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ABSTRACT 

 
In most pricing exercises, an Actuary makes extensive use of loss data 

pertaining to the risk under consideration to obtain a sensible risk premium. 

This is not possible for new risks or insurance products where loss data is 

sparse or unavailable. Here, initial premiums are set subjectively with little or 

no actuarial justification and then adjusted over time. We thus propose a 

Bayesian methodology incorporating expert (underwriter) opinion and loss 

data from lower and upper benchmark risks to obtain a range of possible 

premiums for the risk under consideration in a realistic context and on a sound 

foundation. 

 

The method is illustrated for commercial space travel insurance. Expert 

opinion is simulated and a sensitivity analysis is performed. A range of 

possible premiums for the risk of loss of life due to failure of a sub-orbital 

flight is obtained depending on the expert’s opinion. It is found that careful 

elicitation of expert information is required whenever loss data for a 

benchmark risk is sparse. Our Bayesian approach also provides the flexibility 

and scope to incorporate experts’ opinions that may differ from our views. 

 
KEYWORDS: Pricing, Insurance, Benchmarking, Expert Opinion, Bayesian, 

Space Travel
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1. INTRODUCTION 

 

1.1 Space travel and tourism 

Man has ventured into space for decades of years with the first manned 

missions accomplished in the early 1960’s followed by the moon landing in 

July 1969. Along with great success came devastating losses such as the 

Challenger disaster in 1986 where the shuttle exploded soon after take-off 

killing six astronauts and a schoolteacher; and the more recent Columbia 

shuttle tragedy in 2003. 

 

There is a considerable risk of explosion or loss of onboard life-support 

involved in space missions. When such an incident occurs, it can potentially 

lead to enormous losses with regards to both the spacecraft and lives onboard.  

 

Nonetheless, such risks have not deterred mankind from exploring outer space. 

There have indeed been amazing discoveries and advancements in space travel 

and exploration, such as evidence for the existence of water on Mars in the 

distant past, which has been supported by spectacular images and telemetry of 

the Mars’ surface sent back by probes. In 2001, an important milestone was 

marked in space history when Dennis Tito became the first paying space 

tourist to go to outer space. According to BBC (2001), he paid $20m for his 

ticket aboard the Soyuz space shuttle which was scheduled for a supply 

mission to the International Space Station. 

 

Another such important milestone was the award of the $10 million Ansari X 

prize in 2004, the largest prize in history, to Mojave Aerospace Ventures for 

the flight of SpaceShipOne. In order to win the prize, designer Burt Rutan 

financially backed by Paul Allen (Microsoft co-founder), had to build and 
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launch a reusable spacecraft capable of carrying three people to over 100 

kilometres above the earth’s surface, twice within two weeks, which they 

accomplished successfully. These events will, if not already done so, lead to 

the birth of a whole new industry for commercial space travel. 

 

Other names for commercial space travel are ‘space tourism’, ‘public space 

travel’ and ‘personal space flight’. Lindskold (1999) predicted that within the 

next 25 years, a remarkable sequence of events would take place in space and 

once an infrastructure between Earth and space is constructed, there would be 

regular passenger trips to space and back, carrying mainly tourists. He found 

that there is a great yearning among people to travel to space. In his opinion, 

the first space tourism trips will most likely be sub-orbital jumps where a 

spacecraft makes a ballistic trip to an altitude of 100km, flying in a wide arc 

from the ground to the top of the arc where a few minutes of weightlessness 

would be experienced and then returning to Earth without reaching orbit. With 

the progress of time and technology, this would be followed by orbital trips 

around the Earth, to orbital hotels and perhaps even trips to the Moon and 

lunar hotels. 

 

In the future, individuals may be able to purchase tickets as frequently as 

required for travel to space for business purposes, sightseeing or even 

research, just as for aeroplanes. One may argue that Lindskold’s sequence of 

events is already in motion, for example the award of the Ansari X prize 

which may allow this vision to become a reality. Virgin Galactic, founded by 

Sir Richard Branson to become the world’s first spaceline, bought out the 

exclusive rights to Burt Rutan’s design and technology of SpaceShipOne. 

Rutan’s team, backed by Virgin Galactic have already started work on 

SpaceShipTwo and further successors of SpaceShipOne and plan to 

commence commercial sub-orbital flights by 2009 followed by orbital flights 

 2



in the near future, with the long-term potential for space voyages to space 

hotels and the moon. 

 

1.2 Insuring space travel 

According to Virgin Galactic (2007), the hybrid rocket motor and the 

feathered-wing re-entry mechanism of SpaceShipOne increase the safety and 

reliability of the craft in comparison to a space shuttle. However, there is still a 

considerable risk of failure during flight, the consequences of which may be 

enormous and therefore passengers would want some kind of insurance cover 

for the duration of the flight. 

 

The following extract is from the collectSPACE (2006) website in response to 

a question on insurance for the passengers of SpaceShipTwo: 

 

“Whitehorn explained that while they anticipate no problem receiving 

insurance for third party liability (as SpaceShipOne had), the insurance 

market has told them that it will be several years into passenger operations 

before they will be able to offer a personal liability package. Individuals may 

be able to purchase coverage for themselves earlier (at what is sure to be high 

premiums) but Virgin Galactic will need to prove to the market that they have 

a safe vehicle before they become comfortable with extending protection.” 

 

These recent developments in space travel and tourism will affect the 

Insurance industry, in particular entities such as Lloyds, insurance companies 

and others like Virgin who are involved in insuring space risk one way or 

another. In the long term, it could lead to the establishment of entirely new 

markets for insurers and related parties such as a market for commercial space 

travel insurance, provided that the risk in question is insurable. Hart et al 

(1996: pp1-2) details the basic criteria for a risk to be insurable, for example, 
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the frequency and severity of the expected loss must be assessable, the 

premium should be affordable, etc.  

 

One may define commercial space travel as the widespread act of travelling 

into space for reasons such as business, sightseeing or research once a price 

has been paid to undertake the activity including the means of transportation to 

and from the destination. Insurance for such a trip away from Earth would be 

readily available to purchase on the marketplace with the flexibility to tailor 

the policy according to the individual circumstances and coverage in terms of 

duration, sum assured, etc. required by the passengers. The market for 

commercial space travel insurance in the future may well resemble that of the 

travel insurance one existent today, where passengers are covered for travel to 

another destination that is not considered home. 

 

However, in the short term, insurers may not be willing to offer such a product 

or cover against risks involved in space travel, as commented by Whitehorn. 

This is probably due to the lack of loss data available for potential risks that 

might be covered under such a policy. This poses a difficulty for the insurers 

in assessing and quantifying the risk involved in terms of the chance of 

occurrence of a peril and its associated loss and consequences. It is therefore 

no surprise that the insurance market has informed Virgin Galactic that it 

would be a while before they are able to offer a personal liability package. 

This would provide insurers with enough time to collect loss data and assess 

the risks involved from the experience of the flight operations up to that time. 

However, as previously mentioned, passengers would want insurance cover 

for themselves, which the insurers may be willing to extend provided that 

Virgin Galactic can prove the safety of the flight and operations to the market. 

In this case, one may pose the obvious question of whether it is possible to 

calculate a premium for such a policy or risk and if so, how? 
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1.3 Premium calculation 

A premium is the payment made by a policyholder for complete or partial 

insurance cover against a risk. The issues surrounding the setting of premiums 

in fact apply to any new risk or insurance product, especially in the London 

market where loss data is scarce or unavailable. Examples include the risks 

posed by terrorism, new business risks due to climate change and other 

catastrophe risks which have all recently featured in the headlines. 

 

When new risks with no loss data available become a concern for businesses 

or individuals and first appear on the market, underwriters initially use their 

expert judgement to price these risks. As relevant loss data is obtained over 

time, the underwriters adjust their premium levels.  

 

However, one cannot be certain in these cases as to whether the initial 

premiums are a true reflection of the exposure to the risk, since there is little or 

no actuarial justification for the initial premiums charged, and it is difficult to 

quantify the credibility and expertise of underwriters who are the experts in 

pricing the risk under consideration. We thus suggest a Bayesian approach to 

price such risks in a realistic context and on a sound foundation. The definition 

of “realistic context” is debatable, however here, it refers to the idea that it is 

better to provide a reliable estimate based on some related data regardless of 

the strength of this basis, rather than using any number without justification. 

 

This paper is set out as follows. Section 2 explains the background theory on 

Bayesian statistics, credibility theory, benchmarking, expert opinion and 

premium setting used in subsequent sections whilst subsection 2.5 provides a 

literature review on these areas and how they have been incorporated with 

each other for application in fields such as engineering, aerospace programs, 

nuclear energy. Section 3 describes the proposed Bayesian methodology. 

