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Abstract

Climate risk poses significant challenges to socio-economic sustainability, yet the financial
and insurance industries generally remain reactive, hindered by a limited understanding of
climate impacts and inadequate modeling techniques. This thesis aims to study climate risk
from an actuarial science perspective, enhancing our capabilities in modeling, mitigating,
and adapting to these changes.

The first project in this thesis examines the agricultural industry, which is significantly
impacted by climate change. I introduce a behavior-based machine learning approach to
optimize risk pooling in area-yield insurance, addressing challenges such as moral hazard,
high administrative costs, and data sparsity. By analyzing farming behavior under area-yield
insurance contracts through a utility maximization framework and employing unsupervised
spectral clustering, this study effectively reduces basis risk and enhances the sustainability
of insurance programs.

The second project proposes a solution for the intensifying risk of climate-related floods.
It develops a geo-hierarchical deep learning model for flood risk assessment that does not rely
on high-resolution or hard-to-access data, making it particularly suitable for emerging mar-
kets with data limitation. This model aims to refine actuarial practices for flood insurance,
improving predictive accuracy and economic efficiency.

Another challenge posed by climate risk is its disproportionate impact, which has widened
the protection gap in highly exposed regions. The third project discusses a self-financing tax
redistribution scheme under a private-public partnership framework to manage this climate
risk-related protection gap across different risk regions. The model assesses the externalities
involved in wealth transfers between moderate and high-risk areas, proposing solutions to
mitigate negative impacts through effective policy interventions.

While the previous three projects focus on studying climate risk on the liability side
of insurance companies, the final project extends the discussion to the asset side. I find
that green assets exhibit stronger valuation resilience during the natural catastrophe events,
underscoring the benefit of including them in the portfolios of insurance and other financial
institutions. After addressing the endogeneity concerns, I identify market sentiment as the
channel of such benefit.

xviii



Chapter 1

Introduction

In recent decades, human activities have significantly altered the Earth’s climate, leading

to what is now known as anthropogenic climate change (Chen et al., 2021). Industrialization,

deforestation, and the burning of fossil fuels have resulted in unprecedented increases in

greenhouse gas (GHG) emissions. These activities have intensified the natural greenhouse

effect, causing global warming (IPCC, 2021). As a result, we are experiencing rising global

temperatures, melting ice caps, sea level rise, and an increasing frequency and intensity of

extreme weather events such as hurricanes, heatwaves, and droughts (Fox-Kemper et al.,

2021; Lin et al., 2016; Saintilan et al., 2020; Mukherjee et al., 2018). While natural processes

like volcanic eruptions and variations in solar radiation can influence climate, the current

trend is predominantly driven by human influence (IPCC, 2021).

Looking ahead, future predictions of climate change suggest a continuing trend of global

warming with significant impacts on both natural and human systems. According to climate

models, average global temperatures are projected to rise by 1.5 to 4.5 degrees Celsius by the

end of the 21st century, depending on the trajectory of GHG emissions (Lee et al., 2021). This

warming is expected to lead to more frequent and severe climate-related natural hazards,

particularly affecting vulnerable populations (Benevolenza and DeRigne, 2019; Helldén et al.,

2021; Rocque et al., 2021).

However, despite the robust evidence supporting climate change, there are uncertainties

in predicting its precise future impacts. These uncertainties arise from the complexity of
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climate systems, the variability of natural processes, and the limitations of current climate

models (Hawkins and Sutton, 2009; Collins et al., 2013). Such uncertainty are particularly

important on fragmatic regions and small islands like South Eastern Asia (Arias et al.,

2021). Key uncertainties include the sensitivity of the climate system to GHG concentra-

tions, the potential for climate feedback mechanisms, and the regional variability of climate

impacts (Flato et al., 2014; Sherwood et al., 2020). Additionally, future socio-economic de-

velopments, policy decisions, and technological advancements will influence the trajectory

of GHG emissions, adding another layer of unpredictability (Chen et al., 2021). Navigating

these uncertainties is crucial for developing effective strategies that enhance resilience and

mitigate the risks associated with climate change.

The escalating frequency and severity of climate-related natural hazards underscore a

critical and growing concern for global economic stability and sustainable development. In

2022 alone, economic losses from such hazards soared to over USD 270 billion, highlighting

not only the profound financial repercussions but also the urgent sustainability challenges

posed by climate change (Swiss Re, 2024). This surge in losses not only exemplifies the direct

impacts on infrastructure and economies but also underscores the broader environmental and

social imperatives that necessitate sustainable solutions. If current trends continue, annual

direct losses could exceed USD 400 billion by the 2030s, emphasizing the need for compre-

hensive and integrated risk management strategies that foster both economic resilience and

environmental sustainability (Swiss Re, 2024).

Beyond economic impacts, climate change also poses serious challenges to human health

and life expectancy. According to the World Health Organization, climate change is expected

to cause an additional 250,000 deaths annually between 2030 and 2050 due to malnutrition,

malaria, and heat stress (WHO, 2023). Additionally, vulnerable groups, including the elderly,

are increasingly at risk of diseases intensified by climate changes (Romanello et al., 2022).

These health impacts make it more difficult to achieve the Sustainable Development Goals

set by the United Nations, especially those related to eliminating poverty and hunger (UN,

2023).

The importance of developing innovative and effective risk management strategies grows
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increasingly evident. Traditional approaches to risk assessment are being continuously tested

by the unprecedented scale and unpredictability of climate impacts. This necessitates a shift

towards more dynamic, informed, and resilient risk management frameworks. Actuarial

science, with its rigorous focus on risk quantification and financial implications, stands at the

forefront of this shift, offering vital tools and methodologies for navigating the uncertainties

that lie ahead. The urgency of climate change demands that actuarial science not only

adapts but also innovates, thus ensuring that risk management strategies not only protect

socio-economic interests but also foster a sustainable future.

This thesis investigates how actuarial techniques can enhance sustainability efforts and

address climate-related risks. By integrating advanced computational models with tradi-

tional actuarial practices, and exploring potential policy tools and sustainable investment

opportunities, this work aims to broaden the contribution of actuaries to environmental

sustainability and economic resilience.

Chapters 2 and 3 of this thesis focus on enhancing the capacity for climate risk modelling.

In Chapter 2, I examine the impact of climate risk on a crucial and highly vulnerable industry:

agriculture. I propose that area-yield insurance, as opposed to individual yield insurance,

offers a promising alternative for hedging production risks associated with climate change due

to its potential to reduce moral hazard. This chapter introduces a behavior-based machine

learning approach to create risk groupings, significantly improving the basis risk associated

with area-yield insurance products.

Chapter 3 addresses the challenges climate change poses to the sustainability of flood

insurance. I present a geo-hierarchical deep learning (GHDL) model that not only integrates

climate and physical data into actuarial models for flood insurance pricing but does so more

cost-effectively and robustly than typical physical risk models.

In addition to modeling challenges, climate change disproportionately affects various

regions and sectors, thereby widening the protection gap significantly. Chapter 4 addresses

this issue by proposing a self-financing tax redistribution framework aimed at mitigating the

expansion of the protection gap. This chapter also provides an implicit solution for optimal

redistribution.

3



The challenges posed by climate change extend beyond the liabilities of insurers to include

their asset sides as well. Identifying assets with strong climate resilience is crucial for insurers

because it reduces the risk of insolvency, particularly in the event of catastrophic events. In

Chapter 5, using hurricane strikes as natural experiments, I have determined that green

assets exhibit greater climate resilience, with confirmed causality.

Lastly, Chapter 6 provides concluding remarks and discusses future research directions.

Through a series of focused studies, this thesis demonstrates how actuarial practices can

be evolved to meet the challenges posed by climate change, thereby supporting sustainability

through more precise risk assessment and management. Each chapter delves into a specific

area where actuarial science can intersect meaningfully with public policy, insurance, and

corporate governance to mitigate the effects of environmental risks, close protection gaps,

and enhance societal resilience.
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Chapter 2

A Sustainable Area-yield Insurance

Program with Optimal Risk Pooling:

A Behavior-based Spectral Clustering

Approach

2.1 Introduction

In recent years, the concept of sustainability has gained significant traction across vari-

ous sectors and industries. The United Nations has adopted the Sustainable Development

Goals (SDGs) as a critical framework to mitigate environmental impact and foster long-term

resilience. Agriculture is the world’s largest industry, and its sustainability is of vital en-

vironmental, social, and economic importance. However, climate disasters pose significant

challenges to food security, which are transmitted through the global interconnected agri-

cultural supply chain (Nagurney et al., 2024). Agricultural insurance is a prominent risk

management tool to help producers reduce production uncertainty and mitigate financial

risk (Iturrioz, 2009; Mahul and Stutley, 2010; Porth and Tan, 2015). In recent years, we

have witnessed a rapid growth of the agricultural insurance sector. In 2019, the global crop

insurance market size was estimated to be $34.05 billion, and is projected to reach $53.02
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billion by 2027 (Goswami et al., 2020). The U.S. Federal Crop Insurance Program (FCIP),

which has provided Multiple Peril Crop Insurance policies since its establishment in 1938,

remains the largest agricultural insurance market in the world. For example, in 2019, the

total liability of the U.S. FCIP exceeded $116 billion which is equivalent to more than a

quarter of the value of agricultural production (Rosch, 2021).

However, traditional indemnity insurance programs are faced with several challenges that

hinder their sustainability. First, there can be significant information asymmetry issues,

including moral hazard and adverse selection (Goodwin, 1993; Miranda and Glauber, 1997;

Rowell and Connelly, 2012; Hao et al., 2018). Second, assessments of individual farm-

level losses can be lengthy and costly. Large underwriting loss and high administrative

costs increase the premiums and reduce the participation rate, and hence, these insurance

programs rely heavily on government subsidies.1 Third, the successful implementation of

crop insurance programs is further hampered by the limited and unreliable nature of farm-

level data (Woodard, 2016; Zhu et al., 2019).

Area-based insurance schemes, prominently featuring the Area Risk Protection Insurance

(ARPI) in the U.S., present a viable alternative to traditional indemnity-based programs.

ARPI, which evolved from the Group Risk Plan (GRP) introduced in 1993, focuses on yield

insurance based on broader area outcomes rather than individual farm performances, thus

offering a more efficient and cost-effective index insurance solution for risk management.2

Although facing significant competition from farm-based insurance, recent data show that

these area-based index insurance programs have accumulated liabilities exceeding $9 billion,

accounting for about 7% of the FCIP’s total agricultural liability coverage, a substantial part

of the total insurance coverage.3

Apart from the U.S., area-based insurance schemes have achieved greater success in de-

veloping countries. In 2016, the Indian government launched the nationwide area-yield crop

insurance scheme, Pradhan Mantri Fasal Bima Yojana (PMFBY). Over the past eight years,
1For example, the USDA subsidizes premium costs for most acreage policies at the rate of about 60%. In

addition, the government pays 100% of the premium for CAT policies (Rosch, 2021).
2The ARPI, operational since 2014, supersedes both the GRP and the Group Risk Income Protection

Plan (GRIP).
3Data on area-yield insurance premiums is sourced from the USDA National Summary of Business,

accessible at https://www.rma.usda.gov/en/Information-Tools/Summary-of-Business.
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568 million farmers have enrolled in the program, with more than 262 million receiving claims

totaling over $20 billion. Enrollment continues to grow at a rate of 27% for FY2023-244.

