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Abstract

Reinsurers cover a large variety of risks that come from different sources and
can have hidden dependencies. It is therefore crucial for reinsurers to constantly
fine-tune their internal risk dependency analysis models.

Quantitative risk management deals with a vector of one-period profit-and-loss
random variables Xy, . . . ,X,, which represent different risks within a portfolio
X=Xy ...,X,), its aggregate position W(X) = X, +... + X, and a risk measure
p which assigns to W(X) an amount p(¥(X)) that is the capital required to hold
Y(X) over the predetermined period of time.

The aim of this paper is to propose an original simple and flexible method for mo-
deling dependence between the risks Xi which allows for an easy and efficient
computation of the aggregate position Y(X) and so as well of the risk measure p.
Our idea is an extension of a common shock type model which applies to any
kind of distribution contrary to standard shock model which may be applied only
to infinitely divisible distributions.
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1. Introduction

The aim of this paper is to present an original method for modeling the joint distribution of a vector of random
variables X := (X1, ..., X,), which may represent a portfolio of risks X;, given the marginal distributions of
the X;.

One of the most popular method used for this purpose consists in modeling the joint distribution of the
vector of ranks of the X;, that is, the copula (see [2] and references therein). More precisely, a copula
is a multivariate distribution function C(u1,...,u,) on [0,1]™ which has uniform distributed marginals. Any
multivariate distribution F(z,,...,z,) can be written as the composition of C(u,,....u,) with the marginal
distributions F;(x;) of F. Thatis,

Flzy,...,2,) = C(Fi(z1),. .., Fa(z,)).

An alternative method for modeling dependence structures is presented in [5]. This method applies to Lévy
processes, or equivalently to random variables with infinitely divisible distributions. Roughly speaking, the
method consists in extending copulas to copulas between Lévy mesures.

The method we propose in this paper is an extension of a common shock type model and has been motivated
by two main reasons. Firstly, the high rigidity of copula modeling. That is, the copula associated to a
multivariate distribution is quite sensitive to modifications of the marginals. Secondly, many widely used
families of copulas, as Clayton, Gumbel and Gauss (with one parameter), have the property that

im P(Xs > VaR”(X,),.... X,, = VaR"(X,,)| X, = VaR"(X,)) = 0,

and the convergence to 0 is exponentially fast in n. This means that those copulas are not appropriate to
model a situation in which an extreme bad event is the common driver for severe losses of X, ..., X,,.

The new method proposed in this paper solves the two issues described above without making use of copulas
and can be applied to any type of distribution of marginal risks X;. Our idea is based on what we call a
risk-by-risk-factor decomposition applied to each risks X;. Each piece represents the impact that an extreme
bad event has on our risk. We then define the dependence structure of X in a simple way trough those pieces.

The method we propose yields a dependence structure which puts more dependence on one tail of the
marginals than on the other when the marginal have skewed distributions, as for example losses and results
distributions for (re)insurance portfolios. For marginals with symmetric distributions, our method yields a
dependence structure which puts the same dependence on the two tails of the marginals.

We present our new method in the context of reinsurance risk. Nevertheless it is an abstract method which
can be used in any context.

The paper is organized as follows. In section 2 we describe briefly some mathematical tools related to our
method, as copulas, Lévy process and infinitely divisible distributions. In section 3 we present in details the
motivations justifying the added value of our method. In section 4 we define the method, the risk-by-risk-factor
decomposition and our modeling for different structures of dependence. In section 5 we compare it with
Clayton, Gumbel and Gauss copula in both a flat and a hierarchical structure. In section 6 we underline the
main advantages of our method.
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2. Mathematical background

In this section we present concisely some mathematical concepts behind our methods. In section 2.1 we
describe the dependence and risk measures used in the paper. In section 2.2 we recall the definition of
copula functions toghether with the Clayton, Gumbel and Gauss copulas. In section 2.3 we present the
notion of Lévy process with few important properties and in section 2.4 we introduce the concept of infinitely
divisible distributions.

Section 2.3 is not important for the comprehension of the paper and it can be skipped. Nevertheless we
decide to include it for sake of completeness. Sections 2.2 and 2.4 might be skipped by the reader already
familiar with those concepts.

Throughout all the paper, we set by convention that losses have positive sign. Our attention is then focused
on the right tail of the marginal distributions.

2.1 Dependency and risk measures

We refer to [2] for the definitions contained in this section.

To measure the dependence between two random variables X and Y, we use a rank dependence measure
which assess the dependence between extreme events. The right tail dependence between X and Y at
percentile p is defined as

RTD?(X,Y) := P(X > VaR"(X)|Y > VaR"(Y)).
Analogously, the left tail dependence between X and Y at percentile p is defined as

LTD(X,Y) := P(X < VaRP(X)|Y < VaR’(Y)).

Ifthe limit of RTD” (X, Y) goes to 0, as ptends to 1, then we say that X and Y have asymptotically independent
right tails, and analogously, if LTD”(X,Y) — 0 goes to 0, as p — 0, then we say that X and Y have
asymptotically independent left tails.

