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Abstract	
	
The	Master’s	 Thesis	 underlying	 this	 paper	was	written	 at	 the	 Technical	 University	 of	
Munich	in	cooperation	with	Munich	Re.	It	was	sponsored	by	Munich	Re	and	supervised	
by	Prof.	Dr.	Matthias	Scherer	 (TU	Munich)	and	Dipl.‐Math.	Ralf	Hungerbühler	 (Munich	
Re).	
	
The	intention	of	this	paper	is	to	build	an	appropriate	model	for	the	electricity	demand	
and	 temperature	 in	 New	 South	Wales	 (NSW),	 Australia.	 Because	 a	 strong	 correlation	
exists	 between	 temperature	 and	 electricity	 demand,	 the	 proposed	model	 accounts	 for	
the	interaction	between	both	of	them	and	uses	temperature	information	to	improve	the	
modeling	accuracy	of	the	electricity	demand.		
The	 following	 figure	 shows	 the	 dependency	 structure	 between	 temperature	 and	
electricity	 demand,	 which	 is	 mainly	 shaped	 in	 this	 way	 because	 of	 the	 use	 of	 air‐
condition	during	hot	days	and	intensive	heating	during	cold	days.	One	can	clearly	notice	
that	 a	 temperature	 around	 18	 °C	 leads	 to	 the	 lowest	 electricity	 demand	 for	 those	
observations.	This	is	caused	by	the	fact	that	human	people	feel	comfortable	at	around	18	
°C	without	 having	 a	 need	 for	 cooling	 or	 heating.	One	 can	 observe	 such	 a	 dependency	
structure	at	many	places	over	the	world.	Therefore,	the	topics	this	paper	deals	with	can	
easily	be	transferred	to	other	locations	in	the	world.		
		

	 	
	
First,	 an	 overview	 of	 weather	 derivatives	 is	 given	 and	 the	 basic	 underlyings	 for	
temperature	 derivatives,	 namely	 Cooling	 Degree	 Days	 and	 Heating	 Degree	 Days,	 are	
introduced.	Then	different	modeling	and	valuation	approaches	are	mentioned.		
The	following	section	deals	with	a	model	for	the	daily	average	temperature	of	NSW.	The	
model	considers	seasonality	in	the	temperature	during	each	year	as	well	as	variability	in	
the	variation.	Finally,	the	autocorrelation	between	different	days	is	also	captured	within	
the	model.		
Afterwards,	 a	 structurally	 related	 model	 for	 the	 daily	 average	 electricity	 demand	 is	
established.	 For	 this,	 an	 autoregressive	model	 including	 temperature	 as	 an	exogenous	
variable	 to	account	 for	 the	 interaction	between	 temperature	and	electricity	demand	 is	
introduced.		
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Subsequently,	the	model	is	extended	to	generate	half‐hourly	electricity	demand	values.	
Therefore,	multiple	 linear	 regressions	 are	 used	 and	 further	 explanatory	 variables	 like	
the	day	of	the	week	are	taken	into	account.		
Finally,	a	stylized	financial	contract	whose	pay‐off	depends	on	the	temperature	as	well	
as	 on	 the	 half‐hourly	 electricity	 demand	 is	 evaluated	 using	 Monte‐Carlo	 simulations	
generated	by	the	developed	model.	
	

1	Weather	Derivatives	
	

In	 the	 temperature	 market,	 especially	 with	 focus	 on	 the	 energy	 industry,	 traded	
temperature	 derivatives	 are	 mostly	 written	 on	 Degree	 Day	 Indices.	 Those	 are	 useful	
because	they	are	designed	to	correlate	well	with	the	domestic	demand	for	heating	and	
cooling.	The	Cooling	Degree	Day	Index	is	defined	in	the	following	way:	
	
Definition	1:	Cooling	Degree	Days	(CDDs)	(Brix,	2005)	
The	value	of	CDDs	on	a	particular	day	i	is	defined	as	

ܦܦܥ ≔ maxሺ ܶ െ ܶ; 0ሻ ൌ ሺ ܶ െ ܶሻା,	

where	 ܶ	is	the	average	temperature	on	day	i	and	 ܶ	is	a	baseline	temperature.	A	CDD	index	
over	a	period	from	߬ଵ	݈݈݅ݐ	߬ଶ, ߬ଵ, ߬ଶ 	 ∈ 	Գ, ߬ଵ 	 	 ߬ଶ			is	defined	as	the	sum	of	the	CDDs	over	
all	days	during	that	period,	i.e.		