Moreover, a comprehensive survey conducted by Deutsche Gesellschaft für Internationale

Zusammenarbeit (GIZ) covered 265 million agricultural policies written in 2020 across low

and middle-income countries (LMIC)5 (Hazell et al., 2021), indicating that approximately

half of the farms operating in LMICs had some form of insurance coverage6. According to

the survey, about 83% of agricultural insurance programs in LMICs are index-based, with

around 32% of all index-based programs being area-yield index schemes, though this varies

by region (50% in Latin America and the Caribbean, 37% in Africa, and 18% in Asia).

Area-yield insurance indemnifies policyholders based on the aggregate yield of a sur-

rounding geographic area (i.e., a county) rather than individual farm-loss history, therefore,

significantly reduces the concerns related to moral hazard and adverse selection, which are

more prevalent in individual-yield insurance programs (Skees et al., 1997; Mahul, 1999). As

such, area-yield insurance programs incentivize farmers’ sustainable practices and invest-

ments such as implementing water conservation measures, diversifying their crops, adopting

climate-smart agriculture techniques, etc. By aligning insurance incentives with environmen-

tal stewardship, area-yield insurance contributes to the promotion of sustainable agriculture.

Beyond its sustainability incentive, area-yield insurance presents notable operational ef-

ficiency. Since claims are triggered based on aggregate yields, area-yield contracts reduce

insurers’ administrative costs as less manpower is required for activities including record

keeping, individual yield verification, and loss adjustment. Moreover, information about

area yield is public and transparent. This means insurers are equally well informed about

the distribution of area yield as individual producers are, and hence, the adverse selection

problem is reduced (Miranda, 1991). Finally, the data limitation issue is largely addressed

by area-yield insurance, because data are often more substantial and of higher quality at
4Statistics retrieved from the India Ministry of Agriculture & Farmers Welfare Press Information Bureau:

https://pib.gov.in/PressReleasePage.aspx?PRID=2011791. According to this press release, the total
claims paid to enrolled farmers since the start of this program amount to 1,560 billion Indian Rupees. The
$20 billion figure is calculated using the average Indian Rupee to U.S. dollar exchange rate of 0.013 over this
period.

5See the definition of LMIC in (World Bank, 2023).
6Lowder et al. (2016) estimates that there are 515 million farms in the LMICs.
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aggregate level than at individual farm level (Porth et al., 2019). These make index-based

area-yield insurance particularly attractive to small-scale farmers who often lack access to

formal insurance markets due to high costs, insufficient data, and complex administrative

processes. Therefore, area-yield insurance has been shown to be a commercially viable and

financially sustainable alternative to individual-based insurance (Barnett et al., 2005; Deng

et al., 2007), and can substantially improve the agricultural credit market in the low-wealth

region (Carter et al., 2007). 7

While area-yield insurance programs show promise, one important assumption for their

effectiveness in mitigating moral hazard is the size of the risk pool or the scale of individual

farmers’ operations (Bourgeon and Chambers, 2003). In practice, these insurance contracts

are designed to cover sufficiently large geographical areas, ensuring that the impact of any

single farmer on the area’s overall yield is negligible. However, too large area makes the

resulting contracts suffer from basis risk, referring to the potential mismatch between area-

level outcomes and individual farm performances. As a result, there is trade-off between

moral hazard and basis risk in designing area-yield insurance. The prevailing U.S. federal

area-yield insurance program selects risk pools using county boundaries. However, risk

pooling on administrative boundaries is rather arbitrary, as Skees et al. (1997) pointed out:

“An area-index based on county yields is not ideal since county boundaries do not necessarily

group together producers with similar patterns of year-to-year percentage deviations from

forecasted yields.”

This chapter aims to propose a behavior-based machine learning approach for optimal

risk pooling in area-yield insurance design, by utilizing the moral hazard and basis risk

trade-off. First, we determine the optimal number of risk pools, K, by analyzing producers’

behavior with the existence of area-yield insurance. Area-yield insurance’s virtue of being

moral hazard proof relies on the assumption that no individual producer can influence the

insurance payoff. Therefore, we select the largest K possible to minimize basis risk while still
7The success of weather index crop insurance programs in India serves as a prime example of its ef-

fectiveness. Weather index insurance was introduced to Indian farmers in 2003 and officially adopted by
the national government in 2007 as an alternative to crop-yield index insurance. By 2012, it had ex-
panded to cover 12 million farmers across 15 million hectares, safeguarding 40 different crops against ad-
verse weather conditions. Source: Climate Change, Agriculture and Food Security (CCAFS), available at
https://ccafs.cgiar.org/outcomes/improved-rainfall-thresholds-index-insurance-india.
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keeping the majority of producers motivated with proper production activities, via achieving

the insurer’s targeted compliance rate. With the determined optimal K, in the second step,

we group producers into the K risk pools using unsupervised machine learning technique, i.e.,

spectral clustering method. Since greater risk reduction will be achieved if the individual

yield is more highly correlated to the area yield (Miranda, 1991), it is intuitive to pool

producers with similar production history together. Spectral clustering analysis is effective

to address the challenges of high-dimensionality and computational complexity.

To empirically validate our sustainable risk pooling framework, an ideal comparison would

involve contrasting farms pooled by our method against those grouped by conventional area-

based plans, which typically use arbitrary county boundaries for risk pooling. However, due

to the unavailability of detailed farm-level data across large regions, this direct comparison is

impractical. To navigate this limitation, in the main results of this chapter, we apply our risk

pooling methodology to the county-level corn production data in the U.S. Heartland Region.

The findings from our analysis clearly indicate that the method we propose substantially

reduces contract basis risk and effectively mitigates tail risk for producers. Benchmarking

against risk pooling based on Agricultural Districts (AGD) boundaries, our proposed sus-

tainable risk pooling method results in a basis risk reduction exceeding 29%. Compared with

the state boundaries, the basis risk reduction is more than 55%. These improvements are

also economically significant. For example, the enhancement on tail risk implies a yield im-

provement ranging from up to 12 bu/acre, equivalent to $2.8 billion improvements on profits

for the entire Heartland area. To further address concerns that county-level risk pooling may

not accurately reflect farm-level risks, we reassess the performance of our framework using a

simulated farm-level dataset. This simulation serves as a proxy to reassure the effectiveness

of our proposed framework under more granular, farm-specific conditions.

We examine two methods to understand the mechanism behind the observed superior

performance. First, we apply our proposed framework to data from Illinois, given its dis-

tinctive terrain. This application allows us to discern the geographic implications of risk

pooling. Our results indicate that the terrain characteristics of Illinois are reflected in the

risk pooling outcomes, lending geographic support to our method. Second, we contrast our
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behavior-based method with the well-established gap statistic method to determine the opti-

mal K∗. This comparison highlights that while the gap statistic method is valuable, it lacks

the necessary economic context and fails to consistently identify an effective K∗ for reducing

basis risk.

We further verify the robustness of the proposed risk pooling procedure in several ways.

First, we discuss impact of an insurer’s targeted sustainable compliance ratio on the basis risk

improvements. Second, we test the impact of high-dimensionality for area-yield insurance

design. Third, we evaluate the robustness of performance against varying cost assumptions.

Fourth, we consider alternative risk measures in assessing the risk pooling performance.

Fifth, we allow producers the flexibility to adjust their coverage ratios according to their

individual preferences. Finally, we impose the same-size constraint in the risk pools to avoid

the formation of very small risk pools.

This project contributes to the area-yield insurance literature. In his seminal paper, Mi-

randa (1991) discusses the effectiveness of an area-yield insurance program from the variance

reduction perspective. A similar setting is also considered by Smith et al. (1994). Mahul

(1999) and Ramaswami and Roe (2004) solve for an optimal area-yield insurance contract

design in a utility maximization framework. The literature also discusses producers’ behav-

iors and decisions. For example, Chambers and Quiggin (2002) study the optimal level of

enrollment and the production decisions in a joint decision problem. Bourgeon and Cham-

bers (2003) design optimal area-yield insurance in the presence of asymmetric information.

Beyond its benefit in addressing moral hazard, more recently, the literature highlights the

benefit of cost-effectiveness of area-yield insurance, making it less reliant on government

subsidies. This makes area-yield insurance a more affordable option in both developed and

developing markets (Gong et al., 2023; Ye et al., 2020; Kusumaningrum et al., 2021). More-

over, many studies develop better crop yield models by incorporating spatial and temporal

dependence, which will help improve area-yield insurance pricing (see, e.g., Wang and Zhang,

2003; Harri et al., 2011a; Annan et al., 2014; Liu and Ker, 2021). Sethanand et al. (2023)

implemented a machine learning algorithm, specifically Random Forest, to enhance the accu-

racy of yield predictions and improve the adoption of crop insurance schemes through tech-
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nological advancements. This project studies the optimal risk pooling in designing area-yield

insurance through an unsupervised learning method, and incorporates producers’ behavior

when optimally select the number of risk pools, K.

This study contributes to the fields of behavioral operational research (BOR) and be-

havioral economics. Behavioral analytic frameworks have been widely applied in portfolio

selection (Barberis et al., 2001; Barberis and Huang, 2008; Fulga, 2016; Hwang et al., 2018;

Harris and Mazibas, 2022) and insurance decision-making (Chambers and Quiggin, 2002;

Barseghyan et al., 2013; Elabed and Carter, 2015; Clarke, 2016). Ackermann (2024) high-

lights the importance of integrating Problem Structuring Methods (PSM) with BOR to

effectively address complex systemic issues, such as climate change. This study generally

follows the analytic framework described by Mintz et al. (2023). By incorporating producers’

behavioral insights into the optimization of area-yield insurance risk pooling, we address the

decision-making processes of producers and insurers, thereby enhancing the effectiveness in

the designing and adoption of area-yield insurance programs.

This project also broadly belongs to the literature of index-based securities. The de-

mand and efficiencies of index securities have been studied by many researchers (Cole et al.,

2014; Chantarat et al., 2017; Casaburi and Willis, 2018; Cai et al., 2020). Basis risk is

commonly cited as one of the most challenging issues that causes their low demand (Clarke,

2016; Cummins et al., 2004), among others. Jensen et al. (2016) evaluate the index-based

livestock insurance (IBLI) product in northern Kenya. They find that while the policy re-

duces covariate risk and downside risk substantially, policyholders are left with large basis

risk. Chantarat et al. (2013) proposes a new IBLI based on predicted area-average livestock

mortality to reduce basis risk. Chen et al. (2023a) design a novel weather index insurance

that can effectively reduce basis risk by embedding a neural network-based expected utility

maximization scheme. In this study, we focus on reducing the basis risk of area-yield in-

surance, and propose to improve the insurance performance from a sustainable risk pooling

perspective.