To measure the risk of a r.v. X, we use different measures. The value-at-risk at percentile p of X is defined
as
VaR?(X) :=inf{x|P(X > z) < p}.
Analogously, the tail value-at-risk TVaR and the XTvaR are given by
TVaR?(X) := E(X|X > VaR"(X))
and
XTVaR?(X) := TVaR?(X) — E(X).
We define also the diversification gain as the capital that can be saved when undertaking the risks jointly in a
portfolio X := (X, ..., X,,) as consequence of diversification. If we look at the capital at percentile p = (.99,
we then define the diversification gain as
XTVaR™ (X, +--- + X,,)
XTVaR" (X)) + .- + XTVaR""(X,,)
Notice that XTVaR” " (X,)+- -+ XTVaR"?*(X,,) is the capital which we would need to run X without benefit
of diversification.

DG(X) := 1 —
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Figure 1: Scatter plot of Clayton copula with parameter 0.5

2.2 Copulas

One way of representing dependence between random variables are copulas [2].

A copula is defined as a multivariate distribution function C'(uy, . .., u,) on [0, 1]" which has uniform distributed
marginals.

By Sklar's theorem [4], any continuous multivariate distribution £(x,, . .., =, ), which represents the multivariate
distribution of a portfolio X := (X,.....X,,), is equivalent to the composition of a copula C(u;.....u,) with
the marginal distributions F;(z;) of F', which represent the distributions of the risks X;. That is,

F{Il,...,ﬂ:’n}:C(F](I]),---,FH(I”}). (1)

A nice property of copulas is that if we modify X; in a comonotone way then the copula remains unchanged,
that is, if g; are increasing functions, then the copula of (g,(X,),....9.(X,)) is the same as the one of
(O CTREN &Y

There are a vast variety of copulas. We give belove an overview of the most common ones.
The Clayton copula is an Archimedean copula with the following expression, for 6 > 0,

Coltoyyssostig) = [(1 — ul}“‘q+ v (1 — u,,)‘g —n+ 1]_]/9.

Scatter plots of the bivariate Clayton can be found in [2] or see Figure 1. This copula puts more dependence
on the right tail of the distribution of the marginals than on the left tail which is asymptotic independent. The
higher the value of ¢, the more the marginals depend on each other. The limit # —» oc corresponds to the
comonotone dependence between the marginals and the limit & — 0 corresponds to independent marginals.

The Gumbel copula is an Archimedean copula with the following expression, for § > 1,
Co(uy, ..., un) = eXp(—=[(—INuy)? + -+ + (= Inuy,)?]/%).

Scatter plots of the bivariate Gumbel can be found in [2]. This copula puts more dependence on the right
tail of the distribution of the marginals than on the left tail which is asymptotic independent. The higher the
value of ¢, the more the marginals depend on each other. The limit # — oc corresponds to the comonotone
dependence between the marginals and the limit @ = 1 corresponds to independent marginals.
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The Gauss copulais an elliptic copula based on the multivariate normal distribution. Let Oy, be the multivariate
normal distribution with mean 0 and correlation matrix X and let ® be the standard normal distribution function,
then

Csluy, ... uy,) = I_g(fb_] (w1)---s ¢! ().

Scatter plots of the bivariate Gauss copula can be found in [2]. This copula puts the same dependence on
the right tail of the distribution of the marginals as on the left tail which are both asymptotic independent. The
higher the values of X, the more the marginals depend on each other. The limit X = 1 corresponds to the
comonotone dependence between the marginals and the limit X = 0 corresponds to independent marginals.

2.3 Lévy processes

By definition [1], a Lévy process is a stochastic process {X,};-o defined on a probability space (22, F, P)
such that Xy = 0, its increments are independent and stationary, that is, for every increasing sequence of
times ¢y, ..., t,, the random variables X, X;, — X,,, ..., X;, — X, _, areindependent, and, for every s > 0,
the distribution of X, , — X, does not depend on ¢, and right continuous in probability, i.e. for all ¢ = 0 and
t>0,
sin:L P(| Xy — Xi| =€) =0.

The distribution of a Lévy process is completely determined by its characteristic triplet (1, o2, v) where u € R
is the drift, 2 > 0 is the diffusion and ~ is the Lévy measure, that is, a positive measure on R ', {0} which
satisfy

/ min{z?, 1}v(dz) < .
{0}

Roughly speaking, the Lévy measure describes the jumps of X;. For every interval [a.b] C R\ {0}, v([a, b])
is the average number (possibly infinite) of jumps of X; in the time interval [0, 1] whose fall in [a,b]. The
integrability condition on v above means that the average number of big jumps goes to 0, as the size of the
jumps goes to oo, and that the average number of small jumps might goes to o, as the size of the jumps
goes to 0, but with a density prescribed by the condition.

By the Lévy-Khintchine formula, the characteristic function of a Lévy process with characteristic triplet (i, 02, v
has the following expression

E("*X) = exp(t[ipd — 50292 + f[l — @t i0rx(—1,1)(x)|v(dr)]).
R

A simple example of Lévy process is given by the jump-diffusion which is defined as the combination of a
Brownian motion with drift and a compound Poisson process, that is

J‘Vg
X, =put+oB, + ZY;,
i=1
where N; have Poisson distribution with parameter ¢A, Y; have distribution density f and 73; is a standard
Brownian motion. In this case the characteristic triplet of the process is (i, 02, A f(dz)) and the characteristic
function has the following expression

E("*X0) = exp(t[ipd — 50292 + A / (¢ — 1) f(dx)]).
R
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The Lévy measure of a jump-diffusion process is finite, i.e. #(R) < oc, and hence it cannot have infinitely
many jumps of a given size.

