classical estimates lie very close to 

the Bayesian results, such as the MLE for the Pareto distribution and the estimate for 

the Exponential distribution, but for these data, the Bayesian results are superior.  The 

Bayesian methods also provide the whole posterior distributions for α, β and θ, which 

enable us to use predictive distributions and allow us to find more accurate 

approximations to N, Y and the future aggregate claim S.  For more information about 

predictive distributions, see Section 3. 
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3 PREDICTIVE INFERENCE 

In Chapter 2, we investigated some of the possible distributions we can use to model the 

data that we have collected for the aggregate risk model.  In this chapter, we aim to 

obtain predictions of future aggregate claims S by combining the information for the 

number of claims, N, and the individual claim amount, Y.  First, however, we shall 

examine the distributions of N and Y themselves.  Throughout this section, we shall use 

the notation φ = (α, β, θ) to denote the vector of parameters for our problem or any 

general vector of parameters, in order to keep results as general as possible. 

3.1 Predictive Distributions Method 

In order to learn about the distribution of S, we use the posterior predictive distribution.  

This takes into account the variability of φ by integrating over all possible values of φ 

using the posterior distribution as weights.  It is a form of mixture distribution over the 

possible values of φ.  This means that we use all the information provided by the 

Bayesian analysis and do not ignore the variation involved in φ, and so obtain better 

estimates than if we had merely used the posterior distribution.  The posterior predictive 

distribution of some variable z (which is dependent on φ) given data y is defined by: 

 ( ) ( ) ( )∫
Φ

= φφπφπ dyzfyz ||| , 

where π(φ | y) is the posterior distribution of φ given the data y, and f(z | φ) is the density 

of the variable z given the value of φ.  By using the predictive distribution, we ensure 

that we focus solely on observable values, rather than the unobserved parameter φ.  We 

can interpret the predictive distribution as the density of a future observation. 

Clearly, we cannot integrate directly over φ, as we do not have a closed form expression 

for the integrand, but instead we can use the output from the MCMC algorithm to obtain 

estimates of the posterior predictive distributions.  See [9] for more information about 

the use of Monte Carlo integration in this context.  We proceed as follows: 

Let N be the set of data for N and let Nf be the value of a future observation of N.  Then, 

( ) θθπ dNNpNnN ff ∫
∞

==
0

|,)|(    

  ( ) ( ) θθπθ dNNNp f |.,|
0∫
∞

=   
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where m is the number of MCMC simulations after convergence, and θ(i) is the ith 

simulated value of θ given N. 

Similarly, letting Y be the set of data for Y and yf be the value of a future claim Y,  

( )YyY f |Pr ≤  ( )∫ =≤=
u

f udYuUyYp |,  where u = (α, β) 
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where α(i) and β(i) are the ith simulated values of α and β respectively, given Y. 

These results give us a method of calculating approximate distributions for Nf and Y.  

The posterior predictive distribution for Nf is shown in Table 3.1.1. 

Table 3.1.1 Posterior predictive distribution for future number of 

claims Nf, calculated from 30000 iterations.  Source: own calculations. 

n 0 1 2 3 4 

Pr(Nf = n) 0.0450 0.1277 0.1916 0.2023 0.1685 
      

n 5 6 7 8 9 

Pr(Nf = n) 0.1180 0.0721 0.0394 0.0198 0.0091 
      

n 10 11 12 13 14 

Pr(Nf = n) 0.0039 0.0017 0.0006 0.0002 0.0001 

By comparing these figures to the values listed in Pai [15], we see that the probabilities 

are very similar.  Using the predictive distribution rather than merely a Poisson 

distribution with parameter equal to the posterior estimate of θ means that we do not 

ignore the variability in the value of θ, so we obtain a more accurate distribution for Nf. 

Since Y is a continuous random variable, we must discretise it to give us a set of values 

that we may use for simulation.  We have discretised the sample space of Y to a set of 
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100 intervals, each with approximately equal probability.  Figure 3.1.1 shows the 

posterior predictive density for Y using the Pareto model and the Truncated Weibull 

model.  We have chosen to illustrate the Truncated Weibull model as comparison rather 

than the slightly better fitting Truncated Gamma model, due to ease of calculation. 
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Figure 3.1.1 Posterior predictive density of individual claim amount Y 

for Pareto and Truncated Weibull models.  Source: own calculations. 