ሺఛభ,ఛమሻܦܦܥ ൌ 	 ܦܦܥ

ఛమ

ୀఛభ

.		

Analogously,	 the	 Heating	 Degree	 Day	 Index	 is	 defined	 the	 other	way	 around.	 For	 the	
baseline	temperature	normally	a	temperature	of	18	°C	is	used,	 justified	by	the	reasons	
explained	in	the	abstract.	 	Most	of	the	temperature	derivatives,	 like	options	or	futures,	
are	written	based	on	those	underlying	indices,	and	therefore,	one	can	think	of	different	
evaluation	methods.		

A	common	method	is	Burn	Analysis,	where	the	fair	value	of	a	contract	is	estimated	from	
the	 distribution	 of	 historical	 payouts.	 Another	method	 is	 to	 use	 Simulation	Technique.	
Here,	 one	 builds	 a	 model	 for	 a	 specified	 index	 like	 CDD	 (Index	Modeling),	 or	 one	
simulates	 the	 underlying	 time	 series,	 for	 example	 the	 daily	 mean	 temperature	 (Daily	
Modeling).	 In	both	 cases	Monte	Carlo	 simulation	 is	 used	 for	pricing.	 In	 this	 paper,	 the	
daily	 modeling	 method	 is	 used,	 as	 the	 stylized	 financial	 contract	 depends	 on	 the	
temperature	as	well	as	on	the	electricity	demand.	Therefore,	in	the	following	sections,	a	
model	 for	 temperature	 and	 a	 model	 for	 electricity	 demand	 including	 temperature	
information	are	presented.	
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2	Modeling	temperature	of	New	South	Wales	
	

The	main	 focus	of	 this	paper	 is	 to	build	a	model	 to	price	a	 contract	 contingent	on	 the	
average	temperature	and	the	electricity	demand.	Therefore,	the	model	is	kept	as	general	
as	possible	to	stay	in	the	same	structural	model	class	for	both	time	series.	The	intention	
is	 to	 use	 a	 discrete	 ARMA/GARCH	 setting	with	 some	modifications.	 In	 a	 very	 general	
form,	a	temperature	model	has	the	following	structure:	

ܶ ൌ ݀݊݁ݎݐ 	ݏ 	ߪ ܶ
′,				݅	 ∈ 	Գ.	

Here,	݀݊݁ݎݐ	captures	a	trend	over	a	long	period,	i.e.	many	decades,	and	ݏ	describes	the	
seasonal	 trend,	 which	 exists	 during	 every	 year.	ߪ	deals	 with	 the	 variability	 in	 the	
temperature	 variation	 over	 the	 season	 and	 ܶ

′	describes	 the	 remaining	 temperature	
anomalies.	
	
The	daily	mean	temperature	data	used	for	the	temperature	analysis	is	delivered	by	the	
Australian	Bureau	of	Meteorology	for	the	station	located	at	Bankstown	Airport	 in	New	
South	Wales.	
To	 account	 for	 the	 long‐term	 trend	݀݊݁ݎݐ	in	 the	 temperature	 observations,	 a	 linear	
trend	function	is	fitted	to	the	yearly	mean	temperature	over	42	available	years	of	data.	
This	 trend	can	be	explained	by	the	global	warming	phenomena.	For	the	underlying	42	
years	of	data,	the	yearly	mean	temperature	differs	by	0.64	°C.	
			
To	 capture	 the	 seasonal	 trend,	 following	 the	 Ansatz	 of	 Benth	 (F.E.	 Benth,	 2008),	 a	
truncated	 Fourier	 series	 is	 fitted	 to	 the	 trend‐removed	 15330	 points	 of	 data	
representing	42	years	without	leap	year	days.	The	function	has	the	following	structure	

ሻݐሺݏ ൌ ܽଵsin ൬
2πt
365

൰  ܽଶܿݏ ൬
2πt
365

൰	

and	the	parameters	are	estimated	by	using	the	standard	least	square	method.	
	