Section 4 illustrates its application to commercial space travel insurance. In 
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particular, subsections 4.3.3 and 4.3.4 contain the simulations and sensitivity 

analysis respectively. The data and Mathematica code used in the 

implementation along with screenshots of the output results are supplied in 

Appendices A and B. Section 5 concludes. 
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2. BACKGROUND THEORY 

 

2.1 Bayesian Statistics 

Klugman (1992) and Congdon (2001) provide an in-depth description and 

understanding of the Bayesian approach in statistical analyses. The basic idea 

of Bayesian techniques is that unknown parameters are treated as random 

variables, i.e. a probability distribution gives the likelihood that various 

possible values of the parameters are the true values. Thus in comparison to 

the frequentist approach, both the data, X  and the parameters, θ  are treated 

as random quantities. 

 

Suppose we have probability distribution ( )π θ  that contains information 

about parameter θ . This prior distribution for θ  is the starting point of the 

Bayesian approach and can be deduced from past experience, known fact or 

guesswork. Now suppose we have a vector of observations n

( 1 2, ,..., T
n)x x x x= . The likelihood function is then denoted by ( )|f x θ , which 

describes the likelihood of various values of X being obtained given that θ  is 

the true parameter value. The prior information is updated with knowledge 

obtained from conducting experiments or collecting data to give posterior 

information. The posterior distribution of θ  obtained using the laws of 

probability and Bayes Theorem is: 

 

( ) ( ) ( )
( )

|
|

f x
x

f x
θ π θ

π θ =  

 

where ( ) ( ) ( )|f x f x dθ π θ θ= ∫  is the marginal distribution of X . Replace 

the integral sign with a summation for discrete distributions. Since ( )f x  does 
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not depend on θ  and effectively provides the ‘normalising’ constant for 

( | )xπ θ , it is sufficient to determine the form of ( )| xπ θ  and hence one can 

write; 

 

( ) ( ) ( )| |x f xπ θ θ∝ π θ  

 

This process of Bayesian updating can be repeated continuously in which case 

the current posterior information becomes the new prior information. 

 

( | )xπ θ  contains all of our current knowledge about the unknown parameter 

θ  and thus is the foundation for all Bayesian inference and summaries of θ  

such as point estimates or interval estimates. We are particularly interested in 

point estimates, i.e. the mean. 

 

Bayesian decision theory in conjunction with appropriately chosen loss 

functions can then be used to obtain an Optimal Bayes’ Point Estimate 

(OBPE) of θ . Define a loss function ( )( ),L g x θ  where ( )g x  is the OBPE of 

θ . For given L , ( )g x  is the function which minimises the expected loss with 

respect to the posterior distribution, ( )| xπ θ , given by: 

 

[ ] ( )( ) ( ), |E L L g x x dθ π θ θ= ∫  

 

The form of L  determines the form of ( )g x . We use the quadratic (squared 

error) loss function given by ( )( ) ( )( )2
,L g x g xθ θ= − , where ( )g x  is the 

mean of the posterior distribution. For absolute error and zero-one loss 

functions, ( )g x  is the posterior median and mode respectively. Young et al 
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(2005: pp1-60) provide a thorough and more detailed introduction to Decision 

Theory and Bayesian inference. 

 

A proof showing that the posterior mean is the OBPE for θ  under squared 

error loss follows: 

 

Differentiate [ ]E L  with respect to ( )g x  in order to find the minimum and 

the corresponding value of ( )g x . 

 

( ) ( )

( ) ( ) ( )

( ) ( ) [ ]

2  | 0   when

 |  |

i.e.   | |  which is the posterior mean.

E g x x d
g

g x x d x d

g x x d E x

θ π θ θ

π θ θ θ π θ θ

θ π θ θ θ

∂
⎡ ⎤= − =⎣ ⎦∂

=

= =

∫

∫ ∫

∫

 

 

( | )xπ θ  represents our updated state of knowledge of θ  having observed the 

data x  and thus the mean is a useful summary value. 

 

Schuckers (2002) demonstrates the robustness and flexibility of Bayesian 

techniques by using such methods to find an interval estimate for the matching 

performance of a biometric identification device when no errors are detected, 

which is not possible in classical statistics. 

 

However, one of the most criticised aspects of the Bayesian approach is the 

subjective choice of the prior distribution as statistical analyses should be as 

objective as possible. Young et al (2005: pp39-42) present an elaborate 

discussion and history of the work surrounding the choice of prior 

distributions and Bayesian statistics in general. They conclude that particular 
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section with the main approaches used in the selection of prior distributions, 

such as, physical reasoning, using flat/uniform priors including improper 

priors such as Laplace, Jeffreys, subjective priors (de Finetti, Savage) and 

finally convenient prior distributions e.g. conjugate priors which are often 

used to simplify calculations. A further subjective choice may also arise when 

selecting the model to be used. 

 

2.2 Credibility Theory and Benchmarking 

According to Klugman et al (2004: pp515-610), “Credibility theory is a set of 

quantitative tools which allows an insurer to perform prospective experience 

ratings (adjust future premiums based on past experience) on a risk or group 

of risks.” Boland (2007: pp159-190) also provides an introduction to 

Credibility Theory and its application to Actuarial Science. 

 

Credibility Theory provides a mechanism for systematically adjusting 

premiums in the light of claims experience. It incorporates Bayesian ideas and 

uses individual sample data from a group of policies for a recent period and 

collateral data (prior information) from similar policies in earlier periods. Let 

�
Sθ  and �Cθ  be estimates of θ  obtained from the sample data and collateral 

data respectively. One may combine these two sources of information to 

provide a good estimate of θ  by attaching a credibility factor or weight Z to 

the sample individual data, where 0 1Z≤ ≤ . A credibility estimate of θ  can 

be formed as a linear combination or weighted average of �Sθ  and �Cθ  as 

shown below: 

 

� ( ) �1S CZ Zθ θ+ −  
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The credibility factor Z reflects how much confidence is placed in the sample 

data from the risk compared with the collateral data. The value of Z is 

determined by the volume, reliability and future relevance of the sample data, 

i.e. the more sample data there are, the higher the value of Z  should be and 

conversely, the more relevant the collateral data, the lower the value of 

Z should be. Full credibility to the sample data is when 1Z = whilst partial 

credibility has 1Z < . However, note that the value of Z is not a function of 

the actual data values from the risk itself. 

 

In the context of Bayesian statistics, the OBPE derived from the posterior 

distribution of θ  can be expressed as a linear combination of the sample data 

and the prior estimate with weightings of Z  and 1 Z− respectively. In 

particular, for the quadratic loss function, the posterior mean can be expressed 

as a credibility estimate of θ  as: 

 

[ ] � ( ) 0| 1SE X x Z Zθ θ μ= = + −  

 

where the statistic �Sθ  depends on the sample data x  and is usually the mean 

of the data. 

0μ  is the prior mean for θ . 

 

In our methodology, we shall actually use benchmark data rather than that 

corresponding to the risk in question. Benchmarking can be defined as the 

process of making a comparison with some point of reference. In our 

particular context, we shall refer to benchmarking as the process of making 

use of loss data from risks similar to the new risk in question. 
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2.3 Expert Opinion 

An expert is someone with far-reaching knowledge or ability in a particular 

field or subject that goes beyond that possessed by the average person. The 

individual’s experience and knowledge would be adequate for others to rely 

upon his or her opinion. The field of Expert opinion analysis is an ever-

growing one due to the increasing desire to assess safety in various programs 

such as nuclear and aerospace where the proper functioning of new systems is 

critical. 

 

Cooke (1991) gives a historical review and discussion of the subject whilst 

detailing various methods for eliciting expert opinion and uncertainty such as 

the Delphi method. He examines the application of expert opinion in practical 

areas like policy analysis, the aerospace industry. He demonstrates the 

problems of assessing the likelihood of rare or unobserved catastrophic events 

by using NASA shuttles as an example. The author also discusses three 

models for combining expert opinion; weighted combinations, Bayesian 

approach and psychological scaling models. 

 

2.4 Premium setting 

Hart et al (1996: pp281-324) explains the process of premium setting in great 

detail. He explains four methods; ‘market rate’ pricing, “target pricing”, 

theoretical approach and supply & demand analysis. In particular, the 

theoretical approach involves assessing the pure risk premium which is simply 

the expected cost of claims for the risk under consideration and an allowance 

is then made to cater for expenses like brokerage, overheads and profit 

margins. However in practice, other issues have to also be taken into 

consideration when setting premiums such as competitor rates, market 

demand, insurer’s market share and firm’s other objectives. 
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Anderson et al (2007) describe common pricing techniques implemented in 

the London Market business where there is some available data. Risks are 

priced using either the experience of the historic risk under consideration 

(Experience rating), information about a risk’s exposure (Exposure rating), or 

in most cases a combination of both. They also suggest a “top down” exposure 

rating approach that may be adopted in cases with insufficient relevant data. 