These two predictive models have similar shapes, but the Weibull model gives a fatter 

tail in this case than the Pareto model.  We shall first examine the distribution of S using 

the Pareto model, then compare the results to the Weibull model.   

3.2 Distribution of S using Pareto model for Y 

We simulate a value for the future aggregate claim S as follows: 

• Simulate a value nf from the posterior predictive distribution for Nf. 

• Simulate nf values from the posterior predictive distribution for Y. 

• Sum the nf values of Y to obtain a value for S. 

We sampled the distributions of Nf and Y by using the inverse cumulative probability 

function method.  The values of S given by this method are approximate, as we are 

treating a continuous random variable, Y, as a discrete one.  By using a larger set of 

values to discretise Y, we could obtain a more accurate distribution for S.  Figure 3.2.1 

gives a histogram of 10000 simulated values from the distribution of S using this 

method.  We fit the overlaid distributions by equating the first two moments of the 

distribution to those of the simulated values.  The Gamma distribution appears to fit the 
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best out of the three tried, although we cannot expect any standard distribution to model 

S precisely.  The parameters of this distribution are α = 2.708 and β = 0.375. 

Figure 3.2.1 Histogram of simulated values of S using an 

approximation to the posterior predictive distribution, with possible 

distributions overlaid.  Source: own calculations. 

The mean and variance from these simulated values are 7.219 and 19.246, which are 

smaller than the sample mean and variance of S (9.784 and 84.129 respectively).  We 

would expect the variance of the simulated values to be smaller than the sample 

variance, as one of the observed values of S is particularly large, and the Bayesian 

methodology has a “shrinkage” effect.  That is, if there are any unusually large observed 

values, they are weighted appropriately so they do not dominate the analysis.  The 

difference in the mean and variance are also partly because the discretised distribution 

for the individual claim amount Y is not particularly accurate in the tail, so very large 

values of Y do not appear in the simulations.  

Table 3.2.1 shows the values of some percentiles from the simulated values.  The 

maximum value appears to be relatively small, considering the claim size distribution 

should have a fat tail.  This is due to the approximation used, which prevents large 

values of Y being simulated using this method. 
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Table 3.2.1 Estimated percentiles of approximate posterior predictive 

distribution of S.  Source: own calculations. 

Median 90th 
percentile 

95th 
percentile 

99th 
percentile 

Maximum  

6.61 13.09 15.32 19.51 33.64 

We want to have a long tail to match the possible claim patterns that we may see – in 

most years, the aggregate claim will be relatively small, but occasionally a very large 

value will occur.  The insurance company uses the information gathered about the 

frequency of these large claims and ensures that in the majority of circumstances it will 

have sufficient resources to pay for all claims.  Otherwise, it will find itself in financial 

difficulties.  For example, the company may decide to hold sufficient reserves to cover 

the aggregate claim for 99% of possible scenarios, in which case it would hold 

approximately 20 million (using these figures).  If it holds too large a value in reserves, 

it loses out on the interest it could have earned on them.  If it holds too small a value, it 

runs the risk of having insufficient reserves to fulfil its obligations.  We therefore look 

at another method of simulating values from the predictive distribution, aiming to model 

the tail of the distribution of S more accurately. 

3.3 Alternative Predictive Distributions Method using Pareto model for Y 

In order to avoid the problems that occur by discretising a continuous distribution, we 

may progress in a different way.  The procedure we use is as follows: 

• Obtain estimates θ(i), α(i) and β(i) as before from the posterior distributions for θ, α 

and β. 

• Simulate Nf ~ Poisson(θ(i)). 

• Simulate Nf values Y ~ Pareto(α(i), β(i)). 

• Sum these Nf values of Y to give S(i). 

Here α(i), β(i) and θ(i) are the ith simulated values of α, β and θ from the MCMC. 

