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Introduction



Introduction

In non-life pricing the pure premium is modeled as the product of the two

estimates: Claim frequency and claim severity. A general problem is that

the frequency and severity are traditionally assumed to be independent.

This assumptions is not always vindicated, car insurance policyholders

who tend to file several claims per year are often associated with lesser

claim amounts than policyholder who tend to file lesser claims per year.

There is thus a need to account for potential association between claim

frequency and claim severity. In this thesis we will construct and analyze

the classical model, and a proposed extension of the classical model

where claim frequency and claim severity are dependent.
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Model building

Variations can be estimated by a set of covariates. The range for each

covariate are called classes. Let M be the number of covariates, and let

mi be the number of classes for covariate i . A tariff cell is denoted by the

vector (i1, . . . , iM). We use the multiplicative model for the expected

value of a response variable Y :

E [Yi1,...,iM ] = µi1,...,iM = γ0γ1i1γ2i2 . . . γMiM , (1)

where, the γ is called the relativities. The relativities measure the effect

when all other variables are held constant
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Model building

Generalized Linear Models (GLMs) is a class of statistical methods which

generalizes the linear models. GLM solves two problems that occurs with

linear models when applying it to non-life insurance pricing:

• GLM assumes general class of distribution instead of normal

distribution

• GLM has a link function instead of the mean being a linear function.

Multiplicative model is more reasonable for pricing

GLMs uses Exponential Dispersion Models (EDMs) that generalize the

normal distribution, that are used in linear models, into a family of

distributions for the GLMs.

fYi (yi , θi , φ) = exp

{
yiθi − b(θi )

φ/wi
+ c(yi , φ,wi )

}
, (2)
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Inference

To estimate the parameters in GLM we use the maximum-likelihood

estimation (ML):

The method of maximum likelihood is based on the log-likelihood

function l(θ, φ, y), which is a function of the parameters of a statistical

model.

• Given a family of distributions, the method of ML finds the values of

the model parameter θ, that maximize the log-likelihood function

• Intuitively, the ML selects the parameters that make the data y

most probable
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Inference

For testing a ML-estimated parameters significance, we use the null

hypothesis method:

The null hypothesis method is the use of statistics to determine the

probability that a given hypothesis is true

1. Formulate the null hypothesis θ = θ0

2. Identify a test statistic that can be used to assess the truth of the

null hypothesis

3. Compute the p-value, which is the probability that a test statistic at

least as significant as the one observed would be obtained assuming

that the null hypothesis is true. The smaller the p-value, the

stronger the evidence against the null hypothesis

4. Compare the p-value to an acceptable confidence level 1− α. If

p ≤ α, the null hypothesis is rejected
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Inference

In GLM a generalization of the idea of using the sum of squares of

residuals for a good measure of goodness-of-fit is the deviance function.

It can asses which model fits the data best.

D(y , µ) = 2(l(θ, φ, y)− l(θ, φ, µ)). (3)

• The saturated model is used as a benchmark in measuring the

goodness-of-fit of other models, since it has the perfect fit

• One can view the deviance function as a distance between two

probability distributions and can be used to perform model

comparison

• The deviance functions will generate deviance plots for model

validation, they can asses which model fits the data best
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Inference

Another criteria for estimating the quality of models in purpose for model

selection is the Akaike information criteria (AIC).

AIC = −2l(θ̂, φ, y) + 2K , (4)

• AIC rewards goodness of fit (as assessed by the log-likelihood

function), but it also includes a penalty that is an increasing

function of the number of estimated parameters

• In other words, AIC value is used to determine which model

minimizes the loss of information when approximating reality given

the data at hand

• ∆i = AICi − AICmin is a measure of each model relative to the best

model
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Generalized Linear Models

For a fixed time period w = 1, the total amount paid out in claims is:

S =
∑N

j=1 Yj . S the total amount paid out in claims, N is the number of

claims, Yj is the claim amount for the jth incurred claim.

Assuming that the claim frequency and claim severity is independent:

E [S ] = E [N]E [Y ].

• The number of claims is assumed to be poisson distributed,

N ∼ P(vi )

• The claim amount is assumed to be gamma distributed,

Y ∼ G (α, β)

The poisson distribution and the gamma distribution are members of the

EDM family.
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Generalized Linear Models

For number of claims Ni , let vi = E [Ni ]. Then:

• The ML-equations:
∑

i xij(ni − vi ) = 0.