 

In contrast, Dickson (2005: pp38-50) employs premium calculation principles 

like the pure premium principle, expected value principle which are functions 

of the loss random variable. It is then a subjective issue of selecting a principle 

which satisfies desirable properties such as non-negative loading, additivity 

that are relevant to the risk under consideration. Lane (2005) examines the use 

of the standard deviation premium principle that was theorised by Kreps 

(1999), in the aviation industry. He explores the risk associated with the 

aviation industry, discussing various simple pricing rules and methodologies, 

their features and related pricing issues. In particular, the author highlights the 

consensus that the premium load factor should allow for an element of 

riskiness of the insurance in question through measures such as standard 

deviation. We however, concentrate on calculating the expected loss for the 

risk in question. 

 

2.5 Literature Review 

There is extensive academic literature on Bayesian techniques and expert 

opinion analysis and how one may incorporate the latter in a Bayesian 

framework. Cooke (1991), for example, discusses various methods for 

eliciting expert opinions and uncertainty, which are then either combined with 

one another or incorporated as data values into approaches like Bayesian ones 

in order to analyse the usefulness of expert judgement in fields such as 

aerospace programs, military intelligence and nuclear energy. Such 
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approaches have been widely applied in an engineering context in order to 

assess the reliability or failure probability/rate of a new critical system. In 

particular, Droguett et al (2004) applies this approach to motor-driven pumps 

where it is shown that incorporation of expert information reduces uncertainty 

in the population variability distribution of failure rates of a group of similar 

systems, especially where limited data is available. We see similar results in 

Singpurwalla’s (1988) analysis of the impact of Weibull survival data on the 

posterior distributions for the parameters, in particular for ball bearings and 

gas-turbine disks, where combining prior expert information obtained using a 

PC-Based procedure and the little data available helped reduce uncertainty that 

was present in the prior parameter distributions. 

 

In contrast, there is limited literature on such an approach in an actuarial 

context, particularly with regards to pricing. However, related actuarial 

literature include works of Verrall et al (2005) who develop a Bayesian 

approach that combines a negative binomial stochastic model for the claims 

triangle with expert opinion in the context of claims reserving in General 

Insurance. Two situations are considered in particular; when a certain row 

development factor is changed or a certain number of years are chosen to be 

used in the estimation. Hsieh (2004) proposes a model that makes use of 

expert knowledge to obtain parameter values for the prior, and Extreme Value 

Theory in a Bayesian framework in order to forecast next record catastrophe 

loss. Catastrophe data is then used to demonstrate that this method provides 

admissible and theoretically sound forecasts and in particular, one notices that 

forecasts become more conservative (larger) as the prior becomes less 

informative. 
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3. PROPOSED METHODOLOGY 

 

A Bayesian approach is suggested in order to resolve the difficulties involved 

in pricing new risks or insurance products where there is little or no loss data 

available. The proposed method incorporates expert opinion with benchmark 

loss data from similar risks in a Bayesian framework in order to strengthen the 

reliability of estimates and price the new risk under consideration in a realistic 

context. 

 

In this method however, there is an element of subjectivity in the choice of the 

benchmark and, in certain circumstances, an appropriate benchmark similar to 

the risk in question may not even exist. This did not pose a concern in the 

literature since the authors had access to either limited failure data from the 

system in question or data from identical systems. It is thus suggested to use 

two sets of loss data from different benchmarks at the opposite ends of the risk 

scale, i.e. a lower and upper bound. The choice of the upper and lower 

benchmark risks is still subjective, however, one can widen the range between 

these bounds to eliminate any concerns of whether the risk in question lies 

between these benchmarks or not. Bayesian analyses and inference can then be 

undertaken for each of the bounds separately in order to obtain reliable 

estimates and hence a range of possible premiums for the risk in question. 

Note that these analyses have to be performed separately for the frequency and 

severity distributions and then combined appropriately to find a sensible range 

of premiums per unit exposure. However, there are exceptions to every rule 

and thus one would have to adapt the methodology to the particular risk under 

consideration. The basic idea is nevertheless demonstrated below. 
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3.1 Description of methodology 

We propose three variations of a Bayesian approach that combine expert 

opinion with benchmark loss data: 

 

(i) Update the analyst’s uninformative prior with upper and lower bound 

benchmark data to obtain 1st stage upper and lower bound posterior 

distributions for the parameters. Perform a further Bayesian update on 

each of the 1st stage posterior bounds with the same expert information 

to obtain 2nd stage upper and lower bound posteriors. If these are of a 

recognisable form, one can use standard results such as expectation or 

mode, otherwise, MCMC methods can be implemented to find various 

moments of the posterior distributions in order to obtain a range of 

possible premiums. The expert information can either take the form of 

data observations or densities representing their opinions on the 

parameters of interest and the corresponding uncertainty. In the former 

case, the Bayesian update is straightforward as we have the expert 

opinion in the form of data values. However, when we have densities 

representing the expert’s view and in the particular case where the 

Bayesian update involves conjugate priors, Cooke (1991: pp115-120, 

pp178-180) discusses the application of Winkler’s (1968) natural 

conjugate theory which basically involves interpreting an expert’s 

probability density function for the parameter of interest as an 

equivalent observation, provided that the density is of the required 

form. For non-conjugate priors, Huseby’s (1987) theory on “imaginary 

observations” may be applicable, however, we shall be considering 

conjugate priors for our case study and therefore do not tackle this 

issue any further. 

 

(ii) Elicit expert opinion to obtain a prior distribution for the parameters. 

Update this with upper bound benchmark data to obtain an upper 
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bound posterior distribution for the parameters. The lower bound 

posterior is obtained similarly. Analyses are then performed on the 

posteriors to obtain a sensible range for the premiums. 

 

(iii)Update an uninformative prior with upper bound benchmark data to 

obtain an upper bound posterior distribution. Perform a similar update 

for the lower bound. Combine these posterior bounds using weighting 

factors w and 1 , where w− 0 w 1≤ ≤  (since we assume that the risk in 

question lies between these bounds). The expert’s opinion on how 

risky the peril under consideration is to the benchmarks and the 

uncertainty of the opinion is elicited via a beta distribution for the 

weight w. MCMC simulation may then be performed to compute the 

95th percentiles of the combined distribution in order to obtain a 95% 

Bayesian Credibility interval for the premium. 

 

The order in which benchmark data and expert opinion are incorporated in a 

Bayesian framework is crucial and deserves discussion to some length. Ideally 

for a new risk or insurance product, one would expect the benchmark loss data 

to be observed before expert opinion is elicited. In saying so, we assume that 

the risk was not an issue for insurers and institutions until recently and as such 

did not possess a view or knowledge of it before this time. On the other hand, 

the benchmark loss data would have been observed for the past few years and 

therefore it is sensible to update with the data first and then followed by the 

expert opinion. This is precisely the reason why an uninformative prior was 

assumed in the first variation. The analyst should have a vague opinion of the 

parameters of interest before an update with the benchmark data takes place 

and then followed by the incorporation of expert opinion. A similar update 

process has been undertaken in the third variation. 
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The second approach however violates this principle. Nevertheless, it was 

mentioned since one would usually expect the expert to specify the prior 

which is then updated with data to give a posterior. Singpurwalla (1988) and 

Droguett et al (2004) follow this approach, however it is perfectly legitimate 

in their cases as the new systems under their consideration were in existence 

and known before the failure data from identical systems was observed. In 

order to remedy this violation in our second approach, a bold assumption can 

be made in that for subsequent periods going forward, the benchmark loss data 

for identical risks follows a similar pattern as that observed to date and thus 

the expert opinion would then be obtained before the data. 

 

For the purposes of this research, we decide not to explore the second and 

third approaches since a bold assumption has to be made in the former case 

and in the latter case, MCMC simulation would be required. We shall instead 

concentrate on the first variation, making particular use of conjugate priors 

and Winkler’s (1968) natural conjugate theory so that the analysis can be 

mathematically tractable and computationally less-demanding. 

 

Suppose u and l  represent the upper and lower bound benchmark data 

respectively. Then the 1st stage upper and lower bound posteriors are 

respectively given by: 

 

( ) ( ) (| |u f u )π θ θ∝ π θ  and 

 

 ( ) ( ) (| |l f l )π θ θ∝ π θ  

 

where ( )π θ  is the analyst’s uninformative prior for θ , the parameter of 

interest. 
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Now let E  represent the expert information which may either take the form of 

data observations or probability density. In the latter case, if the density is of 

the required form, it can be interpreted as an equivalent observation using 

Winkler’s natural conjugate theory. A Bayesian update can then be performed 

on each of the 1st stage upper and lower bound posteriors to give: 

 

( ) ( ) (| , | , |u E f E u uπ θ θ π θ∝ )  and  

 

( ) ( ) ( )| , | , |l E f E l lπ θ θ π θ∝  

 

which are respectively the 2nd stage upper and lower bound posteriors used to 

obtain a sensible range of premiums for the risk in question. We now 

demonstrate the application of this methodology to a particular case study and 

data set. 
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4. CASE STUDY: COMMERCIAL SPACE TRAVEL 

INSURANCE 

 

In practice, travel insurance policies provide cover against a wide range of 

risks such as loss of life or injury, loss of baggage, travel delays, etc. We shall 

however only examine the risk of loss of life due to failure of a sub-orbital 

flight i.e. crash or mid-air explosion of crafts such as SpaceShipOne. 