The remainder of this chapter proceeds as follows. Section 2.2 introduces the area-yield

program and sets up the problem. In section 2.3, we introduce the proposed behavior-
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based machine learning framework. Section 2.4 presents the empirical implementation of our

model. Section 2.5 verifies the robustness of the proposed risk pooling procedure. Section 2.6

provides further validation by testing the model’s performance on a simulated farm-level

production dataset. Section 2.7 concludes. Details of proofs and additional empirical analysis

are collected in Appendices.

2.2 Area-yield Insurance Program

The area-yield insurance program was first introduced in 1993, initially targeting soy-

bean farmers in selected U.S. counties. Over time, the program expanded its coverage to

include major commodities such as corn, wheat, and cotton (GIIF, 2024). A key feature of

area-yield insurance policies is their method of indemnity payment, which is based on the

average yield within a county rather than on the loss of individual farms. This approach

effectively mitigates issues related to information asymmetry, including moral hazard and

adverse selection, as the actions of any single producer are unlikely to have a substantial

impact on the overall yields at the county level.

Area-yield insurance organizes a group of producers into K distinct risk pools. Consider

producer i operating within the kth risk pool. Under the protection of area-yield insurance,

this producer is eligible to receive an indemnity payment if the area yield of the kth risk

pool, denoted as yk, falls below a pre-established threshold, ȳc. The indemnity function,

applicable universally within this pool, is formulated as follows:

Ik = max (ȳc − yk, 0) × scale, (2.1)

where ȳc is the critical yield, calculated as

ȳc = µk × coverage, (2.2)

and µk represents the expected area yield level, that is, µk = E[yk]. coverage and scale

offer producers additional flexibility. For example, in the US area-yield insurance program,
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producers can choose a coverage level that ranges from 70% to 90%, and a scale level from

90% to 150%. Typically farm-level volatility is higher than the county-level. Increasing

their scale and coverage ensures that producers can have sufficient coverage in years when

production significantly drops.

Miranda (1991) establishes the classic connection between individual yield yi and area

yield yk, a relationship that is widely accepted in the area-yield insurance literature (Skees

et al., 1997; Mahul, 1999; Barnett et al., 2005; Harri et al., 2011b). By projecting the

producer’s individual yield yi onto the area yield yk, yi can be modeled as follows:

yi = µi + βi · (yk − µk) + ϵi, (2.3)

where

βi = Cov (yi, yk) /σ2
yk

(2.4)

E[ϵi] = 0 Var[ϵi] = σ2
ϵi

Cov(yk, ϵi) = 0 (2.5)

E[yi] = µi Var[yi] = σ2
yi

(2.6)

E[yk] = µk Var[yk] = σ2
yk
. (2.7)

Here, Equation (2.3) decomposes individual yield variation into a systemic component

βi ·(yk − µk) that is perfectly correlated with the area yield and a non-systemic component ϵi

that is uncorrelated with area yield. The coefficient βi quantifies the sensitivity of producer’s

individual yield to the systemic factors that affect the area yield.8

We note that Miranda’s model is limited in capturing tail dependence. To partially

address this concern, our empirical analysis in Section 2.4 uses a relatively large time window

to better reflect the less frequent extreme events reflected into the yield dependence structure

among producers. However, due to its simplicity and wide acceptance, we use this model as

assumptions of Proposition 2.1 and Proposition 2.2 for better illustration and tractability.

Our propositions should remain valid if the model is adjusted to better account for tail risk,
8Given that the area-yield insurance contract aims to hedge the systemic risk faced by producers, βi

needs to be positive to ensure the contract’s effectiveness.
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as they are supported by our empirical analyses.

2.3 Sustainable Risk Pooling Framework

Typically area-yield index-based insurance programs, such as the Area Risk Protection

Insurance (ARPI) in the US, defines risk pools based on county boundaries. While this

method provides a structured approach to risk assessment, relying on county yields for

an area-index may not be optimal, as county boundaries often fail to accurately group

together producers with similar year-to-year percentage deviations from forecast yields. This

mismatch can lead to a misalignment between the actual risk profiles of individual producers

and the broader risk pool defined by these administrative boundaries (Skees et al., 1997).

To mitigate basis risk, producers protected by area-yield insurance seek to minimize their

self-insured idiosyncratic component, ϵi. Thus, this chapter aims to propose a sustainable

risk pooling framework that incorporates producers’ behaviour and employs a data-driven

approach for an optimal area-yield insurance design. This framework comprises two essential

steps:

1. Determining the optimal number of risk pools: This step strikes the best balance

between reducing basis risk and managing moral hazard.

2. Grouping producers with similar risks: This steps tries to improve the effective-

ness of the designed area-yield index insurance by creating homogeneous risk groups.

This two-step process ensures that the systemic part of producers’ risks are appropriately

hedged, while the impact of idiosyncratic part is minimized, contributing to a more robust

and resilient area-yield index insurance mechanism.
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2.3.1 Determining the Optimal Number of Clusters: A Behavior-

based Approach

Selecting the optimal number of clusters, denoted as K∗, is a critical step in the efficient

risk-pooling procedure for area-yield insurance design. As mentioned earlier, the determina-

tion of K∗ strikes a crucial trade-off between moral hazard and basis risk. More specifically,

• A larger K: Increasing the number of risk pools, denoted as K, leads to a reduction

in basis risk. This is because a larger number of pools allows more accurate reflection

of individual producers’ losses and a fairer premium collection mechanism. However,

this benefit is accompanied by an elevated risk of moral hazard. In smaller pools,

each producer has greater influence over the yield of their respective pools, potentially

leading to higher adverse incentives.

• A smaller K: Conversely, a smaller K mitigates the moral hazard issue, as individual

producers possess less influence over the collective area yield. This reduction in moral

hazard comes with a cost of higher basis risk. That is, the insurance contract may

become less sensitive to the specific losses of individual producers due to the broader

nature of the risk pools, thus increasing basis risk.

Driven by this trade-off between moral hazard and basis risk, this chapter introduces

a behavior-based methodology to determine the optimal number of risk pools, K∗. Our

objective is to identify the maximum feasible K that effectively minimizes basis risk, while

concurrently maintaining high levels of engagement and motivation among the majority of

producers. In doing so, we adopt a behavioral analytics framework as follows. First, we

develop an expected utility maximization model to analyze producers’ agricultural practice

decisions under the protection of area-yield insurance contracts. Next, we use historical

yield data to estimate the distribution for each producer and predict their future decisions

within the risk pooling setting of each K. Finally, we optimize the value of K based on these

predictions to design risk-pooling incentives that ensure the majority of producers adhere

to moral-hazard-free practices. Such framework is generally consistent with the analytic

framework described by Mintz et al. (2023).
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Let us consider a producer, denoted as i, who is assigned to the kth risk pool and

possesses a non-pledgeable initial endowment, w0. The indemnity pay-off of this producer,

Ik, is defined in Equation (2.1). Let ci = (ci1, ..., ciJ) denote the cost vector of her inputs,

where each component cij, j = 1, 2, . . . , J corresponds to a specific input cost, including

the insurance premium payment. With the protection of area-yield insurance, the terminal

wealth of producer i is w0 + yi −∑J
j=1 cij + Ik. In this chapter, we focus on optimizing the

area-yield insurance for production loss, without taking into account crop price risk, but the

proposed framework can easily be extended to include protection against price risk.

Given these conditions, the objective of producer i is to maximize her expected utility

through strategically managing her inputs ci. Specifically, let u(·) be a von Neumann-

Morgenstern utility function of wealth for producer i, her objective function is:

max
ci∈C

E
u
w0 + yi −

J∑
j=1

cij + Ik

 , (2.8)

where C ⊆ RJ
+ defines the feasible set of the input cost vector ci. Hereafter, we denote

the total cost of production as Ci = ∑J
j=1 cij, and her expected utility as EU (ci) =

E [u (w0 + yi − Ci + Ik)].

To simplify the analysis, we assume that a producer can choose between two differ-

ent farming strategies: active production management (Strategy A) and passive production

management (Strategy B). These two strategies are associated with different yield distribu-

tions, yA
i and yB

i , and distinct input cost vectors, cA
i and cB

i . Producer i selects the optimal

strategy, c∗
i , where c∗

i ∈ {cA
i , cB

i }, to maximize her expected utility. Intuitively, Strategy

A involves a higher total cost compared to Strategy B (i.e., CA
i ≥ CB

i ), but has a superior

yield distribution, i.e., yA
i has first-order stochastic dominance over yB

i .9

We use an indicator function to represent producer i’s optimal choice, c∗
i , is an active

9In our context, the yield yA
i from producer i having first order stochastically dominance over yB

i is
equivalent to P

(
yA

i ≥ y
)

≥ P
(
yB

i ≥ y
)

for all possible yields in the range ymin ≤ y ≤ ymax. Additionally,
for some ymin ≤ y ≤ ymax, P

(
yA

i ≥ y
)

> P
(
yB

i ≥ y
)
.
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management strategy, i.e.,

1(c∗
i ) =


1 if c∗

i = cA
i ,

0 otherwise.
(2.9)

A rational producer would choose c∗
i = cA

i if and only if EU
(
cA

i

)
≥ EU

(
cB

i

)
. Notably,

producers’ choices of strategies are affected by both the risk pooling outcome and their own

characteristics, as described in the two propositions below.

Proposition 2.1. Consider two producers, labeled as i and j, both operating within the kth

risk pool. Let βA
i and βA

j be the sensitivities of their respective yields to systemic factors

under active management, and σ2
ϵA

i
and σ2

ϵA
j

be the variances of the non-systemic components

of their yields under active management, as defined in Equations (2.4) and (2.5), respectively.

Ceteris paribus, we have the following:

(a) The producer more responsive to systemic factor under active management is more

likely to take active production strategy. That is, 1(c∗
i ) ≥ 1(c∗

j) if βA
i ≥ βA

j .

(b) The producer with lower idiosyncratic variance under active management is more likely

to take active production strategy. That is, 1(c∗
i ) ≥ 1(c∗

j) if σ2
ϵA

i
≤ σ2

ϵA
j
.

Proposition 2.1 implies that producers with yields highly responsive to the area yield of

their respective risk pool and experiencing minimal self-insured idiosyncratic risks are more

inclined to implement active farm management practices. This proposition indicates that

it is important to group producers with similar risks into the same risk pools for optimal

area-yield insurance risk pooling.