• The deviance function: D(n, v) = 2
∑

i (ni log(ni/vi ) + (vi − ni )).

For claim amount Yi , let µi = E [Yi ]. Then:

• The ML-equations:
∑

i
xij
µi

(yi − µi ) = 0.

• The deviance function: D(y , µ) = 2
∑

i (−1 + yi
µi

+ log(µi

yi
)).

10



Generalized Linear Models

extension



Generalized Linear Models extension

For a fixed time period w = 1, the total amount paid out in claims is:

S =
∑N

j=1 Yj . S the total amount paid out in claims, N is the number of

claims, Yj is the claim amount for the jth incurred claim.

To account for dependence, the mean of the severity distribution is

allowed to depend on N

E [S ] = E [NE [Y |N]], (5)

where Y |N = (Y1 + · · ·+ YN)/N is the average claim severity, S is the

aggregate losses incurred and N is the number of claims.
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Generalized Linear Models extension

Two reflections on the dependent setup:

• Claim count N is modeled in exactly the same way as in the classical

GLM approach.

• The average claim severity Y using claim N as both covariate in the

GLM, and weight factor in the EDM.

One has E [S ] = E [NE [Y |N]] 6= E [N]E [Y ].

• Independence: E [S ] = E [N]E [Y ] = vµ

• Dependence: E [S ] = E [NE [Y |N]] = vµev(e
θ−1)+θ

An dependence factor emerges: ev(e
θ−1)+θ, together with a dependence

parameter θ. It is the estimate of the covariate N.
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Generalized Linear Models extension

For number of claims Ni , let vi = E [Ni ]. Then:

• The ML-equations are same as in the classical GLM:∑
i xij(ni − vi ) = 0.

• The deviance function is same as in the classical GLM:

D(n, v) = 2
∑

i (ni log(ni/vi ) + (vi − ni )).

For average claim severity Y i , let µθi = E [Y i ]. Then:

• The ML-equations:
∑m

i
nixij
µθi

(y i − µθi ) = 0.

• Additional ML-equations:
∑m

i
n2i
µθi

(y i − µθi ) = 0.

• The deviance function: D(y , µ) = 2
∑m

i ni (−1 + y i

µθi
+ log(µθi

y i
)).
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Results

Data from the former Swedish insurance company Wasa, and concerns

partial casco insurance for motorcycles.

Covariates Description Classes

Zon Geographic zone (1,2,3,4,5)

MC class Mc class (1,2,3,4)

Vehicle age The vehicle age (1,2,3,4)

Table 1:

Claim count Frequency Percent Average amount (Kr)

0 412 67 % 0

1 178 29% 83 372

2 26 4% (13%) 84 674

Table 2:
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Results

The dependence parameter θ was estimated to θ̂ = −0.3472. The null

hypothesis method yields:

1. The null hypothesis H0 : θ̂ = θ0 = 0

2. A statistic is identified as the test statistic for the underlying

distribution.

3. p-value = 0.0245

4. Hence we reject the null hypothesis on confidence level of 97.5%

with a α = 0.0250, since p < α
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Results

For the GLM extension, the AIC value is computed to:

• AICmin = 2637

• but when we drop the claim count as an covariate the AIC value

increases to AICi = 2641

• ∆i = AICi − AICmin = 4
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Results

Figure 1: Comparison of the claim severity between the classic GLM and the

GLM extension.
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Results

Figure 2: The deviance of the claim severity for the classical GLM.
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Results

Figure 3: The deviance of the claim severity model for the GLM extension.
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Conclusion

• Claim count is a significant covariate for the GLM extension.

• ∆i = 4 indicates that GLM extension model with claim count is the

better model, than without the claim count. But it is not big

enough to fully accept claim count as a covariate.

• Deviance figure for the severity has a lower variance, showing that

the GLM extension model fit the observations better than the

classical GLM.

• Small data to fully confirm that the GLM extension is the better

model than the classic GLM, but we have strong evidence to support

it.

• The structure for the dependence approaches makes it very easy to

implement

• Further studies can be made with greater data and different

distributions on claim count and claim amount
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Thank you!
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