 

Suppose that a defined benefit is payable on the death of a policyholder during 

a sub-orbital flight due to crash or mid-air explosion. The loss event can be 

seen as a Bernoulli trial.  

 

Table 4.1: Discrete loss distribution for death risk during suborbital flight 

Loss Amount, L  0 S  

( )P L l=  1 q−  q  

 

where  is the sum assured and q is the failure probability of the SpaceShip 

flight. The pure risk premium is thus: 

S

 

EL Sq=  

 

In a Bayesian framework, q would be defined via a probability distribution 

and we would thus need to find the expected value of q in order to calculate 

the pure risk premium. Therefore q is our parameter of interest. 

 

Since the exposure here is the sum assured, we see that the risks for different 

policyholders are fairly homogeneous and thus we can either aggregate the 

risks or examine each individually. We shall in fact consider the pure risk 
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premium per unit exposure, which is known as the premium rate. The 

chargeable premium for a policy with sum assured  is then found by 

multiplying this premium rate by . 

S

S

 

As discussed earlier, SpaceShip crafts use safer and more reliable mechanisms 

than space shuttles which employ either solid or liquid fuelled rockets that 

require more precautions during storage and operation. The initial flight phase 

of SpaceShips is similar to that of a jet carrier aircraft, after which the rocket 

motor ignites to take the craft to an altitude over 100 km. We thus assume that 

the SpaceShip crafts are less risky than shuttles but more risky than 

aeroplanes, i.e. the failure probability, q for the SpaceShip craft should lie 

between that of the space shuttle and aeroplane. This allows us to use space 

shuttle and aeroplane loss data as our upper and lower bound benchmark data 

respectively in the Bayesian methodology outlined earlier. 

 

4.1 Description of the data 

The aviation and space shuttle loss data are obtained from CAA (2006) and 

NASA (2007) respectively, in the form of the number of failures due to either 

crash or mid-air explosion each year. We use accident data rather than 

fatalities data and the total number of flights flown each year as the 

corresponding utilisation or exposure data for the losses rather than the hours 

or passengers since we are interested in the failure probability of the system 

(flight). Aviation data is obtained for the years 1995-2004 whilst space shuttle 

data is obtained for the years 1981-2006. 

 

In particular, we extract the number of reportable accidents by class of aircraft 

for UK registered or operated public transport large and small aeroplanes and 

the corresponding utilisation data in terms of total hours and flights flown each 

year from CAA (2006) as shown in Tables A-1, A-2, A-3 and A-4. The actual 
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accident data is presented graphically in CAA (2006) and so the underlying 

numerical data was requested from the safety unit at CAA. A ‘reportable 

accident’ is defined comprehensively in CAA (2006), however, for simplicity 

we assume that it refers to a crash or mid-air explosion, i.e. a failure. The 

accident data is broken down by class of aircraft, i.e. business jet, jet and 

turboprop for large aeroplanes and piston, turboprop for small aeroplanes. We 

shall however amalgamate the data and consider the total number of reportable 

accidents in each year for large and small aeroplanes. The aircraft are UK 

registered or operated but are involved in operations worldwide. We use 

public transport operations data rather than non-public data as the former 

involves transportation of passengers and/or cargo whilst the latter involves all 

other activities e.g. aerial surveys, construction work etc. 

 

CAA (2006) defines large aeroplanes as those with maximum take-off weight 

authorised (MTWA) of over 5700 kg whilst small aeroplanes have MTWA of 

under 5700 kg. One may argue that the accident data for small aeroplanes is 

more relevant than that for large aeroplanes to our case study as the SpaceShip 

crafts will have MTWA of under 5700 kg and therefore one should only use 

the small aeroplane accident data for the lower benchmark. However, the 

failure probability of small aeroplanes seems to be approximately twice that of 

large aeroplanes, i.e. they are twice as risky as large planes. Since we would 

like to ensure that the risk in question comfortably lies between the benchmark 

risks at the opposite ends of the risk scale, we subjectively choose to aggregate 

the accident data by year for large and small aeroplanes as shown in Table A-

5. The corresponding utilisation data in terms of flights flown by year is also 

aggregated and shown in that table.  

 

The number of flights flown by large aeroplanes is about 15 times that of the 

small aeroplanes implying that the exposure is much greater for large 

aeroplanes. This gives us another reason to incorporate the large aeroplanes 
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accident data into our lower benchmark since we would like to use as much 

data as possible to provide a reliable lower bound estimate for the failure 

probability. 

 

Table A-6 displays the mission numbers, launch and landing dates for all 

shuttle missions during the years 1981-2006 extracted from NASA (2007). 

There were 117 flights in total out of which two were unsuccessful, i.e. the 

Challenger disaster in 1986 and the Columbia shuttle tragedy in 2003. Brief 

descriptions of the failures are also included. 

 

4.2 Elicitation of expert opinion 

We assume that the experts, who in most cases will be underwriters, have 

some statistical knowledge. The analyst’s opinion on the expertise of the 

experts is ignored and we shall also only incorporate the opinion of one expert. 

The case of multiple experts could be further research with dependencies 

between experts modelled using tools like copulas. 

 

We would like to elicit the expert’s opinion on q. We shall ask the expert for 

frequencies, such as the number of failures out of say, 100 flights, rather than 

probabilities as people tend to comprehend frequencies (5 out of 100) better 

than probabilities (0.05). The expert can either be 100% certain of his or her 

view of q, i.e. he or she states the number of failures out of, say 100 flights; or 

the expert can specify a probability distribution for q which also incorporates 

his or her uncertainty of the estimate. The former case does simplify the 

analysis, however it is not very practical as specifying the failure probability 

of a new system is not an exact science and the expert may have doubts over 

his or her estimate of q. We therefore choose to elicit a beta probability 

distribution for q from expert opinion, where q ranges over ( )0,1 . 
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Experts find it easier to specify distributions in terms of moments such as 

mean, variance or percentiles rather than distributional parameters. We could 

ask the expert for his or her estimate of the mean and variance of the beta 

distribution for q and it would then be a straightforward exercise to find the 

corresponding values of α  and β  by the Method of Moments principle. 

However, specifying the variability of q, especially in terms of number of 

failures out of say, 100 flights, may still not be an easy task for an expert such 

as an underwriter. We therefore decide to elicit the 2.5th and 97.5th percentiles 

of the distribution of q from the expert in order to compute the parameters α  

and β . One may do so by asking the expert a question along the lines of: 

 

“Out of 100,000 SpaceShip flights, specify a range for the number of crashes 

or mid-air explosions that would occur in your opinion, so that 95% of the 

time, your interval contains the true number of crashes or mid-air explosions 

from these 100,000 flights, i.e. a 95% confidence interval.” 

 

The failure probability for planes has an order of magnitude of  whilst 

the space shuttle failure probability is of magnitude 

510 −

210 −  as seen from Tables 

A-5 and A-6, so the failure probability for the SpaceShip craft should have an 

order of magnitude lying between these benchmarks. This is the reason why 

we ask the expert to specify the number of failures out of 100,000 flights, 

however, this is a subjective choice and any other value that the reader feels 

appropriate may be used. The analysis nevertheless remains the same. Note 

that the elicitation must be carefully undertaken as the probabilities being dealt 

with are fairly small. 

 

Suppose  is the 95% confidence interval for q obtained by dividing the 

lower and upper bound of the elicited range for the number of failures by 

100,000, i.e. a and b are some specified values in the interval ( ) . 

( ,a b)

0,1
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Numerical methods must be used to compute the parameters α  and β  

accurately since the beta density has gamma functions. Spiegelhalter et al 

(1994) provide a normal approximation for the beta distribution that requires 

much less computing power and time than numerical methods, however, after 

experimentation in Excel, we found that this approximation worsens as the 

interval  widens. We therefore do not consider Spiegelhalter’s 

approximation but in fact use Mathematica’s NMinimize function to 

numerically minimise the squared sum of errors expression below with respect 

to 

( ,a b)

α  and β : 

 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

2

1 1
0

2

1 1
0

, 1 0.025

                          1 0.975

a

b

f x x dx

x x dx

α β

α β

α β
α β

α β

α β
α β

− −

− −

⎛ ⎞Γ +
= − −⎜ ⎟⎜ ⎟Γ Γ⎝ ⎠

⎛ ⎞Γ +
+ −⎜ ⎟⎜ ⎟Γ Γ⎝ ⎠

∫

∫ −
 

 

The NMinimize function finds the global minimum of ( ),f α β  and the 

corresponding values of α  and β  for a specified range ( ),a b . We now have 

the expert’s beta density for q and can thus go on to incorporate this 

information with benchmark data in a Bayesian framework as described 

earlier. 