The	following	figure	shows	a	sequence	of	detrended	temperature	data	together	with	the	
fitted	function	ݏሺݐሻ	in	red.	
	

	
To	 account	 for	 the	 variability	 in	 the	 temperature	 variation	 over	 the	 season,	 again	 a	
truncated	 Fourier	 series,	 namely	 ሻݐଶሺߪ ,	 is	 used.	 The	 function	

ሻݐଶሺߪ ൌ ܿ ܿsin	൬
2πkt
365

൰

ଶ

ୀଵ

݀ܿݏ ൬
ݐ݈ߨ2
365

൰

ଶ

ୀଵ
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is	 fitted	to	the	calculated	empirical	variance	values	for	each	day	of	the	year,	 i.e.	 to	365	
values	for	the	variance	generated	from	42	observations	for	each	day.	Therefore,	the	data	
is	filled	into	a	matrix	to	generate	one	column	for	every	day	of	the	year.	According	to	the	
available	 data,	 every	 column	 has	 42	 values.	 Then	 the	 empirical	 variance	 for	 every	
column,	i.e.	for	every	day	of	the	year,	is	calculated.		
As	 a	 result,	 one	 observes	 a	 clear	 seasonal	 volatility	 effect	 in	 the	 temperature	
observations.	During	summer	months	the	variation	is	higher	than	during	winter	months.		

One	 ends	 up	 with	 the	 model	 for	 temperature	 anomalies	 to	 be	

௧ܶ െ ௧݀݊݁ݎݐ െ ሻݐሺݏ
ሻݐሺߪ

ൌ ௧ܶ
′.	

Then	an	AR(1)	process	is	used	to	capture	the	dependence	of	the	remaining	temperature	
anomalies	 ௧ܶ′	to	the	values	of	the	previous	day,	i.e.	

௧ܶ
′ ൌ ߶ଵ ௧ܶିଵ

′  ߳௧,			ݐ ൌ 2,… , 15330.	

The	 histogram	 and	 the	 qq‐plot	 of	 the	 remaining	 innovations	ߝ௧	in	 the	 following	 figure	
suggest	a	good	adequacy	of	the	proposed	model	for	the	New	South	Wales	data.	
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3	Modeling	Electricity	Demand	for	New	South	Wales	

In	this	section,	a	structurally	similar	model	to	the	temperature	model	is	proposed	for	the	
daily	mean	 electricity	 demand	 simulation	 of	 New	 South	Wales.	 The	main	 idea	 of	 this	
model	is	to	include	the	knowledge	of	the	temperature	to	enhance	the	electricity	demand	
simulation.	 	The	daily	mean	electricity	demand	data	comes	from	the	Australian	Energy	
Market	 Operator	 (AEMO)	 website,	 where	 also	 the	 half‐hourly	 electricity	 demand	 for	
New	South	Wales,	used	in	the	following	section,	is	published		

At	first,	similar	to	the	temperature	model,	a	long‐term	trend	is	removed	from	the	data.	
As	 the	macroeconomic	 environment	 influences	 the	 electricity	 demand	 in	 a	 long‐term	
view,	 a	 polynomial	 function	 of	 grade	 two	 is	 fitted	 to	 the	 data,	 i.e.	

௧݀݊݁ݎݐ ൌ ܽ  ݐܾ  	.ଶݐܿ

The	following	figure	shows	that	one	has	to	account	for	a	weekly	pattern	additionally	to	a	
yearly	cyclic	seasonality	for	modeling	electricity	demand.	

	

	

	

The	weekly	 pattern	 is	 removed	 from	 the	 data	 by	 using	 the	Moving	Average	Technique		
(Weron,	 2006)	 to	 fit	 a	 deterministic	 weekly	 function	ݏ௧

௪	to	 the	 data.	 As	 a	 result,	
explicit	 values	 are	 estimated	 for	 each	 day	 of	 the	 week.	 The	 results	 are	 given	 in	 the	
following	table.	