Any Lévy process can be obtained as the limit in distribution of a sequence of jump-diffusion processes.

2.4 infinitely divisible distributions

A random variable X is infinitely divisible [1] if, for any integer », there exists independent and identically
distributed random variables X, ..., X,, such that X; + --- + X,, has the same distribution as X. The
distribution of X; depends on X and on n.

Lévy processes and infinitely divisible distributions are strictly connected. Indeed, by the Lévy-Khintchine
theorem, X is infinite divisible if and only if its characteristic function has the form

E(e"Y) = exp(ip — 5026‘2 + /1}3;[1 — el — ilrx(—11)(x)]v(dz)).

Hence, a Lévy process {X;}:=¢ is such that X, is infinitely divisible, for every ¢ > 0. Moreover, for any
infinitely divisible random variable X there exists a Lévy process {X,},-o such that X, coincides with X in
distribution.

Examples of infinitely divisible distributions are Normal, LogNormal, Gamma, LogGamma, Exponential,
Pareto, compound Poisson, compound Negative Binomial, compound Geometric, Fischer's F, Student's
t, Cauchy, Gumbel, logistic.

3. Motivation

Copula is probably the most diffused tool used for modeling the dependence structure of a portfolic X =
(X1,....X,), thatis, for modeling the joint multivariate distribution #'(x1, ..., z,,) of the vector X with marginals

One of the main reasons for this success is that one might think to be able to isolate in the copula function
C'(uyq,...,uy,) all the dependence structure of X, independently on the distribution of the standalone risks
X; composing the portfolio. But this is not correct. Indeed, the equality (1) involves also the marginal
distributions. In other words, if we keep the copula function € unchanged and we modify the distribution of
one of the marginals X; we then obtain a different joint distribution £, i.e. a different dependence structure’.

An important feature of copulas to be aware of when modeling dependence is the following. Suppose we
decide to use one of the copulas mentioned in Section 2.2 to model the dependence structure of X with the
property that X; have pair-wise the same dependence, non-comonotone nor independent, that is

P(X; > VaR"™(X;)|X; > VaR™¥(X}))
is the same, for any i £ j. Then, we have that

lim P(X, > VaR""(Xy),..., X,, = VaR"™(X,)| X, = VaR"" (X)) = 0.

To—r 20

See [3] for a critical review on the use of copulas.
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That is, the probability that X5, ..., X,, incur severe losses greater than their corresponding 99%-quantiles,
conditioned to X, has incurred the same kind of loss, converges to 0 as the number of risks growth to infinity.
This means that Clayton, Gumbel and Gauss (with one parameter) copulas are not appropriate to model a
situation in which an extreme bad event is the common driver for the severe losses of X, ..., X,,. Indeed,
in that case we would expect that

P(X; = VaR"™(X;)|X; = VaR™(X;))
~ P(Xy > VaR"™(Xy),..., X,, = VaR" ¥ (X,,)| X; = VaR" (X))

. . > 2.

In our opinion copulas are more appropriate for the analysis of the dependence than for its modelization. In
fact, copula is a complete source of information for rank dependence between the marginals. All the rank
dependence measures, as Spearman's rank correlation and tail dependence, can be computed out of the

copula. Nevertheless, copulas may be too rigid for modeling dependence.

In the following section we propose two real situations which show the limitations of using copulas for
modeling the dependence structure.

3.1 Business case

Suppose that X, represents a reinsurance portfolio composed by two buckets X, X5 of Property treaties
in Germany and in Poland, respectively, where the random variables X, X, represent the losses of our
contracts. Suppose also we believe that X; and X, are distributed following two LogNormal distributions
with parameters ;. o) and us, o2 and their dependence can be modeled with a Clayton copula function with
parameter 6.

Consider now one of the following situations:

1. tomorrow we add a further bucket X5 representing Property treaties in Czech Republic;
2. tomorrow we change the treaty conditions of X; and/or Xs;
Property treaties for Germany, Poland and Czech Republic have a catastrophic coverage component which

might trigger common severe losses in our risks. Common catastrophic events behind those losses are
windstorms.

In case (1), for modeling X, := (X, X2, X3), if we keep unchanged the parameter d;, setting
p = P(X, > VaR™(X5)| X, > VaR™ (X)),
we would have that
P(X3 > VaR"™(X3), Xy = VaR"?(Xy)| X; = VaR™ (X)) ~ 0.66"/%p.

That is, for say @, = 1, the probability of X5, X, have severe losses, conditioned to X, has a sever loss, is
(6% of the probability of X5 has a severe loss, conditioned to X, has a sever loss. In other words, out of 10
windstorms which hit Germany, in average 10p of them will hit also Poland and just 6.6p will hit Poland and
Czech Republic. If we think to the geographical location of the three countries and the size of a windstorm,
then we realize that the model cannot be quite correct.
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Actually there is no way the modify the parameter ¢, to overcome this issue. Moreover, if we increase the
value of );, we then increase the pair-wise dependence between the countries which would contradicts the
dependence structure of X,. To be consistent with the madel for X, we could only modify the copula function.

In case (2), suppose that the treaty conditions in Germany and Poland change. We then obtain two effects.
Firstly, the distributions of the losses of our risks X, X, change. Secondly, the dependence between X,
and X very likely change accordingly.