 

4.3 Application of the methodology 

In practice, expert information would be obtained by conducting interviews or 

surveys. Due to time and space constraints, this will be simulated by means of 

generating two random numbers; b from U ( )0,1  distribution and a from 
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U  distribution. We shall run 5 simulations and examine the results in 

each case. 

(0,b)

)

 

3-Dimensional plots of the upper and lower bound premium rate for values of 

a and b varying over (  will also be analysed to determine whether or not 

the range of possible premiums obtained is sensitive to a and b. If so, careful 

and correct elicitation of the expert’s opinion would be required in any pricing 

exercise using the above methodology. 

0,1

 

Since we have binomial loss data for shuttles and planes, a classical 

statistician would use the Maximum Likelihood Estimates (MLEs) for the 

failure probabilities found by dividing the number of failures by the number of 

flights to obtain possible premium bounds, i.e. considering the MLE over all 

the years, we find the upper bound premium rate to be 2 0.017094
117

=  and 

the lower bound premium rate as 184 0.000016982
10835000

= . The failure 

probability for shuttles is thus approximately thousand times higher than that 

of planes and in theory, any premium rate between these bounds can be 

charged for the risk in question. 

 

4.3.1   1st stage Bayesian update 

We now apply the 1st stage of the Bayesian methodology described earlier, 

where updating with only benchmark data is performed. 

 

Let sy  and py  represent the binomial failure data for the upper bound 

(shuttles) and lower bound (planes) respectively, aggregated over all available 

years. Assume a uniform prior for q. 
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Upper Bound

 

( )
( )

( ) ( ) ( )
( )
( )
( )

117 22

1152

U 0,1

Bin 117,  with 2 failures observed.
Then

| |

             1

             1

i.e. | Bet 3,116  which is the upper bound posterior distribution.

We can then find the optima

s

s s

s

q

y q

q y f y q q

q q

q q

q y

π π
−

∝

∝ −

∝ −

∼

∼

∼

[ ]

l Bayes point estimator (OBPE) w.r.t. squared error 
loss as:

3 3ˆ E | 0.025210084
3 116 119

2which is greater than 0.017094017,  the MLE for space shuttles.
117

ssq q y= = = =
+

=

 

 

( )

ˆWe can write  in the form of a credibility estimate:
3 2 1ˆ 1

119 117 2
117where the credibility factor,  which shows that great weight is 
119

placed on the shuttle data since the collateral mean 

s

s

q

q Z Z

Z

= = + −

=

[ ]
( ) ( )2

of the uniform prior is 
uninformative in comparison to the amount of available data.

We can also check the variance of the posterior and compare it with that 
of the prior:

3x116Var | 2.0
3 116 3 116 1

sq y = =
+ + +

[ ] ( )4 1 0
479x10 Var 0.083

12
q− −
= =�
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Lower Bound

 

Similarly, 

( )
( )

( ) ( ) ( )
( )
( )
( )

10835000 184184

10834816184

U 0,1

Bin 10835000,  with 184 failures observed.
Then

| |

             1

             1

i.e. | Bet 185,10834817  which is the lower bound posterior distributi

p

p p

p

q

y q

q y f y q q

q q

q q

q y

π π
−

∝

∝ −

∝ −

∼

∼

∼

[ ] 5

5

on.

We can then find the optimal Bayes point estimator (OBPE) w.r.t. squared error 
loss as:

185 185ˆ E | 1.7074 x 10
185 10834817 10835002

184which is greater than 1.6982 x 10 ,  the MLE fo
10835000

ppq q y −

−

= = = =
+

= r planes.

 

 

( )

ˆWe can write  in the form of a credibility estimate:
185 184 1ˆ 1

10835002 10835000 2
10835000where the credibility factor,  which shows that even greater 
10835002

weight is placed on the plane da

p

p

q

q Z Z

Z

= = + −

=

ta since the collateral mean of the uniform 
prior is uninformative in comparison to the amount of available data.

We can also check the variance of the posterior and compare it with that 
of the prior:

V [ ]
( ) ( )

[ ] ( )

2

12

185x10834817ar |
185 10834817 185 10834817 1

1 0
                 1.5758x10 Var 0.083

12

pq y

q−

=
+ + +

−
= = =�
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Observe that ˆsq  and ˆpq  are greater than the respective MLEs for space 

shuttles and planes and the range between ˆsq  and ˆpq  is greater than that 

between the MLEs, i.e. the range has increased. This is because we started off 

with an uninformative prior for q and thus the Bayesian approach widens the 

range of premium rates chargeable for the risk in question as well as raises the 

lower bound premium rate, which one may interpret as a prudent or 

conservative measure. Therefore in theory, with only benchmark data 

available, one may charge any premium rate between the values ˆsq  and ˆpq  for 

the risk in question. 

 

Note also that the variance of the posteriors is less than that of the uniform 

priors for both the lower and upper bound cases. This should be no surprise as 

the uniform prior is a flat ( )Bet 1,1  distribution whereas the updated posteriors 

are unimodal beta distributions that have smaller variance than the flat prior. 

 

4.3.2   2nd stage Bayesian update 

Now consider the incorporation of expert information into the analysis. We 

use the RandomReal function in Mathematica to generate b and a variation of 

RandomReal function to generate a. The NMinimize function is then used to 

find the values of α  and β  that correspond to the specified range ( ) . ,a b

 

Winkler’s natural conjugate theory is used to interpret the expert’s ( )Bet ,α β  

density for q as an equivalent binomial observation, i.e. “α  failures out of 

α β+  flights”. The 1st stage upper and lower bound posteriors are now treated 

as priors and each updated with the expert information, E to obtain the 2nd 

stage posteriors as shown below. 
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Upper Bound

 

( )

( ) ( ) ( )
( ) ( )
( )
( )

1152

1152

| Bet 3,116  which is now our upper bound prior distribution.
Then updating with  gives

| , | , |

                 1 1

                 1

i.e. | , Bet 3, 116  which

s

s s s

s

q y
E

q y E f E q y q y

q q q q

q q

q y E

βα

βα

π π

α β

++

∝

∝ − −

∝ −

+ +

∼

∼

[ ],

 is the new upper bound
posterior distribution.

We can then find the optimal Bayes point estimator (OBPE) w.r.t. 
squared error loss as:

3 3ˆ E | ,
3 116 119

ss eq q y E α α
α β α β

+ +
= = =

+ + + + +

 

 

( )

,

,

ˆWe can also write  in the form of a credibility estimate:
3 3ˆ 1
119 119

where the credibility factor,  which shows that as the values 
119

of  and  get larger, i.e. the be

s e

s e

q

q Z Z

Z

α α
α β α β

α β
α β

α β

+
= = + −

+ + +
+

=
+ +

ta density is more peaked around a certain 
value, the greater is the weight attached to the expert information.
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Lower Bound

 

Similarly, 

( )

( ) ( ) ( )
( ) ( )

( )

10834816184

10834816184

| Bet 185,10834817  which is now our lower bound prior distribution.
Then updating with  gives

| , | , |

                 1 1

                 1

i.e. |

p

p p p

p

q y
E

q y E f E q y q y

q q q q

q q

q y

βα

βα

π π

++

∝

∝ − −

∝ −

∼

( )

[ ],

, Bet 185, 10834817  which is the new lower bound 
posterior distribution.

We can then find the optimal Bayes point estimator (OBPE) w.r.t. squared 
error loss as:

185ˆ E | ,
185 10834817p e p

E

q q y E

α β

α α
α β

+ +

+ +
= = =

+ + +

∼

185
10835002α β+ +

 

 

( )

,

,

ˆWe can also write  in the form of a credibility estimate:
185 185ˆ 1

10835002 10835002

where the credibility factor,  which shows that as the values 
10835002

of  and  get 

p e

p e

q

q Z Z

Z

α α
α β α β

α β
α β

α β

+
= = + −

+ + +
+

=
+ +

larger, i.e. the beta density is more peaked around a certain value, 
the greater is the weight attached to the expert information.
 

Observe that the variance of the posteriors may be less than or greater than the 

prior variances depending on the values and α β , i.e. the expert’s opinion of 

q. The variance increases if the expert’s density assessment of q is different to 

the estimates from data and vice versa. 

 

Note that the results and comments above assume that α  and β  take values 

greater than 1, however in theory they can take any value greater than zero. 
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Using the Bayesian approach described above and the particular data set 

provided, we see that ,ˆs eq  and ,ˆp eq  give the upper and lower bounds for the 

range of possible premium rates chargeable for the risk of loss of life due to 

crash or mid-air explosion of the SpaceShip craft.  

 

4.3.3 Simulation 

We now perform 5 simulations of the expert information and include the 

results for the bounds in Table 4.2 below. We round a and b down to 5 

decimal places as in practice, the expert would usually give whole numbers for 

the number of failures out of 100,000 flights. 