Proposition 2.2. Consider two producers, denoted as i and j, both operating within the

kth risk pool. Let E[ys
i ] and E[ys

j ] be their expected yield through production management

strategy s ∈ {A,B}. Let Cs
i and Cs

j be their total cost under production management strategy

s ∈ {A,B}. Ceteris paribus, we have the following:

(a) If E[yA
i ] ≥ E[yA

j ], then 1(c∗
i ) ≥ 1(c∗

j).
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(b) If E[yB
i ] ≤ E[yB

j ], then 1(c∗
i ) ≥ 1(c∗

j).

(c) If CA
i ≤ CA

j , then 1(c∗
i ) ≥ 1(c∗

j).

(d) If CB
i ≥ CB

j , then 1(c∗
i ) ≥ 1(c∗

j).

Proposition 2.2 indicates that producers with higher (lower) active (passive) yields, and

producers with lower (higher) active (passive) costs, are more inclined towards committing to

active production. In essence, those who stand to benefit significantly from transitioning to

active management are more likely to make a commitment to active management. Detailed

proofs of both Proposition 2.1 and Proposition 2.2 are collected in Appendix 2A.1.

To evaluate the effectiveness of an area-yield insurance program, it is essential to conduct

an aggregate analysis of producers’ farming behavior. To facilitate this analysis, we introduce

the concept of Attained Compliance Ratio (ACR), which quantifies the expected proportion

of producers who choose active production methods. For a given value of K, where producers

are assigned optimally, the ACR is given by

ACR(K) = E
[

1
N

N∑
i=1

1 (c∗
i (K))

]
, (2.10)

where N is the total number of producers. 1 (c∗
i (K)) symbolizes the behavior of producer

i in relation to the number of risk pools K. As established, producers’ optimal behavior

changes in response to variations in K.

From the insurer’s perspective, the area-yield insurance program is effective when a ma-

jority of the enrolled producers maximize their utility with active farm management. This

ensures that the moral hazard inherent to the insurer’s portfolio remains tolerably low. If

the insurer sets a Sustainable Compliance Ratio (SCR), which represents the proportion of

producers engaging in active management required by the insurer to maintain a sustain-

able area-yield insurance program, the optimal K∗ is determined by ensuring that the ACR

derived from the risk pooling outcomes aligns with SCR. To elaborate:

K∗ = argmin
K

|ACR(K) − SCR| , (2.11)
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2.3.2 Optimal Risk Pooling Algorithm

Proposition 2.1 implies that, for a given value of K, it is important to group producers

with similar risk profiles into the same risk pools. The proposed behavioral risk pooling

framework can accommodate any dependence structure that informs the relationship be-

tween pairs of producers. In this project, we use the empirical correlation matrix to serve this

purpose, thereby avoiding the concern of model uncertainty introduced by complex depen-

dence structures. Consequently, we can employ a clustering algorithm, effectively grouping

producers based on comparable risk levels.

However, traditional clustering approaches use yield correlation matrices, which encoun-

ters the challenge of high dimensionality. Particularly when dealing with a large number of

producers, the high-dimensional data not only requires significant computational resources

in terms of time and memory but may also impair the effectiveness of conventional distance-

based clustering algorithms.

To circumvent these challenges, we introduce the spectral clustering method into the risk

pooling procedure, which first reduces the dimensionality of the correlation matrix through

spectral decomposition and then utilizes standard distance-based clustering techniques on

the transformed data with a lower dimension. Let M = (ρij)N×N denote the correlation

matrix of historical yields, where N represents the total number of producers. The spectral

decomposition of M is expressed as M = QAQ−1, with A being a diagonal matrix comprising

the eigenvalues of M , arranged in descending order. The columns of Q are the corresponding

eigenvectors of M . We then construct a new N × d matrix, Z, by selecting the top d

eigenvectors, represented as Z = [Q:1, . . . , Q:d], to form distinct clusters. A succinct summary

of the spectral clustering method is presented in Algorithm 1.

Compared with the traditional distance-based K-means algorithm, the spectral clustering

method offers several distinct advantages. First, it effectively handles the challenges posed by

high-dimensional data. The phenomenon known as the “curse of dimensionality” challenges

distance-based clustering algorithms when dealing with high-dimensional data (Beyer et al.,

1999). Second, spectral clustering presents efficiency in both time and memory usage.
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Algorithm 1: Risk pooling based on spectral clustering
Input:

• Squared data M = (ρij)N×N (correlation matrix of the yield data).

• Number of risk pools K.

• Desired proportion of variance retained q.

Steps:

1. Spectral Decomposition of M : Decompose M as M = QAQ−1. Here A is a diagonal matrix
containing the eigenvalues of M , while the columns of Q represent the eigenvectors of M .

2. Eigenvalue Ordering: Sort the eigenvalues in descending order: A11 > A22 > . . . > ANN . Arrange
the eigenvectors in corresponding order.

3. Eigenvector Selection: Choose the first d eigenvalues such that their sum as a fraction of the sum
of all eigenvalues is no less than q, that is, ∑d

i=1 Aii∑N
i=1 Aii

≥ q.

4. Matrix Formation: Construct a N × d matrix, Z, using the first d eigenvectors:

Z = [Q:1, . . . , Q:d].

5. Risk-Pooling via K-means: Apply the K-means clustering algorithm to the dataset Z to form
the risk pools.

Output:

• The result of risk-pooling, denoted as a 1 × N vector (k1, ..., kN ), where ki (for i = 1, ..., N) is an
element from the set {1, ..., K}. This element represents the assignment of producer i to one of the
K risk pools.
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2.4 Empirical Analysis

In this section, we implement the proposed sustainable risk pooling framework on corn

production data from the U.S. Heartland Region. Section 2.4.1 introduces the data used

in our empirical analysis and describes pre-analysis process. Section 2.4.2 presents our risk

pooling results. In Section 2.4.3, we conduct a subsample analysis in the state of Illinois and

focus on economic meaning of the risk pooling. Finally, in Section 2.4.4, we compare our

proposed method for determining the optimal K with a widely accepted statistical method,

the gap statistic.

2.4.1 Data

Production data

Due to the unavailability of farm-level production data, we have resorted to the most

detailed alternative: an annual county-level corn production dataset from the National Agri-

cultural Statistics Service (NASS).10 Our study focuses on the counties within the Heartland

Region, a key area for corn production, as depicted in Figure 2.1(a). The data is representa-

tive because corn is the most valuable agricultural commodity in the US, and the Heartland

Region includes major corn-producing states such as Iowa, Illinois, Indiana, etc. Moreover,

it encompasses 543 counties and leads among the nine U.S. farm resource regions with the

highest number of farms (22%), the largest cropland area (27%), and the greatest produc-

tion value (23%).11 Our analysis reveals that from 2015 to 2019, these Heartland counties

contributed to 65% of the total U.S. corn production (see Figure 2.1(b)).

The sample period spans from 1940 to 2019, and the summary statistics of the data

are provided in Table 2.1. To account for technological advancements and other long-term

yield influences, following (Deng et al., 2007), a detrending process using a second-order
10To address concerns that using county-level data as a proxy for farm-level data might lead to misinter-

pretation of risks, we conduct farm-level analysis based on simulation in Section 2.6, as a robustness check
for our proposed sustainable risk pooling method.

11Source: USDA National Agricultural Statistics Service, Economic Research Service.
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(a) Heartland Region (b) Corn Harvested per Acre

Figure 2.1. Heartland region and U.S. corn production (Illustrative period of 2015-19).

polynomial is applied to the raw production data to align the yield data with 2019 lev-

els. Approximately 2.0% of the county-year data points are missing in the initial dataset,

which we address through linear interpolations. Consequently, our processed dataset in-

cludes 43,440 county-year observations, encompassing 543 counties over 80 years12. For the

purposes of clustering, we normalize both yield and cropland size data using the min-max

scaler method.

Cost data

To determine the cost of production, we reference the Heartland Region’s corn production

cost data published by the USDA. Since 1996, the USDA has conducted five comprehensive

censuses of corn production costs in the years 1996, 2001, 2005, 2010, and 2016.13 However,

there are notable discrepancies between this cost data and our yield data, both in terms

of the timespan covered and the level of details. Due to these constraints, we approximate
12As established, to partially address the concern that Equation (2.3) is weak in capturing tail dependence,

and given that we use a correlation matrix to capture pairwise relationships among producers—which is also
not specifically tailored for tail risk—we utilize a relatively long window of historical yield data. This
approach allows the model to capture some less frequent extreme events. It is important to note that such
extensive historical yield data is not mandated by the proposed behavioral risk pooling framework if reliable
tail dependence information is available.

13The full report can be accessed at https://www.ers.usda.gov/data-products/
commodity-costs-and-returns/.
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TABLE 2.1
Descriptive Statistics

Our sample of 543 counties located in 9 states of the Heartland region of the U.S. corresponds to 43,440
county-year observations (Source: NASS). 43 million acres of corn production cropland are included. Panel
A summarizes the corn yield data, and Panel B summarizes the corn cropland size data.

Panel A. Corn Yield (BU/Acre) – Summary Statistics

State Mean Standard Skewness Excess 1st Quartile Median 3rd Quartile
Deviation Kurtosis

Illinois 194 31 -0.34 -0.41 165 189 209
Indiana 172 24 -0.38 -0.34 150 170 185

Iowa 213 26 -0.19 0.16 190 210 223
Kentucky 188 25 -0.14 -1.07 161 187 203
Minnesota 185 22 -0.84 0.35 173 190 201
Missouri 157 26 0.47 0.26 131 147 167
Nebraska 210 20 -0.43 -0.32 195 208 222

Ohio 169 22 -0.52 0.03 158 170 184
South Dakota 172 28 -0.28 -0.75 150 173 192

Panel B. Corn Cropland Size (Acre) – Summary Statistics

State Mean Standard Skewness Excess 1st Quartile Median 3rd Quartile
Deviation Kurtosis

Illinois 99233 67991 1.11 1.06 49962 99233 133526
Indiana 56156 29267 0.14 -0.58 34453 56156 74996

Iowa 116275 43832 0.20 0.23 87850 116275 147041
Kentucky 30472 17997 0.74 -0.71 17293 30472 36535
Minnesota 109425 42361 0.21 -1.10 74470 109425 148958
Missouri 32805 23722 1.38 2.48 15644 32805 41945
Nebraska 113756 35305 -0.11 -0.92 89191 113756 139319

Ohio 51276 24365 -0.24 -0.59 36976 51276 68927
South Dakota 95210 28316 0.13 -0.95 74279 95210 112653
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producers’ total costs per acre Ci in relation to their expected yields µi, as follows:


CA

i = (Cvariable + Cfixed) × µi,

CB
i = Cfixed × µi.

(2.12)

Here, Cvariable denotes the variable cost ratio and Cfixed represents the fixed cost ratio.