Indeed, suppose that, for instance, we increase the catastrophic component coverages in both X; and
Xs. Hence, the dependence between X, and X increases since the dependent part between X, and X,
increases whereas the attritional part remains unchanged. A similar effects would happen also in case we
change attachment point, or layers, or number of reinstatements, etc. for non-proportional treaties. The only
case the dependence remains the same is the one for which X; and X, change in a comonotone way, i.e.
X; = fi(X;) with f; increasing. For example, if X, and X, are two quota-share contracts and shares change.

In both cases above, modeling dependence at the beginning with a specific copula function does not provide
any advantage more than using the multivariate distribution.

4. A new method for modeling dependence

For the reasons mentioned in Section 3, we propose a new method to model the dependence structure
of a portfolio which is flexible enough to deal in a simple way with modifications of the portfolio and which
overcomes the issue of dimensionality for common risk factors.

We would like to underline that our method does not consist in defining a new family of copula functions. Our
aim is to propose a way to define dependence directly on the marginals and which yields a copula function
which depends on the marginal distributions.

Our method is described below.

4.1 Risk-by-risk-factor decomposition

In this section we describe our method for defining the dependence structure of a portfolio X = (X,..... X,,).

We start introducing what we call the risk-by-risk-factor decomposition which is the base of our new method.
Let X be a random variable with probability density function f and let « < 1 be a positive number?. Consider
the function f,, defined by

=L [ e-im E(e?®X)y~dp, forevery z c R.
2m B

Set Re[-] to be the real part of a complex humber.

Definition. We define the « piece of X as a random variable X® with probability density function

Folz) := max{0, Re[fa(:n)]}/f max{0, Re[f,(zx)]}dx, foreveryz c R,

2Assuming that the distribution function of X has a density is not relevant in our context. We can always approximate as good as
we want X by a r.v. with absolutely continuos distribution function.
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If X is an infinitely divisible (see Section 2.4), then f,, is a probability density function, for every a. Hence,

fo = faand,ifaq,...,«, are n positive real numbers such that o; + - - - + a,, = 1, then, by defintion,

;_jf p

X ™ EOpe +X”"° £ x.

That is, the sum of the independent pieces X°:,..., X~ of X has the same distribution as X. If (1,02, v/)
is the characteristic triplet of X (see Section 2.3), then the characteristic triplet of X< is (au, ac?, av).

When X represents a risk in our portfolio, we can think to the «;, piece X“+ of X as the part of the entire
risk connected to an event, or risk factor, k. It is important to notice that X** does not represent the event
in itself but rather the impact that this event has on our risk.

Suppose that one event & has an impact on different risks X; of our portfolio X = (X,..., X,,), and that all
the risks are infinitely divisible random variables (we remove this assumption below). We could describe this
situation in the following way. For each risk 7, we take an ai, piece of X; which represent the impact of the
event & on X, and we then treat, for sake of simplicity, those pieces as comonctone. By considering various
events which affect independently our portfolio, we can apply again the same analysis for the remaining parts
of the risks. In this way, for every i, the ! pieces of X; are independent and hence their sum gives us back
X;. This case in which all the risks are infinitely divisible random variables is a kind of common shock model.

In case a risk X; is not infinitely divisible, we introduce the auxiliary random variable

Ri= X5 4+ X

i

The X; may be distributed differently than X;. The difference between the distribution reduces to 0 as X
admits o}, pieces, k = 1,...,n. We then treat X; and X; as comonotone and define the dependence structure
of X by using the copula which derives from our method applied to the portfolio (X, ..., X;_1, X;, Xiv1,.... X,

This approach is justified in Section 5. Indeed the tests presented in that section show that the copulas
which derive from our method depend on the marginal distributions in a weak way. That is, big changes in
the marginals distributions have small impact on the implied copula.

In the following sections we describe in more details the parametrization of our method accordingly to the
different type of realities we want to model. That allows to deal with the minimal number of parameters in
each context.

4.2 Mono-dimensional dependence

In this section we describe our model in case of a mono-dimensional dependence structure. The reality we
can model here corresponds to the case in which our portfolio X = (X;,..., X,,) has only one event which
affects commonly, and with the same portion, all our risks. That is the typical situation in which Clayton or
Gumbel copulas could be used.

Let & < 1 be a positive number and let, for every i, X* and X/ ~* be the two pieces of X; as defined in
Section 4.1. Then, we define our dependence structure of X as follows

Flzy,....zn) = / FXlx—a(a:l =) Fyiea(Tn — F)zé (Fx=(z)))dFxa(x).
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Xy X X3 Xy

Figure 2: Mono-dimensional and symmetric dependence structure

That is, we look at the pieces X as comonotone and the other pieces X! as independent. In Figure
2, we illustrate the decompositions of the risks in this case. The white parts in the figures are independent
whereas the parts with the same color are comonotone.

The formula above provides an explicit analytical way to compute the multivariate distribution of X. Alternatively,
we can easily simulate the multivariate distribution of X by generating n+ 1 independent uniformly distributed
real numbers g, ..., u, in [0, 1] and obtain X1,..., X, by

Xi = Fxa (uo) + Fia (u).

See Figure 9 for examples of scatter plots of the copula derived by our method.

Differently suppose one event affects commonly, but with different portions, all our risks. In this situation
neither Clayton nor Gumbel copulas could be used since they yield identical pair-wise dependence between
risks.