 

Table 4.2: Simulation results 

a (5 d.p.) b (5 d.p.) α  β  ,ˆp eq  ,ˆs eq  

0.25733 0.41263 46.5563 93.3724 0.0000213709 0.1913896206 

0.02656 0.60305 1.65755 5.08245 0.0000172273 0.0370411530 

0.36215 0.74539 13.5702 10.7353 0.0000183267 0.1156283385 

0.06157 0.12684 27.2367 270.082 0.0000195875 0.0726286898 

0.01837 0.40470 1.81743 9.74253 0.0000172420 0.0368981919 

 

Note that the narrower the range ( ),a b  is, the larger the values of α  and β  

are. This is because the expert’s probability density for q becomes more 

peaked around a certain value of q as the difference between a and b gets 

smaller and in this case, it is characteristic for the Beta distribution to have 

larger parameter values for α  and β . 

 

Also observe that the values for ,ˆp eq  are fairly close to each other for the 

different simulations in contrast to those for ,ˆs eq  which seem to span a wide 

range. This is attributable to the fact that we have far more loss data for planes 
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than space shuttles and thus less weight is attached to the expert information in 

the case of planes in comparison to shuttles. One can see this more clearly by 

examining the forms of ,ˆp eq  and ,ˆs eq  when expressed as credibility estimates 

with a weighting factor Z attached to the expert information as described in 

section 4.3.2. We thus conclude that our estimates for the lower bound 

premium rate will be fairly insensitive to the expert information whereas those 

for the upper bound premium rate will be sensitive, in which case careful 

elicitation of expert opinion will be required. This should become more 

apparent when the sensitivity analysis is performed. 

 

A final point to note for the above results is that of the range between ,ˆp eq  and 

,ˆs eq . We observe that all the values of ,ˆp eq  are greater than ˆpq  and the MLE 

for planes. Similarly, all the values of ,ˆs eq  are greater than ˆsq  and the MLE 

for shuttles. One would have expected the range between the lower and upper 

bound premium rates to reduce by incorporating expert information. However, 

this is not the case above because when performing the simulations, we 

allowed the expert opinion’s on q to cover the whole range ( , yet in 

practice, one would assume that the expert views the risk for SpaceShip crafts 

to lie between that for planes and shuttles, just as the decision maker (we) 

assumed earlier. If the expert’s values for a and b lie between the lower and 

upper bound MLEs, say, then the range between 

)0,1

,ˆp eq  and ,ˆs eq  indeed 

decreases. For instance, let a = 0.001 and b = 0.015, then α  = 2.53361 and β  

= 427.43 and hence ,ˆp eq = 0.0000173074 and ,ˆs eq  = 0.0100800949. The 

bounds are now closer to each other as expected. The discussion above does 

not imply that there is an imperfection in our analysis. On the contrary, our 

method provides the flexibility to incorporate the expert’s opinion in the 

different cases where he or she views the risk in question to lie above, below 

or in between the benchmarks and this is then reflected in the higher or lower 
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bounds as well as the range of premium rates chargeable for the risk in 

question. 

 

4.3.4 Sensitivity Analysis 

The limitations of Mathematica in terms of the maximum array size permitted 

and processing time requirements for the NMinimize function force us to 

discretise the range into 100 intervals i.e. the expert is asked to specify the 

lower and upper bounds for the number of failures out of 100 flights. 

Nevertheless, we should still be able to perform the analysis for the full ranges 

of a and b, albeit approximately, and thus deduce whether or not the results are 

sensitive to expert information. 

 

For all combinations of , the corresponding a b< α  and β  values are used to 

compute ,ˆp eq  and ,ˆs eq . We set ,ˆp eq  and ,ˆs eq  to zero for , i.e. only half of 

the 3-Dimensional region is significant. 3-D graphs are then plotted for 

a b≥

,ˆp eq  

and ,ˆs eq  against a and b to determine the sensitivity of the results to expert 

information as shown below. 

 

Figure 4.1: 3-D Scatter plot for ,ˆp eq  (blue) and ,ˆs eq  (purple) – Zoomed In 
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Figure 4.2: 3-D Scatter plot for ,ˆp eq  and ,ˆs eq   – Zoomed Out 
 

 
 

 

Figure 4.3: 3-D Scatter plot for ,ˆp eq – Zoomed In 
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Figure 4.4: 3-D Scatter plot for ,ˆp eq – Zoomed Out 
 

 
 

 

Figure 4.5: 3-D Scatter plot for ,ˆs eq   – Zoomed In 
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Figure 4.6: 3-D Scatter plot for ,ˆs eq   – Zoomed Out 
 

 
 

In general, we observe that the values  ,ˆp eq  and ,ˆs eq  initially increase 

gradually and then exponentially from the corner where 0.01a =  and  

up to the  line on the a-b plane where the values of a and b are almost 

equal. This is because the smaller the difference between a and b i.e. the more 

peaked the expert’s density is around a certain value of q, the greater the 

values of 

0.99b =

45D

α  and β , thus leading to greater values for ,ˆp eq  and ,ˆs eq .  

 

Note that there are some points that seem out of place with the gradual 

increasing trend which occurs as a result of the numerical optimisation failing 

to converge to the required precision within the maximum set number of 

iterations. This is the same reason why we observe certain unusually large 

values for ,ˆp eq  as seen in Figure 4.4, such as the maximum value of about 0.1 

occurring when  and 0.72a = 0.73b = . Spiegelhalter’s approximation can be 

used to obtain a more accurate and lower value for ,ˆp eq  in this case. Similar 

corrections can be made for the cases where a and b are very close to each 

other and then in theory, one should have a lower maximum value for the ,ˆp eq  

values. By trial and error, we find the maximum value for ,ˆp eq  to be less than 
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0.05 and, it may even be lower than this. The same can be applied to the ,ˆs eq  

values, however the effect is less pronounced due to limited amount of shuttle 

data and we thus find the maximum value for ,ˆs eq  to be around 0.95. We 

decide not to dwell on this issue any further as we are interested in the overall 

picture of the results rather than the individual points. 

 

Observe from Figures 4.1 and 4.6 that ,ˆs eq  decreases as a and b become 

smaller and closer to each other, with the lowest value at 0.01, 0.02a b= = , 

i.e. the range between the upper ( ,ˆs eq ) and lower ( ,ˆp eq ) bounds becomes 

narrower. This is in agreement with our earlier result where if the expert views 

the risk in question to lie between that for planes and shuttles, then 

incorporation of expert information would lead to contraction of the premium 

range.  

 

If the expert’s opinion is otherwise, then we see from Figures 4.1 and 4.2 that 

the range between the upper and lower bounds is greater than that between the 

MLEs and increases as the expert’s beta density is peaked around higher 

values of q, i.e. as a and b become larger. In particular, the maximum value of 

,ˆs eq  and hence the largest range between the upper and lower bounds occurs at 

, where the lower and upper bound premium rate is almost 

zero and 0.95 respectively. We see from Figure 4.3 that 

0.98, 0.99a b= =

,ˆp eq  also increases, 

however it does so gradually with a much smaller order of magnitude, which 

is why an almost flat surface for ,ˆp eq  can be visualised from Figure 4.4. In 

contrast, we see from Figures 4.1, 4.5 and 4.6 that ,ˆs eq  increases by a much 

larger order of magnitude and hence the visualised surface is more like the 

slope of a hill. This is because we have far more loss data for planes than 

space shuttles and thus less weight is attached to the expert information in the 

case of planes in comparison to shuttles. For this particular case study, we thus 

conclude that our estimates for the lower bound premium rate are fairly 
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insensitive to the expert information whereas those for the upper bound 

premium rate are sensitive, in which case careful elicitation of expert opinion 

would be recommended. 

 

One may argue that the range of premium rates obtained may not be very 

practical when the expert views the risk in question differently from the 

decision maker, for instance the extreme case of zero and 0.95. However, he 

or she is the expert in the field whose opinion is obtained and if the decision 

maker rates his or her expertise highly, then our Bayesian approach provides 

the flexibility to incorporate this different view into the analysis without 

having to worry too much about the benchmarks chosen, and yet still 

obtaining reliable estimates based on related data and expert information 

rather than using any number without justification.  

 

One could choose a different set of benchmarks, possibly wider so that the 

risk, as viewed by the expert lies between them and then perform the above 

analysis again, however there would be issues surrounding the order of 

information flow and updating in this case. Also choosing different 

benchmarks may narrow the range relative to the MLEs for the new 

benchmark data after incorporation of the expert information, but in absolute 

terms, it may be almost equal to the range obtained using our original 

benchmarks and thus may not be necessary to alter the benchmarks after all. 

The general rule of thumb however is that careful elicitation of expert 

information should be performed whenever loss data for a benchmark risk is 

sparse. 
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5. CONCLUSION 

 

We have developed a method to price a new risk or insurance product in a 

realistic context and strengthen the reliability of estimates in cases where little 

or no loss data is available for the risk in question. The method incorporates 

expert opinion in a Bayesian framework with loss data from lower and upper 

benchmark risks in order to obtain a range of possible risk premiums that may 

be charged to insure against the risk in question. 