We repeat this for a large number of iterations, once the chains have converged to the 

equilibrium distribution.  Collating the estimates S(i) gives us the same distribution 

asymptotically as the method in Section 3.2, but avoids the error involved in discretising 

the distribution of Y.  The histogram of simulated values of S, together with a few 

possible distributions to model S, is shown in Figure 3.3.1.  The mean and variance of 
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the simulated values of S in this case are 8.426 and 50.058.  These values are larger than 

the mean and variance obtained from the previous method, which is due to the 

possibility of obtaining some very large claims, which was not the case before.  This 

models the situation more accurately than the method of the previous section in which 

we had to impose an upper limit on the individual claim amount Y.  This time, none of 

the overlaid distributions appear to fit the simulations particularly well. 
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Figure 3.3.1 Histogram of simulated values of S using samples 

from the individual posterior distributions as parameter values, with 

possible distributions overlaid.  Source: own calculations. 

A few features of the posterior distribution of S are not immediately obvious from 

examining Figure 3.3.1.  Firstly, there is a probability mass at zero, so the distribution 

of the future aggregate claim S has a mixed form, with a discrete point at zero and a 

continuous density from 1.5 to ∞.  This is obvious from contemplating the problem 

posed.  The probability at zero is equal to the probability of obtaining no claims in a 

year.  Secondly, there are local minima in the density curve near multiples of 1.5.  This 

is because individual claims must be of amount greater than 1.5 in this model and thus 

some small values of the aggregate claim are naturally more probable than other similar 

values.  This effect is most noticeable near S = 3 in the histogram above. 

Table 3.3.1 shows the values of some percentiles from this set of simulated values of S.  

Comparing to the values from Table 3.2.1, we see that the values are stretched over a 

wider range.  This reflects the ability of this second method to model values in the tail 
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of the distribution more accurately.  However, the 90th and 95th percentiles are of a 

similar order of magnitude to before, which shows that the two methods do give similar 

results for moderate values of S.   

Table 3.3.1 Estimated percentiles of posterior predictive 

distribution of S.  Source: own calculations. 

Median 90th 
percentile 

95th 
percentile 

99th 
percentile 

Maximum  

7.33 15.49 18.84 28.19 228.69 

3.4 Distribution of S using Truncated Weibull model for Y 

For comparison purposes, we use the same method as in Section 3.3 to simulate the 

distribution of S with the Truncated Weibull model for Y rather than the Pareto model.  

Figure 3.4.1 plots the histogram of S for this model.  The mean and variance of the 

simulated values are 9.67 and 59.47, which are similar to the Pareto model, but slightly 

larger.  This may be explained from the fact that the Truncated Weibull model has a 

fatter tail than the Pareto model.  The shape of the distribution of S is similar to that in 

Figure 3.3.1, although it is slightly more spread out as, for example, the 99th percentile 

is 34.84 compared to 28.19.  This means that the insurers would hold slightly larger 

reserves if they used the Truncated Weibull model rather than the Pareto. 
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Figure 3.4.1 Histogram of simulated values of S using the Truncated Weibull 

model for Y, with possible distributions overlaid.  Source: own calculations. 
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4 CONCLUSIONS 

In this dissertation we set out to show how Bayesian methodology, combined with 

the use of MCMC methods, may be applied to the problem of forecasting future 

claims.  We aimed to find a suitable distribution to model a particular instance of 

aggregate claims in general insurance.  This distribution could then be used by 

insurers in predicting future aggregate claims, which would enable them to set 

suitable values for premiums and reserves.  The methods used in this project are 

general, and we may implement them for any similar set of data. 

In the first chapter, we presented a general background to Bayesian statistics, and set 

out the computational methods that we would apply later in the project, in particular 

Gibbs sampling through use of the WinBUGS package.   

In Chapter 2, we fitted an aggregate claim model to data from a motor portfolio, 

assuming a Poisson distribution for the number of claims and employing various loss 

distributions for the single claim amounts.  Our analysis suggested that the Poisson-

Pareto aggregate risk model had the best fit to the data observed.  Actuaries often use 

the Pareto distribution to model individual claim sizes, particularly in the case where 

there is a form of franchise deductible, as occurs here.  Our results also showed that, 

for these data, the Pareto distribution is relatively robust to various assumptions of 

vague priors used in the Bayesian analysis.  We then compared the findings from this 

analysis to those derived by classical methods, and found that the Bayesian results 

were superior in fit.   