Letay,...,a, < 1be positive numbers and let, for every i, X{"" and X‘.l_“" be the two pieces of X; as defined
in Section 4.1. Then, we define our dependence structure as follows

o0
Flntyovnniin) :=-/ Fx:-ﬂl (21 —a) - Fyi-an(Tn ~F§;},, (Fxei (2)))dEx s (2).
—og

That is, we look at the pieces X" as comonotone and the other pieces X_j“*" as independent. In Figure 3,
we illustrate the decompositions of the risks in this case. Again, the white parts in the figures are independent
whereas the parts with the same color are comonotone. We can simulate the multivariate distribution of X
by generating n + 1 independent uniformly distributed real numbers uy, ..., u, in [0, 1] and obtain X,,..., X,
by

Xi = Fya (uo) + Fiia, (wi)-

See Figure 8 for examples of scatter plots of the copula derived by our method.
Xy X2 X3 Xq

Figure 3: Mono-dimensional and non-symmetric dependence structure
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4.3 Bi-dimensional dependence

In this section we describe our model in case of a bi-dimensional dependence structure. The reality we
can model here corresponds to the case in which the risks X; in our portfolio X = (X;,..., X,) might have
different pair-wise dependencies, but only with a gaussian-type structure. In this situation, neither Clayton
nor Gumbel are appropriate copula function, while the Gauss copula could be used.

Setm :=n(n—-1)/2. Letay,...,a,, < 1 be positive numbers such that
ay+ - Fam <1, appri=1—(ag+- -+ om),

and let X** be the pieces of X; as defined in Section 4.1. Then, we define our dependence structure of X
as follows

oo oo N i—1 m m
Flgi,ives®n)e= / ¥ f HFX?...ﬂ (x; — Z F;‘_l.i (Fx:i (xri)) — Z Ti k) H dpx:"k (@in)
—a —8¢ j=1 k=1 femi k=i

Thatis, for every k, we look at two pieces X;™* and X"* as comonotone and the other pieces as independent.
Observe that a a;. could be 0, meaning that the corresponding pair is an independent pair. In Figure 4, we
illustrate the decompositions of the risks in this case. The white parts in the figures are independent whereas
the parts with the same color are comonotone.

We can simulate the same dependence structure by generating n-dimensional vectors u’ of independent
uniformly distributed real numbers in [0, 1] and obtain X;,..., X,, by

X = F;;n (Myau')a) +- -+ F;%m ((Mymu™)1) + F‘;%,,,H (uth)

Xs = Fgh (Maat®)2) + -+ Figho (Ma,mt™)2) + Figho o (u5),

Xn = F;:{;l ((}ﬁ!’n.iuﬂ)n) e o F;;%m ((ﬂ’fn_.mum)n) + F;§m+l (u:?+l 1

where M, ;. are n x n lower triangular matrix with elements in {0,1} such that M, , = M, ; and, for k < i,
denoting by e;, ..., e, the standard base of R",

M;p:=Ild+e;®(er—e;).

That is, M, ;. is the matrix such that, for every line j # i, all the elements in line j are equal to 0 but the
element at column j which is equal to 1, and all the elements in line i are equal to 0 but the one at column k.

X, Xz X3 X4

Figure 4: Bi-dimensional and symmetric dependence structure
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Suppose the risks X; in our portfolio X = (Xj, ..., X,,) might have different pair-wise dependencies, which
might also be non-symmetric now. In this situation even the Gauss copula could not be used.

Forevery i, let aj....,a!, <1 be positive numbers such that

A+ an S apy =1 (ai +oo- 4 ap,),

m

and let X,f*:* be the pieces of X; as defined in Section 4.1. Then, we define our dependence structure of X
as follows

oo oo N i m m
Fnzn)i= [ oo [ TIF @i P4 F @)= 3 2 [[dF g (@i0)
=00 == k=1 i * k=i+1 k=i L

That is, for every k, we look at two pieces X i and X;.”i as comonotonic and the other pieces as independent.
We can simulate the same dependence structure by generating n-dimensional vectors u’ of independent
uniformly distributed real numbers in [0, 1] and obtain X;...., X, by
Xy = F;} (Myau')y) + -+ F;_i: (Mymu™)1) + F 70 (ufth)
" X

T
1 1

Xo = F L ((Magu?)) + -+ FL (Mam™)2) + F L, (upth),
X1 x? X:m_“

2
m
2

X, = F;E? (Mpu™)p) + -+ + F;;:‘ (MymU™)n) + F; fmrey

n
Tmi1
n

4.4 Hierarchical dependence

In this section we describe our model in case of a hierarchical dependence structure. The reality we can
model here corresponds to the case in which our portfolio X = (X),..., X, ) has many events which can
affects commonly, and with the same portion, various risks in a hierarchical way. In this situation, a hierarchical
tree of Clayton or Gumbel copulas could be used.

To define this situation, suppose our hierarchical structure has m levels. For each level k, let P, := {Pf,..., Pk }
be a partition of {1,...,n}, thatis, PFuU---uU Pk = {1,...,n} and PF are pair-wise disjoints, such that

g

Py :={{1,...,n}} and P¥1 c P}, P*+1 £ PF. That implies m < n.
% X, X3 %
wan

Figure 5: Hierarchical and symmetric dependence structure
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For every k=1,..., m, s =1,...,my, let o* < 1 be positive numbers such that, for every i = 1,...,n, the
sum of o such that Pf contains i is less or equal than 1. Set

,83; =1- Z O,'f.