 

We demonstrated the application of this method to a specific case study, i.e. 

commercial space travel insurance, where in particular, we were interested in 

finding a sensible range of premiums to provide cover against the risk of loss 

of life due to crash or mid-air explosion of a sub-orbital flight. As a result of 

incorporating more loss data for planes than space shuttles, we found the 

estimates for the lower bound premium rate to be fairly insensitive to the 

expert information whereas those for the upper bound premium rate were 

sensitive. Consequently, careful elicitation of expert information needs to be 

undertaken whenever loss data for a benchmark risk is sparse.  

 

It was also observed that if the expert views the risk in question to lie between 

the benchmark risks, then incorporation of expert information leads to a 

narrowing of the premium range, but if the expert’s opinion is otherwise, then 

the opposite is true. We thus see that our Bayesian approach is a very robust 

and flexible one, allowing us to incorporate the expert’s opinion in the 

different cases where he or she views the risk in question to lie above, below 

or between the benchmarks, which is then reflected in the range of possible 

risk premiums chargeable for the risk in question. 
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The practitioner can then choose a risk premium from within the range and 

add an allowance for expenses and profit to obtain the chargeable office 

premium. The method can also be used to determine whether or not premiums 

to be charged by competitors and the market lie within a sensible range and 

thus gauge the potential profitability before venturing into the new business 

area. 

 

Possible extensions to this research include comparing and contrasting the 3 

variations of the Bayesian methodology suggested in section 3.1 and their 

corresponding results, exploring other distributions such as non-conjugate 

priors where the analysis may not be mathematically tractable and thus 

computationally demanding by way of requiring MCMC simulation. The 

actual setting of office premiums to be charged using various premium 

calculation principles could be another area for further research. Finally, one 

may also apply an adapted version of the methodology to other new risks or 

insurance products and analyse the results, if possible comparing and 

contrasting them with those obtained for our case study. 
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APPENDIX A: DATA 

 

Table A-1: Number of reportable accidents by class of aircraft, UK 

Public Transport Large Aeroplanes 1995-2004 

Year Business jet Jet Turboprop Total by Year 

1995   17 5 22 

1996   11 8 19 

1997   9 5 14 

1998   12 8 20 

1999   6 7 13 

2000 1 7 7 15 

2001   5 3 8 

2002   13 5 18 

2003   14 2 16 

2004 1 16 0 17 

Total 2 110 50 162 

 

Source: CAA (2006) - CAP 763 Aviation Safety Review 2005, Figure 4.1 

Note: The data values corresponding to the figure were obtained from the 

Safety Unit at CAA. 
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Table A-2: Hours and flights flown by UK Public Transport large airlines 

and air taxi operators 1995-2004 

Year Hours ('000) Flights ('000)

1995 1751 833 

1996 1856 871 

1997 1988 922 

1998 2140 978 

1999 2289 1032 

2000 2442 1088 

2001 2505 1136 

2002 2408 1083 

2003 2473 1078 

2004 2637 1138 

Total 22489 10159 

 

Source: CAA (2006) - CAP 763 Aviation Safety Review 2005, Table 4.3 

Note: This is the corresponding utilisation/exposure data for Table A-1 
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Table A-3: Number of reportable accidents by class of aircraft, UK Public 

Transport Small Aeroplanes 1995-2004 

Year Piston Turboprop Total by Year 

1995 0 1 1 

1996 4 0 4 

1997 1 0 1 

1998 3 0 3 

1999 2 0 2 

2000 1 1 2 

2001 2 1 3 

2002 1 0 1 

2003 2 0 2 

2004 3 0 3 

Total 19 3 22 

 

Source: CAA (2006) - CAP 763 Aviation Safety Review 2005, Figure 4.7 

Note: The data values corresponding to the figure were obtained from the 

Safety Unit at CAA. 
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Table A-4: Hours and flights flown by UK Public Transport small airlines 

and air taxi operators 1995-2004 

Year Hours ('000) Flights ('000)

1995 51 78 

1996 44 71 

1997 43 69 

1998 45 73 

1999 40 67 

2000 39 63 

2001 36 61 

2002 38 66 

2003 38 60 

2004 44 68 

Total 418 676 

 

Source: CAA (2006) - CAP 763 Aviation Safety Review 2005, Table 4.11 

Note: This is the corresponding utilisation/exposure data for Table A-3 
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Table A-5: Amalgamated accident and utilisation/exposure data (flights 

flown) for UK Public Transport large and small aeroplanes 1995-2004 

Year Total Accidents 
by Year 

Total Flights by 
Year ('000) 

Probability Of 
Failure 

1995 23 911 0.0000252470 

1996 23 942 0.0000244161 

1997 15 991 0.0000151362 

1998 23 1051 0.0000218839 

1999 15 1099 0.0000136488 

2000 17 1151 0.0000147698 

2001 11 1197 0.0000091896 

2002 19 1149 0.0000165361 

2003 18 1138 0.0000158172 

2004 20 1206 0.0000165837 

Total 184 10835 0.0000169820 

 

Note: Tables A-1, A-2, A-3 and A-4 were used to create this table. The number 

of flights flown is used as the corresponding exposure data as we are 

interested in the probability rather than the rate of failure. The probability of 

failure was calculated as the number of accidents divided by the number of 

flights flown each year. 
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Table A-6: NASA Space shuttle mission details 1981-2006 

Year Mission Launch Landing Count Failure 

2006 STS-116 December 9, 2006 December 22, 2006 1 0 

 STS-115 September 9, 2006 September 21, 2006 1 0 

 STS-121 July 4, 2006 July 17, 2006 1 0 

2005 STS-114 July 26, 2005 Aug. 9, 2005 1 0 

2004      0  

2003 STS-107 Jan. 16, 2003 

Vehicle and crew lost during entry 

on Feb. 1, 2003 1 1 

2002 STS-113 Nov. 23, 2002 Dec. 7, 2002 1 0 

 STS-112 Oct. 7, 2002 Oct. 18, 2002 1 0 

 STS-111 June 5, 2002 June 19, 2002 1 0 

 STS-110 April 8, 2002 April 19, 2002 1 0 

 STS-109 March 1, 2002 March 12, 2002 1 0 

2001 STS-108 Dec. 5, 2001 Dec. 17, 2001 1 0 

 STS-105 Aug. 10, 2001 Aug. 22, 2001 1 0 

 STS-104 July 12, 2001 July 24, 2001 1 0 

 STS-100 April 19, 2001 May 1, 2001 1 0 

 STS-102 March 8, 2001 March 21, 2001 1 0 

 STS-98 Feb. 7, 2001 Feb. 20, 2001 1 0 

2000 STS-97 Nov. 30, 2000 Dec. 11, 2000 1 0 

 STS-92 Oct. 11, 2000 Oct. 24, 2000 1 0 

 STS-106 Sept. 8, 2000 Sept. 20, 2000 1 0 

 STS-101 May 19, 2000 May 29, 2000 1 0 

 STS-99 Feb. 11, 2000 Feb. 22, 2000 1 0 

1999 STS-103 Dec. 19, 1999 Dec. 27, 1999 1 0 

 STS-93 July 23, 1999 July 27, 1999 1 0 

 STS-96 May 27, 1999 June 6, 1999 1 0 

1998 STS-88 Dec. 4, 1998 Dec. 15, 1998 1 0 

 STS-95 Oct. 29, 1998 Nov. 7, 1998 1 0 

 STS-91 June 2, 1998 June 12, 1998 1 0 

 STS-90 April 17, 1998 May 3, 1998 1 0 

 STS-89 Jan. 22, 1998 Jan. 31, 1998 1 0 

1997 STS-87 Nov. 19, 1997 Dec. 5, 1997 1 0 
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Year Mission Launch Landing Count Failure 