Sun	 Mon		 Tue	 Wed	 Thu	 Fri	 Sat	
‐782.70	 111.92	 311.62	 291.93	 313.36	 221.25	 ‐467.38	

One	can	clearly	observe	that	the	electricity	demand	is	estimated	to	be	the	lowest	every	
Sunday	 and	 lower	 than	 during	 weekdays	 on	 Saturday.	 This	 is	 consistent	 to	 the	
observations	 from	the	historical	electricity	demand	data	and	 those	observations	make	
sense	because	on	weekends	less	electricity	is	needed	by	the	industry.		
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The	 seasonality	 is	 again	 modeled	 by	 a	 truncated	 Fourier	 series	 but	 with	 more	
summands	 than	 the	 one	 used	 for	 the	 temperature	 model,	 i.e.	

ሻݐሺݏ ൌ ൭ܽsin ൬
2πkt
365

൰  ܾܿݏ ൬
2πkt
365

൰൱ .



ୀଵ

		

To	capture	the	variation	in	the	seasonality,	the	same	function	for	ߪଶሺݐሻ	is	used	as	in	the	
temperature	modeling	 case.	 The	 only	 difference	 now	 is	 that	 one	 has	 only	 11	 years	 of	
observations	 to	 estimate	 the	 daily	 variance	 compared	 to	 42	 years	 of	 temperature	
observations.		In	the	electricity	demand	case	one	obtains	a	seasonal	cyclic	structure	for	
the	 variation	 in	 the	 seasonality	 which	 has	 two	 local	 maxima	 within	 the	 year.	 Thus,	
variation	 in	electricity	demand	 is	highest	during	summer	months	but	also	high	during	
winter	months.	It	is	low	during	spring	and	autumn.		

Summarizing	 the	 electricity	 demand	 model	 up	 to	 this	 point,	 the	 remaining	 demand	

anomalies	ܦ௧′ 	are	given	by	

௧ܦ െ ௧݀݊݁ݎݐ െ ௧ݏ
௪ െ ሻݐሺݏ

ሻݐሺߪ
ൌ ′௧ܦ .	

To	include	the	temperature	information	in	the	next	step,	an	extension	of	an	AR‐model,	
namely	 an	 ARX‐model,	 is	 used	 for	 modeling	 the	 remaining	 dependency	 between	 the	
demand	anomalies.		

Definition	2:	ARMAX	Model	(Weron,	2006)	

For	ݐ ∈ 	Ζ	the	autoregressive	moving	average	model	with	exogenous	variables	ݒଵ, … , ݒ ,	or	
,ሺܺܣܯܴܣ ,ݍ ,ଵݎ … , ሻݎ 	can	 be	 compactly	 written	 as	

߶ሺܤሻܦ௧′ ൌ ߰ሺܤሻ߳௧ ߚሺܤሻݒ௧




ୀଵ

,	

where	 the	 	are	ݎ	 the	 orders	 of	 the	 exogenous	 factors.	 With	ܤ	denoting	 the	 backstep	
operator,	 ሻܤሺߚ 	is	 a	 shorthand	 notation	 for	

ሻܤሺߚ ൌ ߚ
  ଵߚ

ሺܤሻ  ⋯ ߚ
 ሺܤሻ	

with	ߚ
being	the	correspondent	coefficients.	

For	 the	 exogenous	 variable	 influencing	 the	 ARX(1)‐process,	 statistically	 significant	

variables	are	used.	The	remaining	temperature	anomalies	 ௧ܶ′	are	taken	into	the	model	as	
well	 as	 their	 interaction	 with	 a	 summer	 and	 winter	 dummy	 variable.	 Therefore,	 the	
interaction	 terms	 are	 highly	 significant	 and	 one	 accounts	 for	 the	 smile	 shaped	
correlation	 structure,	 seen	 in	 the	 first	 figure	 of	 this	 paper,	 between	 temperature	 and	
electricity	 demand.	 Including	 the	 interaction	 between	 each	 season	 or	 the	 squared	
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temperature	 anomalies	 does	 not	 improve	 the	model	 significantly	 and	 is	 therefore	 not	
taken	into	account.	