Segmenting the cost into its variable and fixed components allows for a nuanced under-

standing of a producer’s management choices. More specifically, when a producer selects for

an active production management strategy (i.e., c∗
i = cA), the incurred cost encompasses

both the variable and fixed costs. In contrast, if a producer selects a passive approach to

production management (i.e., c∗
i = cB), only the fixed cost is considered.

Producers’ incentives should be determined ex-ante. This implies that producers would

choose their strategies based on expected fixed and variable costs. Given that our dataset

is detrended to account for inflation and technological changes, maintaining static expected

ratios of fixed and variable costs is deemed acceptable. Moreover, using annual cost data

might introduce a forward-looking bias in risk pooling analyses. Consequently, we compute

the fixed and variable cost ratios for the Heartland Region for each year within the cost data’s

timeframe, using their average as the expected fixed and variable cost ratios for producers.14

The fixed and variable cost ratios for the Heartland Region by year is presented in Figure 2.2.

The grey bars highlights the census years. We check the robustness of the cost function

assumptions in Section 2.5.3.

2.4.2 Baseline Results of the Sustainable Risk Pooling Framework

In our baseline analysis, we focus on an insurer whose objective is to motivate at least

95% of the enrolled producers to actively manage their farms to keep the moral hazard at

a tolerable level. This is achieved by solving Equation (2.11), where we set the sustain-
14Here, the fixed cost ratio for each year is determined as the ratio of ownership cost (including capital

recovery of machinery and equipment, cost of insurance, taxes, and general farm overhead) to total gross
production value, and the variable cost ratio is computed as the ratio of operating cost (including cost of
seed, fertilizer, chemicals, custom services, energy, repairs, purchased irrigation water, labor, interest on
operating capital) to total gross production value.
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Figure 2.2. The ratios of fixed and variable costs to value of corn produced for heartland region. The
grey bars highlight the census years.
Source: USDA Economic Research Service.

able compliance ratio (SCR) at 0.95. For additional robustness, alternative SCR levels are

examined in Section 2.5.1.

We construct a yield correlation matrix for the producers and perform spectral decom-

position to extract the principal components. For spectral clustering, we select the first 36

principal components, which account for 95% of the total variance. The robustness of the

variance retained is tested in Section 2.5.2, where we find that our results remain consistent

within a variance retention range of 85% to 99%.

Solving for optimal production behaviors

To determine producers’ production behavior (i.e., optimal choice of input strategy c∗
i ),

we solve Problem (2.8) for each individual producer’s optimal decision, c∗
i . In doing so,

we adopt a model-free, non-parametric approach following Chen et al. (2023a). This ap-

proach involves substituting the theoretical variables in the expected utility function with

their empirical equivalents, and thereby sidestepping the model risk associated with jointly

modeling the high-dimensional distribution of individual yield yi and the indemnity pay-

ment Ik. Specifically, for a random sample of (yi, Ik) : {(yit, Ikt)}t=1,...,T , problem (2.8) can

be formulated as follows:
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max
ci∈C

E [U (ci)] = max
ci∈C

E [u (w0 + yi − Ci + Ik)] ,

= max
ci∈C

1
T

T∑
t=1

u (w0 + yit − Ci + Ikt) . (2.13)

To ensure robustness, we examine a parametric approach, as detailed in Appendix 2A.2.

In the baseline analysis, we calculate Ik assuming producers uniformly set the scale and

coverage of their policies at 100%. In the robustness checks in Section 2.5.5, we find that

the effectiveness of the proposed sustainable risk pooling method remain unaffected when

producers choose their optimal scale and coverage (Mahul, 1999; Vercammen, 2000).

For producers’ risk preference, we consider both the Constant Absolute Risk Aversion

(CARA) model and the Constant Relative Risk Aversion (CRRA) model. More specifically,

we use an exponential utility function u(w) = − 1
A
e−Aw and an absolute risk aversion pa-

rameter A = 0.5 for CARA, and a power utility function u(w) = w1−γ−1
1−γ

with a relative risk

aversion parameter γ = 2.0. In an untabulated analysis, we find that our results remain

robust for various choices of risk aversion parameters for both utility models.

Benchmarks and risk measures

As previously established, owing to the unavailability of actual farm-level data, we use

county-level yield data as a proxy for farm-level data. This limitation prevents empirical

evaluation against real county boundaries. Instead, we assess our proposed risk pooling

method against two alternative arbitrary boundary sets: Agricultural Districts (AGD) and

State boundaries. Agricultural Districts are defined by NASS, grouping counties within each

state based on geographic, climatic, and agricultural characteristics. Figure 2.3(a) illustrates

the AGDs in the Heartland Region. While these boundaries reflect certain geographical and

environmental characteristics, their use in risk pooling is not specifically tailored to individual

commodities.

To evaluate the effectiveness of risk pooling, we assess various basis risk and tail risk mea-

sures, including Mean Squared Error (MSE) for basis risk reduction, Value-at-Risk (VaR)
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(a) Agricultural District (b) Sustainable Risk Pools (K∗ = 90)

Figure 2.3. Agricultural District of the heartland region and the proposed sustainable risk pooling results.

and Expected Shortfall (ES) on profits for downside risk reduction. Other alternative mea-

sures for assessing risk pooling quality are further explored in Section 2.5.4.

Performances of the sustainable risk pooling framework

We evaluate the effectiveness of area-yield insurance derived from risk pools generated

through our sustainable risk pooling method in Table 2.2. This table summarizes the im-

provements of sustainable risk pools compared to those based on agricultural districts and

state boundaries. These improvements are quantified by basis risk (MSE) and tail risk (VaR

and ES). We report results with risk measures aggregated through both equal weighting and

cropland-size weighting approaches.

Our optimal risk pooling method suggests an optimal K∗ of 94 under the exponential

utility and 92 under the power utility. This indicates that our results are not sensitive to

utility assumptions. The improvements in MSE versus AGD range from 21.7% to 30.2%,

and range from 53.0% to 58.9% compared to state boundaries, across different risk aversion

assumptions and risk aggregation methods.

Panel B and Panel C report the improvements in tail risk protection. Our proposed

sustainable risk pooling method enhances the 5%-level VaR on profits by 1.7% to 8.0%

and the 5%-level ES by 2.3% to 8.4%, across different risk aversion assumptions and risk
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aggregation methods. These improvements are economically significant. In particular, the

enhancement on VaR implies a yield improvement ranging from 2.55 bu/acre to 12 bu/acre,

equivalent to $598 million to $2.8 billion improvements on profits for the Heartland area,

after considering the corn price and land size of the area. Similarly, the improvements in ES

correspond to 3.22 bushes/acre to 11.76 bushes/acre of yield improvements, translating to

profit enhancement ranging from $755 million to $2.76 billion for the Heartland area.15

In summary, results validate the effectiveness of sustainable risk pooling approach in

optimizing area-yield insurance for producers. Since the positive risk improvements are

consistent across these two aggregate statistics and two risk aversion assumptions, hereafter

we use exponential utility as the default risk aversion assumption and equal-weighted average

to aggregate the risk measures.

Figure 2.3(b) illustrates the sustainable risk pools generated. The visualization suggests

that our optimal pooling results are geographically coherent — that is, producers within

the same risk pool tend to be situated nearby. Additionally, it is noteworthy that some

counties, despite being distant from one another, are grouped within the same risk pool.

This phenomenon can be attributed to these counties possibly adhering to a shared data-

generating process, as highlighted by Ker et al. (2015) and Tack and Ubilava (2015). To

provide a more focused discussion and interpret the geographical implications of the risk

pooling results, we perform a subsample analysis in Section 2.4.3.

2.4.3 Subsample Analysis: Geographical Implications

The objective of our focus on Illinois is twofold. First, Illinois is a major corn-producing

state, contributing significantly to the U.S.’s total corn production. Second, the state exhibits

a unique geographical profile. As shown in Figure 2.4(a), Illinois can be divided into three

distinct geographical regions from north to south:

• Northern Illinois, including the Chicago Municipal Area and surrounding Charles
15The monetary calculations were based on the assumption that corns were sold on December 31, 2019, at

the spot price. This spot price was derived from the corn commodity index as provided by FactSet Research
Systems (CORNCI-FDS).
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TABLE 2.2
Baseline Results: Sustainable Risk Pooling Quality Analysis

We evaluate the effectiveness of area-yield insurance derived from risk pools generated through our sus-
tainable risk pooling method. These pools are constructed under two prevalent risk aversion assumptions:
exponential utility (A = 0.5) and power utility (γ = 2.0). This table presents three panels summarising the
improvements in area-yield insurance using sustainable risk pools compared to those based on agricultural
districts and state boundaries. These improvements are quantified by basis risk (MSE) and tail risk (VaR
and ES). We report results with risk measures aggregated through both equal weighting (Equal Wgt.) and
cropland-size weighting (Land-size Wgt.) approaches. All results are based on a Sustainable Compliance
Ratio (SCR) of 95%.

Exponential Utility (K∗ = 94) Power Utility (K∗ = 92)

Equal Wgt. Land-size Wgt. Equal Wgt. Land-size Wgt.

Panel A: Basis Risk Improvement - Mean Squared Error

MSE (1e-4) 5.31 5.15 5.26 4.86
Impv. vs. AGD 29.41% 21.65% 30.15% 26.08%
Impv. vs. State 58.46% 53.03% 58.90% 55.68%

Panel B: Tail Risk Improvement - Value-at-Risk (5%)

VaR (1e-2) 5.17 5.83 5.13 5.51
Impv. vs. AGD 2.68% 8.02% 1.73% 2.01%
Impv. vs. State 6.04% 10.65% 5.05% 4.50%

Panel C: Tail Risk Improvement - Expected Shortfall (5%)

ES (1e-2) 5.05 5.71 5.00 5.39
Impv. vs. AGD 3.26% 8.43% 2.28% 2.39%
Impv. vs. State 8.65% 12.89% 7.62% 6.61%

Benchmarks
AGD Boundaries State Boundaries

MSE (1e-4) 7.53 6.57 12.79 10.96
VaR (1e-2) 5.04 5.40 4.88 5.27
ES (1e-2) 4.89 5.26 4.64 5.05
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Mountain.

• Central Illinois, known for its prairie landscapes and the Illinois River.

• Southern Illinois, distinguished by its warmer climate and location between the Mis-

sissippi and Ohio Rivers.

This geographical diversity offers valuable insights into our risk pooling results, providing a

contextualized understanding within Illinois’ diverse topography.

(a) Geography Map (b) Agricultural District (c) Sustainable Risk Pooling

Figure 2.4. Illinois geography and risk pooling visualization.