{8,kic Pk}

Let X fk and X" be the pieces of X; as defined in Section 4.1. Then, we define our dependence structure
of X as follows

F( P..,G‘L‘n = / fmﬁFX:sé(mi_ Z o ak(F ok a:sk H dF xs,k),
=1

{s.kiic PR} X Ko {.s kel 3‘“ k)
where j(s, k) :=min{j:j € PF}and I := {(s,k) : 1 <k <m.1 <s<my}.

That is, we look at the pieces X' g , foriin P¥, as comonotonic and the other pieces as independent. In Figure
5, we illustrate the decompositions of the risks in this case. The white parts in the figures are independent
whereas the parts with the same color are comonotone.

We can simulate the same dependence structure of X by generating m. +- - - +m,,, +n independent uniformly
distributed real numbers u 4 in [0,1], forevery k =1,...,m, s = 1,...,my, and with s := 1, for & > m, and
obtain Xy,..., X, by

1—1 1—1 1—1
X1= ﬁxf“m (usrqyp) +-- + Fgman (sm1),1) + Fyen (41,1

—1 —1 -1
Xy = FX%”I(Q) (u.31(2j?2} I FX;‘YH(Q) (usm(g),g) + Fxfz (’umﬁ_l,g),

Xn = F‘;ll(n} (u,-sl(n)_.n,) + ek F‘;lm(n) (u'sm (n).n ) + F_ ,6,3 (umn-i-l n)

where s (i) := s, where s is such that i € P¥, of(i) := afk(t) and m; := 0, fori > m.

Suppose many events can affects commonly, but with different portions, various risks in a hierarchical way.
In this situation, even a hierarchical tree of Clayton or Gumbel copulas can not be used.

Forevery k = 1,...,m,s =1,...,my, 1= 1,...,n, let o¥, < 1 be positive numbers such that, for every

i=1,...,n,the sum of (}k such that Pk contalns iis Iess or equal than 1. Set
Bi=1- Z 05:,@:'
{s.kiic Pk}

&
Let X:"" and Xf" be the pieces of X; as defined in Section 4.1. Then, we define our dependence structure
of X as follows

Flxy, ... x,) ::/ / 11+ si (@i = > oFL o (2sn) ) I dF ke (2o.1)-
-5 =1

-a\‘
{s.kiePr} i RTE! (s.kyel  Xitok)
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That is, we look at the pieces X' f". for i in P¥, as comonotonic and the other pieces as independent. We
can simulate the same dependence structure of X by generating m, + - - - + m,, + n independent uniformly
distributed real numbers u,; in [0,1], forevery k =1,...,m, s=1,...,my, and with s := 1, for & > m, and
obtain X,..., X, by

Xy =F oy (uayn) + o+ Fgmay (Wamayn) + Fop, (Umy41,1)
X X5 X

—1 —1 —1
Xo= Fx;.:‘g;(usltz)‘ﬂ FoeEE Fx;mm (tgm(2)2) + Fx;a (Umy+1,2),

K= F;,l,l(,u(uxl(uj,u) ot F";;'“(nl (u.'l'“('ﬂ-}.'ﬂ-) e F-;ré“ (ur"'h"-lvu)‘

where now o (i) := a;‘,‘m_i.

4.5 Multi-dimensional dependence

In this section we describe our model in the most general case. That is the case in which there are many
events which can affects commonly various risks in our portfolio X = (X;,....X,) without any precise
structure.

To define this situation, fix m and, for each level k = 1....,m, let P, == {P}..... Pk } be a partition of
{1,....n}. Notice that, differently to the hierarchical dependence structure (Section 4.4), we do not require
any property on the partitions. The definition of the dependence structure is formally equal to the one in
Section 4.4.

5. Tests and comparisons

We compare our new method with Clayton, Gumbel and Gauss copulas in three different sets of tests.

For all the tests we consider marginals with two types of distributions: a LogNormal with g = 10,0 = 1
and a Pareto with @ = 3.2y = 1m. To compute the Fourier transform and its inverse which are used for
defining the dependendy structure by our method, we use the Fast Fourier Transform algorithm with 2.5k
points equidistributed from 0 to 5m for the LogNormal and 5k points equidistributed from 0 to 80m for the
Pareto marginals. For the aggregation and computation of statistics we use 100k simulations.

B=14 = a=55% (56%)

LogNormal

J } v LogNormal LogNarmal
(Pareto) (Pareto)

Figure 6: Hierarchical structure of Clayton copulas used for comparison with our method
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Table 1: Conditional probability for more than two joint marginals

Our method  Clayton

pe = RTD 99% 40% 40%
P 39% 24%
74 38% 18%
D5 38% 15%
Ps 38% 14%
7 37% 12%
s 37% 10%
Py 37% 9%
P10 37% 6%
P 37% 4%
P12 37% 4%
P13 37% 4%
P14 37% 4%
P15 37% 4%
P1s 37% 3%
Pi7 37% 3%
P1s 37% 3%
P1g 37% 3%
P20 37% 3%

In the first set of tests, we aggregate two marginals with the four different methods and for three different
values of dependeny, more precisely for RTD 99% equal to 13%, 28% and 61%. See results in Tables 2, 3.
The main figures to be compared are the diversification gain absolute and relative.