Taking	 a	 look	 at	 the	modeling	 results	 in	 the	 following	 figure,	 one	 can	 clearly	 see	 the	
additional	 model	 accuracy	 when	 using	 the	 temperature	 information	 as	 exogenous	
variable	 in	 the	 electricity	 demand	 modeling	 procedure.	 The	 figure	 shows	 the	 out‐of	
sample	results	for	2011	while	the	model	was	fitted	to	data	from	1969	until	2011	for	the	
temperature	 and	 from	 2000	 until	 2010	 for	 the	 electricity	 demand.	 The	 blue	 series	
represents	 the	 historically	 observed	 electricity	 demand	 and	 the	 red	 series	 shows	 one	
single	 simulation	 path	 with	 temperature	 influence	 (upper	 graph)	 and	 without	
temperature	influence	(lower	graph).		

	

4	Modeling	Half‐Hourly	Electricity	Demand	

For	being	able	to	evaluate	different	contracts	which	depend	in	their	pay‐off	on	the	half‐
hourly	electricity	demand,	the	proposed	model	is	extended	to	model	half‐hourly	values	
in	 addition	 to	 daily	 average	 electricity	 demand	 values.	 The	 basic	 idea	 is	 to	 use	 linear	
regression	 technique	 to	 predict	 48	 model	 points	 for	 each	 day.	 Therefore,	 48	 linear	
regressions	 are	 calculated	 simultaneously	 using	 the	 daily	 average	 electricity	 demand	
coming	from	the	previous	model	as	explanatory	variable.	Additionally,	dummy	variables	
for	 the	 day	 of	 the	 week	 as	 well	 as	 for	 summer	 and	 winter	 are	 included	 into	 the	
regression.	 This	 ensures	 a	 very	 comfortable	 r‐squared	 of	 0.92	 in	 mean	 over	 the	 48	
regressions.		

In	summary,	the	regression	model	has	the	following	setting:	The	historically	half‐hourly	
electricity	 demand	 observations	 are	 grouped	 so	 that	 one	 gets	 4018	 observations	 for	
each	half‐hourly	point	in	time	to	fit	the	regression.		As	basic	configuration,	a	Saturday	in	
autumn	or	spring	is	used.	So	all	regression	betas	have	to	be	viewed	in	comparison	to	a	
Saturday	in	autumn	or	spring.	
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As	a	result,	the	model	captures	the	daily	shape	of	electricity	demand,	i.e.	low	during	the	
night	and	peaks	during	the	day	dependent	on	the	day	of	the	week	and	the	season.	The	
out‐of‐sample	results	for	a	few	days	in	December	2011	are	given	in	the	following	figure	
(in	 the	 upper	 graph	 without	 temperature	 influence	 and	 in	 the	 lower	 graph	 with	
temperature	influence).	

		

5	Monte	Carlo	Pricing	and	Further	Applications	
	

Finally,	one	is	able	to	use	the	model	to	price	various	financial	contracts	written	on	the	
daily	 mean	 temperature,	 the	 daily	 mean	 electricity	 demand	 and/or	 the	 half‐hourly	
electricity	demand.	Such	contracts	can	help	companies	to	insure	against	higher	or	lower	
electricity	demand	caused	by	abnormal	high	or	low	temperature	evolutions.		Due	to	the	
fact	 that	 the	 underlying	 series	 are	 modeled	 instead	 of	 pre‐specified	 indices	 like	 the	
introduced	 Cooling	 Degree	 Days	 for	 example,	 the	 proposed	model	 is	 very	 flexible	 for	
pricing	all	kinds	of	pay‐off	functions.		

For	 further	 research,	 one	 can	 think	 of	 including	 the	 electricity	 price	 into	 the	 model.	
There	 should	 also	 exist	 a	 high	 correlation	 between	 the	 electricity	 price	 and	 the	
electricity	 demand	 as	 well	 as	 the	 temperature	 which	 could	 be	 modeled	 in	 a	 more	
sophisticated	 setting.	 Another	 approach	 to	 extend	 the	model	 could	 be	 to	 incorporate	
weather	forecasts	to	increase	the	accuracy	of	the	forecasting	simulations.	
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