To emphasize the geographical underpinnings of our findings, we illustrate the risk pooling

outcomes for K = 9 in Figure 2.4(c). Our analysis effectively partitions Illinois into its three

major geographical regions: Northern Illinois, represented by Pools 1 and 2; Central Illinois,

including Pools 3 to 7; and Southern Illinois, encompassing Pools 8 and 9. Within these broad

categories, more specific distinctions are apparent. For example, Northern Illinois is divided

into the Chicago municipal area (Pool 1) and the area around Charles Mountain (Pool 2).

In Central Illinois, the Illinois River serves as a natural boundary between risk pools, with

noticeable elevation differences observed between Pools 3, 4, and 5. Southern Illinois exhibits
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a contrast between prairie landscapes in Pool 8 and the region with the higher forest coverage

in Pool 9. These geographical insights are not captured in administrative-based risk pooling

methods, such as those based on agricultural districts shown in Figure 2.4(b). Our risk

pooling strategy not only achieves better basis risk and tail risk reductions but also aligns

more closely with the geographical contours of the state.

2.4.4 Performances of the Gap Statistic-based Framework

To further demonstrate the effectiveness of the proposed risk pooling framework, in this

section, we compare our behavior-based approach with a widely accepted statistical method

in identifying the optimal K∗, Gap statistic (Tibshirani et al., 2001). This statistical-based

method involves the calculation of Gap(K), the gap statistic, in choosing the optimal K∗.

More specifically, consider Z as our primary dataset and Z0 as a dataset sampled from a

uniform distribution, with both datasets having consistent ranges across each dimension.

The gap statistic for K clusters, Gap(K), is expressed as,

Gap(K) = E
[
log(W (Z0, K))

]
− log(W (Z,K)). (2.14)

Here W (Z,K) is the within-cluster dispersions for dataset Z and K clusters defined as

W (Z,K) =
K∑

k=1

1
2Nk

Nk∑
i=1

Nk∑
j=1

dist(i, j), (2.15)

where dist(i, j) measures the Euclidean distance between i and j, and Nk is the cardinality

of the kth risk pool. In practice, E [log(W (Z0, K))] can be estimated via Monte Carlo

simulations.

Using the gap statistics, the value of K can be progressively increased until the difference

between Gap(K + 1) and Gap(K) is not statistically significant. Tibshirani et al. (2001)

introduce a 1-standard-error rule. Specifically, optimal K∗ is identified as the first value of

K for which the difference Gap(K + 1) −Gap(K) is less than or equal to the standard error

of log (W (Z0, K)).
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Table 2.3 displays area-yield insurance protection results from applying the gap statistic

method to determine optimal K∗. The expected value, E [log(W (Z0, K))], is estimated from

1000 simulations. Using this method, the optimal K∗ is identified as 36, a value much lower

than that suggested by our sustainable risk pooling approach. Notably, this K∗ from the gap

statistic method results in increased basis risk, highlighting its limitations in determining K∗

for area-yield insurance risk pooling. More importantly, the K∗ determined by gap statistic

method lacks clear insurance or economic interpretations.

TABLE 2.3
Performances of the Gap Statistic-Based Risk Pooling

We use the gap statistic to determine the optimal K∗ for area-yield insurance. This table presents three
panels summarising the improvements in area-yield insurance using sustainable risk pools compared to those
based on agricultural districts and state boundaries. These improvements are quantified by basis risk (MSE)
and tail risk (VaR and ES), with risk measures aggregated through an equal weighting approach.

Gap Statistics (K∗ = 36)

Panel A: Basis Risk Improvement - Mean Squared Error

MSE (1e-4) 7.65
Impv. vs. AGD -1.63%
Impv. vs. State 40.19%

Panel B: Tail Risk Improvement - Value-at-Risk (5%)

VaR (1e-2) 5.03
Impv. vs. AGD -0.16%
Impv. vs. State 3.10%

Panel C: Tail Risk Improvement - Expected Shortfall (5%)

ES (1e-2) 4.87
Impv. vs. AGD -0.37%
Impv. vs. State 4.83%

2.5 Robustness of Sustainable Risk Pooling

In this section, we examine the robustness of our proposed risk pooling approach by relax-

ing some assumptions made in the baseline results. Section 2.5.1 examines the impact of the

sustainable compliance ratio (SCR) on our results. Subsequently, Section 2.5.2 investigates

the effects of dimension reduction. Section 2.5.3 evaluates the sensitivity of assumptions

on the cost function. In Section 2.5.4, we evaluate our optimal risk pooling method using

three alternative basis risk measures from the area-yield insurance literature. Section 2.5.5
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then allows producers to customize their protection ratios within various constraints. Fi-

nally, Section 2.5.6 discusses the integration of an equal cluster size constraint in the spectral

clustering process, ensuring balanced risk pool sizes.

2.5.1 Impact of Sustainable Compliance Ratio

In the baseline results, we set the SCR at 0.95. This section explores the robustness of

our results for varying levels of SCR. We assess SCR levels ranging from 0.85 to 1.0 and

present the results in Table 2.4. We can see that as SCR rises, the optimal K∗ declines from

135 to 43. Intuitively, reducing the number of K∗ will increase basis risk, hence diminishing

the effectiveness of the resulting area-yield insurance contract. Indeed, we see that relative

to AGD, the improvement in producers’ basis risk diminishes from 42.7% to 7.0% and the

improvement in VaR and ES decreases from 4.3% to 0.4% and 5.3% to 0.3%, respectively.

These findings confirm the negative association between the area-yield contracts effectiveness

and the SCR, due to the trade-off between moral hazard and basis risk.

2.5.2 Impact of Retained Variance Ratio

While spectral clustering method effectively helps address the curse of dimensionality in

the risk pooling process, the number of PCs retained in the algorithm has impact on the

contract effectiveness. This section sensitivity tests the relationship between the number of

PCs used in risk pooling and the associated basis risk, as shown in Figure 2.5. We can see

that there is a trend emerging where the basis risk initially declines but eventually rises as

the number of PCs increases. For our dataset, retaining a variance ratio between 85% and

95% from the original correlation matrix tends to produce risk pools with the lowest basis

risk.

A significant implication from our analysis is that merely increasing the number of PCs for

risk pooling does not guarantee optimal basis risk reduction, due to curse of dimensionality

(Beyer et al., 1999). To illustrate, Table 2A.1 in Appendix 2A.2 investigates an extreme

scenario where all the PCs from the spectral decomposition are used for risk pooling. The
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TABLE 2.4
Robustness Check: Impact of Sustainable Compliance Ratio Selection

This table tests how the risk pooling results will be affected by the insurers’ sustainable compliance ratio
(SCR) selection. Producers are assumed to follow exponential utility with A = 0.5. The optimal K∗

is presented in parentheses below each SCR selection. This table presents three panels summarising the
improvements in area-yield insurance using sustainable risk pools compared to those based on agricultural
districts (AGD) and state boundaries (State). These improvements are quantified by basis risk (MSE) and
tail risk (VaR and ES), with risk measures aggregated through equal weighting.

Sustainable Compliance Ratio Selection

1.0 0.99 0.98 0.95 0.9 0.85
(K∗ = 43) (K∗ = 63) (K∗ = 73) (K∗ = 94) (K∗ = 115) (K∗ = 135)

Panel A: Basis Risk Improvement - Mean Squared Error

MSE (1e-4) 7.00 6.26 5.77 5.31 4.83 4.32
Impv. vs. AGD 7.00% 16.79% 23.31% 29.41% 35.88% 42.65%
Impv. vs. State 45.27% 51.03% 54.87% 58.46% 62.27% 66.25%

Panel B: Tail Risk Improvement - Value-at-Risk (5%)

VaR (1e-2) 5.06 5.09 5.14 5.17 5.22 5.26
Impv. vs. AGD 0.35% 1.07% 1.91% 2.68% 3.68% 4.33%
Impv. vs. State 3.64% 4.38% 5.25% 6.04% 7.07% 7.74%

Panel C: Tail Risk Improvement - Expected Shortfall (5%)

ES (1e-2) 4.90 4.95 5.00 5.05 5.10 5.15
Impv. vs. AGD 0.29% 1.37% 2.37% 3.26% 4.42% 5.34%
Impv. vs. State 5.52% 6.66% 7.72% 8.65% 9.87% 10.84%

Figure 2.5. Basis risk of area-yield contracts using risk pools derived from various numbers of principal
components.

34



analysis reveals a detrimental effect of curse of dimensionality on both basis risk and extreme

risk improvements. In addition, no K∗ value yields an ACR greater than 95% when all PCs

are utilized in risk pooling.

2.5.3 Impact of Cost Ratio

In the baseline analysis, due to data availability constraints, we approximate producers’

costs per acre as a fixed cost ratio Cfixed and a variable cost ratio Cvariable relative to the

expected revenue from production. To assess the sensitivity of our results to these important

cost assumptions, we vary the fixed and variable costs by ±30% and evaluate the performance

of the sustainable risk pooling framework.16

As shown in Figure 2.6, the proposed framework consistently mitigates basis risk across

the tested range. In particular, we see less sensitivity in the results in fixed costs than

variable costs. This is intuitive because variable costs have significant impact on producers’

strategic decisions regarding the farming process. An increase in variable costs leads to lower

expected marginal profits, prompting more producers, especially those with lower expected

yields, higher variance, and less exposure to systemic risk (i.e., lower βi in Equation 2.4), to

adopt passive management strategies (Proposition 2.1 and 2.2). Consequently, as the variable

costs rise, the size of risk pools will increase due to a heightening in passive management,

which subsequently affects the basis risk improvement for the compliers.

2.5.4 Alternative Measures of Basis Risk

In our baseline analysis, we utilize Mean Squared Error (MSE) along with tail risk metrics,

specifically Value-at-Risk (VaR) and Expected Shortfall (ES), to assess the effectiveness

of risk pooling. This naturally leads to the question of how our methodology performs

against other basis risk measures used in the area-yield literature. For example, (Miranda,

1991) use variance reduction to evaluate area-yield insurance programs, while (Deng et al.,

2007) consider the correlation between index and individual yields. Additionally, (Elabed
16The increment is capped at 30% to ensure the marginal revenue remains non-negative.
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Figure 2.6. Basis risk improvement in the sustainable risk pooling framework compared to AGD,
measured against changes in fixed and variable costs.

et al., 2013) explore the likelihood of losses occurring without triggering payments. In

this subsection, we apply these three alternative risk metrics to assess our sustainable risk

pooling framework. Results presented in Table 2.5 confirms the robustness of our approach

in improving basis risk across a range of measures.

2.5.5 Optimal Area-yield Contracts

In the baseline results, we assume that producers set scale of their policies at 100%. In this

subsection, we allow producers to choose their optimal scales, βi, in line with Equation (2.4)

(Miranda, 1991; Mahul, 1999; Vercammen, 2000). We compare risk pooling results with dif-

ferent potential contractual constraints on these scales, as discussed by Barnett et al. (2005).