 STS-86 Sept. 25, 1997 Oct. 6, 1997 1 0 

 STS-85 Aug. 7, 1997 Aug. 19, 1997 1 0 

 STS-94 July 1, 1997 July 17, 1997 1 0 

 STS-84 May 15, 1997 May 24, 1997 1 0 

 STS-83 April 4, 1997 April 8, 1997 1 0 

 STS-82 Feb. 11, 1997 Feb. 21, 1997 1 0 

 STS-81 Jan. 12, 1997 Jan. 22, 1997 1 0 

1996 STS-80 Nov. 19, 1996 Dec. 7, 1996 1 0 

 STS-79 Sept. 16, 1996 Sept. 26, 1996 1 0 

 STS-78 June 20, 1996 July 7, 1996 1 0 

 STS-77 May 19, 1996 May 29, 1996 1 0 

 STS-76 March 22, 1996 March 31, 1996 1 0 

 STS-75 Feb. 22, 1996 March 9, 1996 1 0 

 STS-72 Jan. 11, 1996 Jan. 20, 1996 1 0 

1995 STS-74 Nov. 12, 1995 Nov. 20, 1995 1 0 

 STS-73 Oct. 20, 1995 Nov. 5, 1995 1 0 

 STS-69 Sept. 7, 1995 Sept. 18, 1995 1 0 

 STS-70 July 13, 1995 July 22, 1995 1 0 

 STS-71 June 27, 1995 July 7, 1995 1 0 

 STS-67 March 2, 1995 March 18, 1995 1 0 

 STS-63 Feb. 3, 1995 Feb. 11, 1995 1 0 

1994 STS-66 Nov. 3, 1994 Nov. 14, 1994 1 0 

 STS-68 Sept. 30, 1994 Oct. 11, 1994 1 0 

 STS-64 Sept. 9, 1994 Sept. 20, 1994 1 0 

 STS-65 July 8, 1994 July 23, 1994 1 0 

 STS-59 April 9, 1994 April 20, 1994 1 0 

 STS-62 March 4, 1994 March 18, 1994 1 0 

 STS-60 Feb. 3, 1994 Feb. 11, 1994 1 0 

1993 STS-61 Dec. 2, 1993 Dec. 13, 1993 1 0 

 STS-58 Oct. 18, 1993 Nov. 1, 1993 1 0 

 STS-51 Sept. 12, 1993 Sept. 22, 1993 1 0 

 STS-57 June 21, 1993 July 1, 1993 1 0 

 STS-55 April 26, 1993 May 6, 1993 1 0 
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Year Mission Launch Landing Count Failure 

 STS-56 April 8, 1993 April 17, 1993 1 0 

 STS-54 Jan. 13, 1993 Jan. 19, 1993 1 0 

1992 STS-53 Dec. 2, 1992 Dec. 9, 1992 1 0 

 STS-52 Oct. 22, 1992 Nov. 1, 1992 1 0 

 STS-47 Sept. 12, 1992 Sept. 20, 1992 1 0 

 STS-46 July 31, 1992 Aug. 8, 1992 1 0 

 STS-50 June 25, 1992 July 9, 1992 1 0 

 STS-49 May 7, 1992 May 16, 1992 1 0 

 STS-45 March 24, 1992 April 2, 1992 1 0 

 STS-42 Jan. 22, 1992 Jan. 30, 1992 1 0 

1991 STS-44 Nov. 24, 1991 Dec. 1, 1991 1 0 

 STS-48 Sept. 12, 1991 Sept. 18, 1991 1 0 

 STS-43 Aug. 2, 1991 Aug. 11, 1991 1 0 

 STS-40 June 5, 1991 June 14, 1991 1 0 

 STS-39 April 28, 1991 May 6, 1991 1 0 

 STS-37 April 5, 1991 April 11, 1991 1 0 

1990 STS-35 Dec. 2, 1990 Dec. 10, 1990 1 0 

 STS-38 Nov. 15, 1990 Nov. 20, 1990 1 0 

 STS-41 Oct. 6, 1990 Oct. 10, 1990 1 0 

 STS-31 April 24, 1990 April 29, 1990 1 0 

 STS-36 Feb. 28, 1990 March 4, 1990 1 0 

 STS-32 Jan. 9, 1990 Jan. 20, 1990 1 0 

1989 STS-33 Nov. 22, 1989 Nov. 27, 1989 1 0 

 STS-34 Oct. 18, 1989 Oct. 23, 1989 1 0 

 STS-28 Aug. 8, 1989 Aug. 13, 1989 1 0 

 STS-30 May 4, 1989 May 8, 1989 1 0 

 STS-29 March 13, 1989 March 18, 1989 1 0 

1988 STS-27 Dec. 2, 1988 Dec. 6, 1988 1 0 

 STS-26 Sept. 29, 1988 Oct. 3, 1988 1 0 

1987      0  

1986 STS-51L Jan. 28, 1986 

Vehicle and crew lost 73 seconds 

after lift off 1 1 

 STS-61C Jan. 12, 1986 Jan. 18, 1986 1 0 
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Year Mission Launch Landing Count Failure 

1985 STS-61B Nov. 26, 1985 Dec. 3, 1985 1 0 

 STS-61A Oct. 30, 1985 Nov. 6, 1985 1 0 

 STS-51J Oct. 3, 1985 Oct. 7, 1985 1 0 

 STS-51I Aug. 27, 1985 Sept. 3, 1985 1 0 

 STS-51F July 29, 1985 Aug. 6, 1985 1 0 

 STS-51G June 17, 1985 June 24, 1985 1 0 

 STS-51B April 29, 1985 May 6, 1985 1 0 

 STS-51D April 12, 1985 April 19, 1985 1 0 

 STS-51C Jan. 24, 1985 Jan. 27, 1985 1 0 

1984 STS-51A Nov. 8, 1984 Nov. 16, 1984 1 0 

 STS-41G Oct. 5, 1984 Oct. 13, 1984 1 0 

 STS-41D Aug. 30, 1984 Sept. 5, 1984 1 0 

 STS-41C April 6, 1984 April 13, 1984 1 0 

 STS-41B Feb. 3, 1984 Feb. 11, 1984 1 0 

1983 STS-9 Nov. 28, 1983 Dec. 8, 1983 1 0 

 STS-8 Aug. 30, 1983 Sept. 5, 1983 1 0 

 STS-7 June 18, 1983 June 24, 1983 1 0 

 STS-6 April 4, 1983 April 9, 1983 1 0 

1982 STS-5 Nov. 11, 1982 Nov. 16, 1982 1 0 

 STS-4 June 27, 1982 July 4, 1982 1 0 

 STS-3 March 22, 1982 March 30, 1982 1 0 

1981 STS-2 Nov. 12, 1981 Nov. 14, 1981 1 0 

 STS-1 April 12, 1981 April 14, 1981 1 0 

  Total   117 2 

 

Source: NASA (2007) Space Shuttle Mission Archives [Online]. Available: 

http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/list_main.html [17 

July 2007] 
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APPENDIX B: MATHEMATICA CODE, OUTPUT 

RESULTS AND SCREENSHOTS 

 

The Mathematica code and the corresponding output results for the simulation 

exercise performed in Section 4.3.3 are included below: 
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Figure B-1: Screenshot of the simulation implementation 
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The Mathematica code and a screenshot showing the output results for the 

sensitivity analysis performed in Section 4.3.4 are included below.  

 

The following piece of code computes the values of α  and β  for different 

feasible combinations of a and b. 
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Figure B-2: Screenshot of the sensitivity analysis implementation 
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The next piece of code extracts α  and β  from the output and then calculates 

the values of ,ˆp eq  and ,ˆs eq . 

 

 
 

 
 

The following lines of code plot the 3-Dimensional figures shown in Section 

4.3.4 in their respective order: 
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This last piece of code exports all the values for a, b, α , β , ,ˆp eq  and ,ˆs eq  into 

separate “.dat” files in case the reader wishes to examine the results and 

possibly use them in further research. 
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APPENDIX C: SPIEGELHALTER’S 

APPROXIMATION FOR COMPUTING THE 

PARAMETERS OF THE BETA DISTRIBUTION
 

Suppose that ( ),a b  is the elicited 95% confidence interval for the probability 

of failure, q. Approximate the beta distribution by a normal distribution so that 

we can assume that the interval ( ),a b  approximately represents (mean  W 

standard deviations) of a beta 

±

( ),α β  distribution. Since we are considering 

95% confidence intervals, W would take the value 1.96. 

 

The mean and variance of a Beta distribution are given by α
α β+

 and 

( ) ( )2 1
αβ

α β α β+ + +
 respectively. Then 

 

( ) ( )

( ) ( )

2

2

1.96
1

and

1.96
1

Adding the above two equations:

2

where we define  as the midpoint of the interval.
2

b

a

a b

a bg

α αβ
α β α β α β

α αβ
α β α β α β

α
α β

+ =
+ + + +

− =
+ + + +

+
=

+
+

=
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Note that the mean of the beta distribution is equal to the midpoint of the 

interval  due to the Normal approximation. The approximation will thus 

get less reliable as the difference between a and b values becomes larger. 

( ,a b)

 

Subtracting the two equations: 

 

( ) ( )

( )
( )
( )

( ) ( )

( )

( ) ( )

2

22

2

2
1

where 1.96 in the case of a 95% confidence interval.

1
2

1

1
4

1

1 1

where  is the half range of the interval , .
2

W b a

W

g g
W b a

g g
W b a

Wg g
h

b a
h a

αβ
α β α β

α β

α β

α β

= −
+ + +

=

−
= −

+ +

−
= −

+ +

⎛ ⎞

b

∴ + + = − ⎜ ⎟
⎝ ⎠

−
=

 

 

Then the 2 simultaneous equations give us the required values of α  and β  as: 

 

( ) ( ) ( )
22 2 2

2 2

1 1
               and          1

W g g W g g
g g

h h
α β

− −
= − = − −  
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