In the third chapter, we used the MCMC output to derive the posterior predictive 

distribution of the future aggregate claim, S, in two different ways that gave very 

similar results.  As expected, the technique avoiding an approximation to the 

posterior distribution of the individual claim amount, Y, (detailed in Section 3.3) 

provided better results.  We found that due to the nature of the deductible element in 

the model (which gives rise to local minima in the density) and the point mass at 

zero, we cannot find a simple distribution to model S, although it appears to be 

broadly similar in shape to a loss distribution, such as Gamma or Lognormal.  

Finding an analytical form for the distribution of S, or even for just the tail of S, 

would simplify the task of acquiring further information that may be of use to the 
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insurer.  However, the techniques used in this project provide a method to obtain a 

very close numerical approximation to the distribution of S, obviating the need to fit 

an analytical density. 

There are many areas we could investigate in more detail using these data.  For 

example, we could try other loss distributions, such as the Burr, to model the 

individual claim amount, Y.  Using distributions with more parameters might enable a 

better fit to the data.  We may also test the fit formally by use of Bayes factors or 

deviances, rather than comparing distributions graphically.  In addition, we could 

consider alternative distributions for the number of claims, N, and investigate how 

this affects the distribution of the future aggregate claim, S. 
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APPENDIX 1 - Probability density functions of distributions used 

 

The truncated distributions are all truncated at y = 1.5. 
 

Pareto(α, β): 

( ) ( 1,| +−= αααββα yyf ) ,    y > β, α > 0, 0 < β < min{yi,t}. 
 

Gamma(α, β): 

( ) ( ) ( yyyf β
α
ββα α

α

−
Γ

= − exp,| 1 )

)

,  y > 0, α > 0, β > 0. 

 

Truncated Gamma(α, β): 
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Exponential(α): 

( ) ( yyf )ααα −= exp| ,   y > 0, α > 0. 
 

Truncated Exponential(α): 

( ) ({ }5.1exp| −−= yyf )ααα ,   y > 1.5, α > 0. 
 

Lognormal(α, β): 
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yf , y > 0, α > 0, β > 0. 

 

Weibull(α, β): 
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Truncated Weibull(α, β): 
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APPENDIX 2 – Computer code for WinBUGS for the Poisson-Pareto Model 

model  
{ 
 for(i in 1:16) { 
   y[i] ~ dpar(alpha, beta) 
   } 
 for(i in 1:5) { 
   n[i] ~ dpois(theta) 
   } 
 alpha ~ dgamma(1, 0.0001) 
 beta ~ dgamma(1, 0.0001)I(, 1.625) 
 theta ~ dgamma(1, 0.0001) 
} 
list(     # Load data 
 y = c(2.495, 2.120, 2.095, 1.700, 1.650, 1.985, 1.810, 1.625, 
3.215, 2.105, 1.765, 1.715, 19.180, 1.915, 1.790, 1.755), 
 n = c(5, 3, 4, 0, 4) 
) 
list(     # Set initial values for a chain 
 alpha = 3.076, 
 beta = 1.62499, 
 theta = 3.2 
} 
 

APPENDIX 3 – Computer code for WinBUGS for the Truncated Gamma model 

model  
{ 

for(i in 1:16) { 
  zeros[i] <- 0 
  zeros[i] ~ dpois(phi[i]) 

phi[i] <- -alpha*log(beta) - (alpha - 1)*log(y[i]) + 
beta*y[i] + loggam(alpha) + log(1-gam[i, 
21]/exp(loggam(alpha))) 

  gam[i, 1] <- 0 
# Specify the Incomplete Gamma function gam[i, 21] (only use the 
first 20 summands from the infinite sum as approximation) 
  for(j in 2:21) { 

gam[i, j] <- gam[i, j - 1] + exp(-1.5*beta) * 
pow(1.5*beta, alpha) * exp(loggam(alpha)) * 
pow(1.5*beta, j-2) / exp(loggam(alpha + j-1)) 

   } 
  } 
 alpha ~ dgamma(1, 0.0001) 
 beta ~ dgamma(1, 0.0001) 
} 
 
The zeros method (used here) allows us to use arbitrary sampling distributions with log 

likelihood l(i), by setting our observed data to be a series of zeros, and using the result 

that the likelihood of a Poisson(φ) observation of zero is e-φ.  Setting φ(i) = - l(i) gives us 

the correct contribution to the likelihood.  We can add constants to φ(i) without altering 

the log likelihood, to ensure that φ(i) > 0 (which must hold, as it is a Poisson mean).
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