Specifically, we examine three cases: In the first, producers select their optimal protection

scale from a range of [90%, 110%]. The second case expands this range to [80%, 120%]. In

the third case, producers are free to choose any value for their protection scale. Results are

presented in Table 2.6. Comparing with our baseline results shown in Table 2.2, we can see
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TABLE 2.5
Robustness Check: Alternative Basis Risk Measures

This table presents baseline results of the sustainable risk pooling method evaluated using three alternative
basis risk measures. Panel A showcases variance reduction, as outlined by Miranda (1991). Panel B illustrates
the correlation between individual and area yields, following the approach of Deng et al. (2007). Finally,
Panel C delves into the probability of incurring losses without indemnity payments, based on the methodology
proposed by Elabed et al. (2013).

Exponential Utility (K∗ = 94)

Equal Wgt.

Panel A: Yield variance reduction (Miranda, 1991)

Var. Reduction 0.58
Impv. vs. AGD 30.92%
Impv. vs. State 106.58%

Panel B: Corr. inv. and area yield citecite (Deng et al., 2007)

Corr. Inv. Y. & Area Y. 0.89
Impv. vs. AGD 7.30%
Impv. vs. State 26.35%

Panel C: Pr. of loss incurred wo payment (Elabed et al., 2013)

Pr. Loss wo Pay 0.09
Impv. vs. AGD 39.79%
Impv. vs. State 60.92%

Benchmarks
AGD Boundaries State Boundaries

Var. Reduction 0.44 0.28
Corr. Inv. Y. & Area Y. 0.83 0.71
Pr. Loss wo Pay 0.16 0.24
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that these variations in scale constraints have a minimal impact on risk improvements from

our proposed sustainable risk pooling framework.

TABLE 2.6
Robustness Check: Impact of Protection scale

This table summarizes the risk pooling results under scenarios where producers can choose their optimal
scale within certain contract constraints. We examine three cases where scale ranges from [90%, 110%],
[80%, 120%], and unconstrained scale.

90% ≤ scale < 110% 80% ≤ scale < 120% unconstrained scale
(K∗ = 94) (K∗ = 94) (K∗ = 94)

Panel A: Basis Risk Improvement - Mean Squared Error

MSE (1e-4) 5.11 5.06 5.10
Impv. vs. AGD 28.48% 28.00% 26.77%
Impv. vs. State 58.81% 58.63% 57.58%

Panel B: Tail Risk Improvement - Value-at-Risk (5%)

VaR (1e-2) 5.18 5.18 5.17
Impv. vs. AGD 2.49% 2.50% 2.45%
Impv. vs. State 6.04% 6.04% 6.01%

Panel C: Tail Risk Improvement - Expected Shortfall (5%)

ES (1e-2) 5.04 5.04 5.04
Impv. vs. AGD 3.00% 3.00% 2.95%
Impv. vs. State 8.62% 8.62% 8.58%

Benchmarks
AGD State AGD State AGD State

MSE (1e-4) 7.15 12.41 7.02 12.21 6.96 12.02
VaR (1e-2) 5.04 4.88 5.04 4.88 5.04 4.87
ES (1e-2) 4.89 4.64 4.89 4.64 4.89 4.64

2.5.6 Constructing Risk Pools with the Same Size

In our earlier discussions, we did not enforce any size restrictions on risk pools. Without

such constraints, clustering algorithms can occasionally produce extremely small clusters. In

the context of area-yield risk pooling, this might lead to the isolation of high-risk producers

from the majority. As discussed in Section 2.3, diminutive risk pools can potentially en-

courage moral hazard. To mitigate this concern, in this subsection, we apply a uniform-size

constraint using the algorithm proposed by Schubert et al. (2015), ensuring each cluster

maintains a size of either ceiling or floor of N/K.

The results are summarized in Table 2.7. Comparing with our baseline results in Ta-

ble 2.2, it is evident that the uniform size constraint has a larger value for the optimal K∗,

38



while the enhancements in risk metrics remain largely consistent. In essence, with the same

size constraint, our proposed method consistently outperforms the benchmark approaches.

TABLE 2.7
Robustness Check: Impact of a Same-Size Constraint

This table shows the risk pooling results when sizes of all risk pools are restricted to be the same.

Exponential Utility (K∗ = 90)

Equal Wgt.

Panel A: Basis Risk Improvement - Mean Squared Error

MSE (1e-4) 5.33
Impv. vs. AGD 29.16%
Impv. vs. State 58.32%

Panel B: Tail Risk Improvement - Value-at-Risk (5%)

VaR (1e-2) 5.16
Impv. vs. AGD 2.41%
Impv. vs. State 5.76%

Panel C: Tail Risk Improvement - Expected Shortfall (5%)

ES (1e-2) 5.03
Impv. vs. AGD 2.98%
Impv. vs. State 8.36%

2.6 A Farm-level Analysis Based on Simulated Data

Due to the lack of access to farm-level production data, the main results of our empirical

analysis are conducted using a county-level dataset, which represents the most detailed

level of data available to us. To address the concerns that analyses at the county level might

misinterpret individual risks, in this section, we apply the sustainable risk pooling framework

to a simulated farm-level dataset, to further verify the performance of our proposed approach.

2.6.1 Farm-level Data Simulation

To proceed, we simulate the farm-level yield based on a risk factor-based model. More

specifically, for producer i in year t, we assume her yield, denoted as yit, can be attributed

to four mutually independent factors:

yit = β1ifcounty,t + β2ifregional,t + β3ifmacro,t + β4ifit. (2.16)
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In this model, fcounty,t represents the common risk factor specific to the county in which

producer i operates. This factor captures unique county features that affect yield outcomes,

such as local agricultural practices and technology supplies. fregional,t represents inter-county

common risk factors, including local characteristics influenced by geographical and climatic

differences that affect individual yields. fmacro,t captures macro risk factors that apply to

all producers, reflecting broader economic, policy, and environmental trends. Finally, fit

stands for producer i’s idiosyncratic risks, including individual production techniques and

management practices.

In the simulation procedure, the four risk factors for each producer are independently

drawn from a standard normal distribution for each year. The parameters β1i to β4i represent

the exposure of yit to each of the four factors. In our simulation, we randomly draw each

producer’s β1i to β4i uniformly from [0, 1], subject to the constraint that ∑4
j=1 βji = 1. We

also set the variance of each of the four factors to be equal to 1, meaning that the variance

of yit is also set to 1.

To improve the robustness of our simulation study, we conduct an ensembling procedure

with a total of 50 simulation ensembles. In each ensemble, we simulate the production

outcomes over 100 years for 10,000 producers. These producers are randomly assigned to

one of 10 counties and 20 regional risk pools, resulting in a total of 200 distinct risk pools

(denoted as (Reality RP)) in the simulation.

2.6.2 Performance of Sustainable Risk Pooling

We apply the sustainable risk pooling framework to each simulated ensemble, and on

average, this method suggests an optimal K∗ = 90. We use the county risk pools as a

natural benchmark, which reflects the risk pooling for area-yield insurance in practice in the

U.S.

Figure 2.7 displays the distribution of performance for both the sustainable risk pooling

(Sustainable RP) and the county risk pooling (County RP) across simulated ensembles,

particularly in terms of their effectiveness at capturing basis risk and tail risk as compared

to actual risk pools. We can see from the figures that the sustainable risk pooling framework
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(a) MSE (b) VaR at 5%-level (c) ES at 5%-level

Figure 2.7. Distribution of the performance metrics from different risk pooling methods on simulated
farm-level data.

aligns more closely with reality risk pools than the county risk pool. This simulation study

confirms the superiority of our proposed sustainable risk pooling framework, particularly in

cases where there are inter-county common risk factors that cannot be adequately captured

by arbitrary administrative boundaries.

2.7 Conclusion Remarks

In this chapter, we propose a behavior-based machine learning methodology for optimally

determining area-yield insurance risk pools. This framework identifies the optimal number

of risk pools K∗ by analyzing the farming behaviors of producers with the protection of

area-yield insurance contracts in a utility maximization framework. Then, the spectral

clustering method is utilized to categorize producers into the K∗ risk pools. This technique

groups producers with similar production histories, enhancing the efficiency of the area-

yield insurance contract and addressing high-dimensionality and computational complexity

challenges.

Using county-level corn production data from the U.S. Heartland Region, we apply our

proposed behavior-based machine learning risk pooling method. Empirical findings indi-

cate that the proposed framework reduces contract basis risk and mitigates producers’ tail

risk. The approach proves robust across different models and contract parameters. When
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compared to other statistical methods, our methodology provides improved risk reductions

and yields meaningful geographical and economic insights, suggesting its potential as an

alternative to the traditional area-yield insurance programs.

While the application in this chapter is mainly based on county-level data due to unavail-

ability of farm-level observations, we extend the proposed methodology to simulated datasets

of individual farms and reassure its efficiency. In addition, in this project, we assume a basic

cost function to approximate producers’ costs with two components of fixed or variable costs

as proportions of their expected yields. This estimation can be further refined with more de-

tailed data. It may also be valuable to evaluate the spatial and hedging efficiencies of various

index-based contracts, such as area-yield insurance, weather derivatives, and satellite-driven

vegetation index insurance, as referenced in (Woodard and Garcia, 2008; Zhu et al., 2018).

We leave these topics for future research.
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2A Appendix

2A.1 Proofs

To prove our results, we establish the following lemma.

Lemma 2A.1. For producer i and j, both operating within the kth risk pool, the inequality

EU
(
cA

i

)
− EU

(
cB

i

)
≥ EU

(
cA

j

)
− EU

(
cB

j

)
is a sufficient condition for 1(c∗

i ) ≥ 1(c∗
j).

Proof. The strategy choice of producer i is determined by the comparison of EU
(
cA

i

)
and EU

(
cB

i

)
, with an analogous criterion applied to producer j. Specifically, under the

condition that EU
(
cA

i

)
− EU

(
cB

i

)
≥ EU

(
cA

j

)
− EU

(
cB

j

)
, one of the one of the following

three scenarios will occur:

1. If both EU
(
cA

i

)
− EU

(
cB

i

)
≥ 0 and EU

(
cA

j

)
− EU

(
cB

j

)
≥ 0, then both producers

will choose active management strategies, leading to 1(c∗
i ) = 1(c∗

j) = 1;

2. If EU
(
cA

i

)
−EU

(
cB

i

)
≥ 0 but EU

(
cA

j

)
−EU

(
cB

j

)
< 0, then Producer i will opt for

optimal management while Producer j will adopt a passive approach. Consequently,

1(c∗
i ) = 1 > 1(c∗

j) = 0;

3. If both EU
(
cA

i

)
− EU

(
cB

i

)
< 0 and EU

(
cA

j

)
− EU

(
cB

j

)
< 0, then both producers

will choose passive management strategies, leading to 1(c∗
i ) = 1(c∗

j) = 0.