For the second tests we build a small tree as defined in Figure 6. We compare our method described in
Section 4.4 with a tree of Clayton copulas in which at each node we store the sum of its children. That is,
the Clayton copula at the black node describes the dependence between X, + X, + X5 and X4 + X5. See
results in Tables 4 and 5. The main figures to be compared are the diversification gain absclute and relative.

In both families of tests above, we observe three main features of our method.

Firstly, from the values of RTD 99% and LTD 99%, we deduce that our method puts more dependence on
the right tail of the marginals than on the left tails which are asymptotically independent. This is due to the
skewness of the marginals. For symmetric marginals, the implied copula would have same tail dependence
on the right and on the left.

Secondly, similar type of marginals have pretty identical implied copula.

Thirdly, the diversification gain at 99% with our method is higher with respect to the other copulas. We can
explain this feature looking at the scatter plots of the implied copula (Figure 9) and, say, the Clayton copula
(Figure 1). Indeed, for the Clayton copula, the points which fall in the 1% upper and right strips of the scatter
plot, but in the upper-right 1% x 1% square, do not fall far away from the square. While, with our method, those
points might fall far away from the square. This feature yields a lower TVaR for the aggregated distribution
under the same RTD 99%.
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Figure 7: Distributions of number of risks from X1 toX20 which suffer bad losses
simultanously with a Clayton copula and with our dependence structure

For the third test, we aggregate twenty marginals with a Clayton copula with parameter 0.8 and with our
method. In both case we have a pairwise RTD 99% of 40%. Here we compare how the conditional
dependence changes as we increase the dimension. That is, how the quantity

pi i= P(Xz > VaR"¥(Xy),..., X; > VaR™™(X;)| X1 > VaR"™ (X))
changes from i = 2 to 20. The results are shown in Figure 7 and Table 1. Gumbel and Gauss (with one

parameter) manifest the same kind of behaviour as Clayton copula.

The third test shows the totally different behaviour of our method with respect to the other copulas. That
is, increasing the number of marginals leaves essentially unchanged the conditional probability p; with our
method, while with the others copulas the value of p; changes drastically as i increases.

Figure 8: Scatter plots of our non-symmetric dependence structure applied to two
LogNormal marginals y = 10, 0 = 1 with a1 = 0.67, a2 = 0.33 and a1 = 1, a2 = 0.33, respectively
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Figure 9: Scatter plots of our dependence structure applied to two LogNormal marginals
p =10, 0 =1 with 0=0.145,0.33,0.675, respectively

6. Conclusions
The main advantages of our method are:

« flexibility to model the dependence structure under changes in the composition of the portfolio;

o flexibility to model many different situations with any kind of distribution of marginal risks (not only
infinitely divisible distirbutions), and different risk structures, including non-symmetric and multi-dimensional
structures, both which cannot be modeled with Clayton, Gumbel nor Gauss copulas;

« simplicity of the implementation and simulation;
e simplicity of the computation of the dependence and risk measures;

« fair treatment of common risk drivers, which is essentially independent on the number of risks, contrary
to what happens with Clayton, Gumbel or Gauss (with one parameter) copulas;

e it yields dependence structures which put more dependence on one tail of the marginals than on the
other when the marginal have skewed distributions, and dependence structures which put the same
dependence on the two tails of the marginals, when the marginals have symmetric distributions.
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Appendices

Table 2: Pareto marginals, amounts in thousand
Ourmethod  Gumbel Clayton  Gauss | Our method  Gumbel Clayton  Gauss | Our method  Gumbel Clayton  Gauss | Indep. Comon.

Dependency 14% 1.10 025 048] 32% 128 050 070 86% 2.10 140 092 | 0 1
Aggregate cdf:

Mean 3,000 3,000 3,000 3,000 3,000 3000 3000 3,000 3000 3000 3000 3000 | 3000 3,000
Std 1,284 1,320 1341 1,388 1,362 1455 1461 1,507 1532 1630 1558 1643 | 1.241 1,71
VaR 80% 3,447 3410 3,404 3441 3445 3,306 3382 3437 3,444 3,398 3371 3427 || 3425 3,420
VaR 90% 4145 4,098 4,114 4222 4177 4133 4129 4,264 4260 4232 4202 4299 | 4079 4,301
VaR 95% 4976 4947 4991 5161 5080 5086 5079 5282 5284 5296 5255 5396 | 4875 5402
VaR 99% 7,751 7783 7917 8242 8098 8303 8386 8681 8736 9001 8855 8116 | 7326 9240
Risk measures:

VaR 99.5% 9474 9588 9788 10,108 10,000 10,348 10,323 10,723 10,819 11,374 11,151 11457 | 8896 11,579
TVaR 99% 10,997 11,243 11433 11,637 11,649 12,229 12424 12,489 12,870 13468 13,331 13492 | 10,369 13,807
XTVaR 98% 7.973 8243 8433 5638 8626 9229 9420 9488 9,846 10469 10331 10491 | 7.368 10,810
DG 26% 24% 22% 20% 20% 15% 13% 12% 9% 3% 4% 3% 32% 0%
DG/DG for Indep. 82% 75% 69%  B3% 63% 46% 40% 38% 28% 10% 14% 9% | 100% 0%
Dep. measures:

RTD 1% 13% 13% 13% 13% 28% 28% 28%  28% 61% 61% 61%  61% 1% 100%
LTD 1% 3% 2% 1% 13% 5% 4% 2% 28% 15% 16% 2% 61% 1% 100%
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Table 3: LogNormal marginals, amounts in thousand

Our method  Gumbel  Clayton  Gauss | Ourmethod  Gumbel  Clayton  Gauss | Our method  Gumbel  Clayton  Gauss || Indep. Coman.
Dependency 14.5% 1.10 025 048 | 33% 1.28 0.50 070 | 67.5% 2.10 140 092 | 0 1
Aggregate cdi:
Mean 73 73 73 73 73 73 73 73 73 73 73 73 73 73
Std 72 74 75 79 78 80 81 85 87 91 80 92 67 95
VaR 80% 102 101 100 103 101 100 99 103 102 100 99 102 102 102
VaR 90% 145 144 145 152 147 146 146 155 153 153 152 158 143 159
VaR 95% 195 195 199 209 202 202 204 218 215 219 218 225 190 227
VaR 98% 351 355 366 381 373 385 381 410 416 432 434 439 331 448
Risk measures:
VaR 99.5% 437 448 462 476 471 493 501 516 530 556 557 561 408 577
TVaR 99% 498 516 530 538 543 574 582 589 614 644 646 647 460 668
XTVaR 99% 425 444 457 467 470 501 510 517 542 572 573 576 387 595
DG 29% 26% 23% 22% 21% 16% 14% 13% 9% 4% 4% 4% 35% 0%
DG/DG for Indep. 82% T3% 67% B2% 60%: 45% 41% 38% 26% 1% 1% 10% || 100% 0%
Dep. measures:
RTD 1% 13% 13% 13% 13% 28% 2B% 28% 28% 61% 61% 61% 61% 1% 100%:
LTD 1% 2% 2% 1% 13% 5% 4% 2% 28% 19% 16% 2% 61% 1% 100%

Table 4: Pareto marginals, amounts in thousand

Qur method  Clayton Tree || Indep. Comon.

Mean 7,500 7,500 7,500 7,500
Std 2,838 3,133 1,881 4,288
VaR 80% 8,553 8,383 8,389 8,552
VaR 90% 10,024 10,010 9470 10,765
VaR 95% 11,784 12,021 || 10,675 13,588
VaR 99% 17,700 18,925 || 14,282 23,283
Risk measures:

VaR 99.5% 21,523 23,853 || 16129 29368
TVvaR 99% 25,042 27,896 || 18,053 34829
XTVaR 99% 17,441 20,380 || 10,558 27,328
DG 36% 25% 61% 0%
DG/DG for Indep. 96% 41% 100% 0%

Table 5: LogNormal marginals, amounts in thousand

Our method  Clayton Tree || Indep. Comon.
Mean 181 181 181 181
Std 156 172 106 240
VaR 80% 251 241 242 255
VaR 90% 341 342 305 3986
VaR 95% 443 464 372 570
VaR 99% 779 857 563 1,130
Risk measures:
VaR 99.5% 966 1,081 662 1,457
TvaR 99% 1,117 1,241 727 1,689
XTVaR 99% 930 1,059 546 1,607
DG 38% 30% 64% 0%
DG/DG for Indep. 94% 47% | 100% 0%

SCOR Paper n°16 - A new method for modeling dependence




SCOR Paper N°1 - September 2008
Using Capital Allocation to Steer the Portfolio towards Profitability

SCOR Paper N°2 - Aolt 2008
La bancassurance : généralisation ou déclin du modéle ?
SCOR Paper N°3 - December 2008
Valuation in insurance and financial crisis
SCOR Paper N°4 - March 2009
!— Modern Companies and Extreme Risks

SCOR Paper N°5 - July 2009
Securitization, Insurance and Reinsurance
SCOR Paper N°6 - January 2010
Adapting the solvency regulations to times of crisis, accepting the riskiness of the situation
SCOR Paper N°7 - January 2010
The Influence of Risk Measures and Tail Dependencies on Capital Allocation
SCOR Paper N°8 - March 2010
Principle-based Solvency: A Comparison between Solvency Il and the Swiss Solvency Test

SCOR Paper N°9 - December 2010
Aging: a Global Phenomenon

SCOR Paper N°10 - December 2010

PrObEx: a New Method for the Calibration of Copula Parameters from Prior Information, Observations and
Expert Opinions

SCOR Paper N°11 - December 2010

Development Risk

SCOR Paper N°12 - Décembre 2010

Study of the impact of inflation and GDP growth on property-liability and life insurance premiums over the
last 30 years: case of the G7 countries

SCOR Paper N°13 - Mars 2011

Preparing for Solvency Il: Points of debate in the Standard Formula

SCOR Paper N°14 - April 2011

Modelling operational risk in the insurance industry

SCOR Paper N°15 - May 2011
Why do the French not purchase more long-term care cover?

Global Risk Center

SCOR Papers, edited by SCOR, are one of the tool supporting the SCOR Global Risk Center.

The SCOR Global Risk Center gathers and analyses the most interesting resources about risks. It operates as a dual
resource center, based both on data and resources produced by SCOR itself, and on all other resources available se-
lected specifically by SCOR. Publications will be available in English, French and/or German.

SCOR Global Risk Center is available at www.scorglobalriskcenter.com or on SCOR’s website — www.scor.com.