Under the ceteris paribus condition, and without differentiating passive management

strategies, we have EU
(
cB

i

)
= EU

(
cB

j

)
. To establish 1(c∗

i ) ≥ 1(c∗
j), it is sufficient to show

that EU
(
cA

i

)
≥ EU

(
cA

j

)
. Conversely, without differentiating active management strategies,

proving 1(c∗
i ) ≥ 1(c∗

j) is sufficient through showing EU
(
cB

i

)
≤ EU

(
cB

j

)
.

Lemma 2A.2. Let u be a utility function such that u′(x) > 0 and u′′(x) < 0 for all x.

Consider random wealth W1 and W2 with the same mean but Var(W1) ≤ Var(W2). It holds

that E[u(W1)] ≥ E[u(W2)].
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Proof. Let w denote an individual’s expected wealth, withW1 = w+ϵ1 andW2 = w+ϵ2. Here

ϵ1 and ϵ2 are two zero-mean random variables, with E[ϵ1] = E[ϵ2] = 0 and Var(ϵ1) ≤ Var(ϵ2).

For notation simplicity, we denote the variance of ϵ1 and ϵ2 as σ2
1 and σ2

2. Expanding u

around w for both E[u(W1)] and E[u(W2)] as convergent Taylor series, we have

E[u(Wi)] = E[u(w + ϵi)] = E[u(w) + ϵiu
′(w) + 1

2ϵ
2
iu

′′(w) +O(ϵ3
i )]

= u(w) + 1
2u

′′(w)σ2
i +O(E(ϵ3

i )), i = 1, 2.

Following Pratt (1964), we assume the third absolute central moment of ϵ1 and ϵ2 is of

smaller order than the variance of ϵ1 and ϵ2, respectively. Given that u′′(·) < 0 and σ2
1 ≤ σ2

2,

under regularity conditions, we have

E[u(W1)] − E[u(W2)] = 1
2u

′′(W )(σ2
1 − σ2

2) + o(σ2
1 − σ2

2) ≤ 0.

The intuition of this lemma is that, given identical utility functions and levels expected

wealth, a risk-averse individual dislike variance, i.e., the one with larger variance will expe-

rience a reduced expected utility.

Proof of Proposition 1. Ceteris paribus, the systemic component of the yield risk, rep-

resented by Var(βA
i (yk − µk)), increases as idiosyncratic component σ2

ϵA
i

decreases. Thus,

conclusions (a) and (b) are equivalent.

To prove that EU
(
cA

i

)
≥ EU

(
cA

j

)
under the condition of (a), we begin by substituting

Equation (2.3) into the expected utility of active management. The expected utility of

producer i’s strategy A is expressed as follows:

EU
(
cA

i

)
= E

[
u
(
w0 + yA

i − CA
i + Ik

)]
= E

[
u
(
w0 + µA

i + βA
i (yk − µk) + ϵA

i − (CA
i − E[Ik]) + (Ik − E[Ik])

)]
(2A.1)

= E
[
u
(
w0 + µA

i − (CA
i − E[Ik]) + Zi

)]
.

In this equation, a zero-mean random variable Zi is defined as Zi = βA
i (yk − µk)+ ϵA

i +(Ik −
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E[Ik]), and the net premium E[Ik] is separated from the total costs CA
i . The variance of Zi

is given by

Var(Zi) = Var[βA
i (yk − µk) + ϵA

i ] + Var[Ik − E[Ik]] + Cov[βA
i (yk − µk) + ϵA

i , Ik − E[Ik]]

= σ2
yA

i
+ Var(Ik) + βA

i Cov(yk, Ik).

Recall that Cov(yk, Ik) < 0, since the area-yield indemnity Ik is effectively a put option

on area-yield yk. With σ2
yA

i
= σ2

yA
j

and Cov(yk, Ik) < 0, the condition βA
i ≥ βA

j leads to

Var(Zi) ≤ Var(Zj). Ceteris paribus, Lemma 2A.2 imply that EU
(
cA

i

)
≥ EU

(
cA

j

)
, and

combining Lemma 2A.1, we have 1(c∗
i ) ≥ 1(c∗

j).

Proof of Proposition 2. From the expected utility of active management (Equation (2A.1)),

we obtain the following comparative static derivatives

∂E
[
u
(
cA

i

)]
∂µA

i

= E
[
u′
(
cA

i

)]
> 0,

∂E
[
u
(
cA

i

)]
∂CA

i

= −E
[
u′
(
cA

i

)]
< 0,

where u′
(
cA

i

)
represents the marginal utility of active management. Therefore, E

[
u
(
cA

i

)]
≥

E
[
U
(
cA

j

)]
when µA

i ≥ µA
j or CA

i ≤ CA
j , validating (a) and (c). (b) and (d) can be verified

in a similar fashion by checking the marginal utilities of passive management.

2A.2 Additional analyses

Curse of dimensionality

In this section, we test the impact of curse of dimensionality. In particular, we want to

see how the risk pooling result will be affected if all the PCs are used in risk pooling. We

can see from Table 2A.1 that the optimal risk pooling framework is not effective at all due

to curse of dimensionality. In addition, no K value yields an ACR greater than 95% when

all PCs are utilized in risk pooling.
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TABLE 2A.1
Impact of High Dimensionality

This table tests how the risk pooling result will be affected if all the PCs are used in risk pooling. Producers
are assumed to follow exponential utility with A = 0.5. Each column shows the selection of a value of K and
the attained compliance ratio (ACR) is presented below. This table presents three panels summarising the
improvements in area-yield insurance using sustainable risk pools compared to those based on agricultural
districts and state boundaries. These improvements are quantified by basis risk (MSE) and tail risk (VaR
and ES), with risk measures aggregated through equal weighting.

Selection of the Number of Risk Pools (K)

K = 30 K = 60 K = 90
(ACR = 94.57%) (ACR = 88.56%) (ACR = 82.94%)

Panel A: Basis Risk Improvement - Mean Squared Error

MSE (1e-4) 17.59 17.54 17.65
Impv. vs. AGD -133.68% -133.07% -134.51%
Impv. vs. State 0.08% 0.08% 0.08%

Panel B: Tail Risk Improvement - Value-at-Risk (5%)

VaR (1e-2) 4.70 4.70 4.70
Impv. vs. AGD -6.74% -6.72% -6.74%
Impv. vs. State -3.69% -3.67% -3.69%

Panel C: Tail Risk Improvement - Expected Shortfall (5%)

ES (1e-2) 4.38 4.37 4.38
Impv. vs. AGD -10.34% -10.48% -10.36%
Impv. vs. State -5.66% -5.80% -5.68%

Parametric approach to determine producers’ utility

While we have previously explored the performance of the proposed area-yield insurance

using a nonparametric framework, in this analysis, we delve into an alternative approach.

Here, the insurer employs parametric models to estimate the expected utility of producers.

We employ a multivariate normal distribution to illustrate the parametric approach. In

a manner analogous to the baseline scenario, we consider a representative producer, denoted

as i, who faces a choice between an active production management strategy and a passive

one.

For the scenario in which she adheres to active management, we fit her historical in-

dividual yields, yi, and the area-yields, yk, to a bivariate normal distribution. From this

distribution, we simulate N random samples of (yi, yk). Using 1,000 simulation iterations,

her expected utility is subsequently estimated through Equation (2.8).

In contrast, if she opts against active management, her historical individual yield is set
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to zero, and the area-yield is adjusted to y0
k = yk(1 − πi). Here, πi represents the proportion

of her cropland size relative to the total cropland size of her associated risk pool. Following

this, a univariate normal distribution is fitted to y0
k, and we employ the derived model to

simulate (y0
i , y

0
k). The subsequent procedures mirror those of the active management case.

The insurer then determines her behavior by comparing her expected utility across these

two scenarios, as shown in Equation (2.9).

The risk pooling results using this parametric approach are summarized in Table 2A.2.

Comparing with Table 2.2, we can see the optimal K∗ and the improvements in risk metrics

are about the same level as our baseline results.

TABLE 2A.2
Sustainable Risk Pooling Results with Parametric Utilities

This table shows risk pooling results using parametric models. Producers are assumed to follow exponential
utility with A = 0.5. This table presents three panels summarising the improvements in area-yield insurance
using sustainable risk pools compared to those based on agricultural districts and state boundaries. These
improvements are quantified by basis risk (MSE) and tail risk (VaR and ES), with risk measures aggregated
through equal weighting.

Exponential Utility (K∗ = 90)

Equal Wgt.

Panel A: Basis Risk Improvement - Mean Squared Error

MSE (1e-4) 5.39
Impv. vs. AGD 28.39%
Impv. vs. State 57.86%

Panel B: Tail Risk Improvement - Value-at-Risk (5%)

VaR (1e-2) 5.16
Impv. vs. AGD 2.40%
Impv. vs. State 5.75%

Panel C: Tail Risk Improvement - Expected Shortfall (5%)

ES (1e-2) 5.03
Impv. vs. AGD 2.94%
Impv. vs. State 8.31%
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Chapter 3

From Meteorology to Market: A

Geo-Hierarchical Deep Learning

Approach for Flood Risk Pricing

3.1 Introduction

Floods are the most frequent natural disasters, accounting for one-third of fatalities from

natural calamities since 2011 (Swiss Re, 2022). In the context of climate change, the fre-

quency and severity of flood events have escalated significantly, driven by rising sea levels,

intensified precipitation patterns, and erosion from the degradation of natural flood protec-

tion systems like water meadows and coastal mangroves. This escalation poses substantial

pressure on global risk reduction and risk transfer mechanisms (World Ecnomic Forum,

2023). The economic and human impacts are equally severe, with billions of dollars in dam-

ages and significant loss of lives annually (Boudreault et al., 2019). For instance, the World

Economic Forum has highlighted floods as one of the top global risks, affecting 1.8 billion

people (i.e., 23% of the world population), necessitating advanced methodologies for accu-

rate risk assessment and mitigation. In 2022 alone, flood risk cost the global economy more

than $82 billion (Swiss Re, 2022).

Well-devised risk management, including insurance, is essential for climate adaptation,
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protecting individuals, businesses, and communities from the financial impacts of flooding.

Despite its importance, the flood insurance market suffers from low coverage. Rising flood

losses already compel insurance companies to increase their capital base, potentially leading

to prolonged periods of unprofitability. Uninsured risks remain a significant concern, as in-

adequate financial resources for relief and recovery adversely affect society, the economy, and

the well-being of people (Jongman et al., 2014). The insurance gap has grown significantly,

from $117 billion in 2020 to $161 billion in 2021. While nearly 29% of the global population

is exposed to flood risks, only 7% of flood losses in emerging markets and 31% in developed

economies were insured over the two decades (Swiss Re, 2022). In the U.S., despite the Na-

tional Flood Insurance Program (NFIP), the coverage of flood damages remains fairly low

(Kousky et al., 2017). The U.S. Congress mandates flood insurance for properties in des-

ignated 100-year floodplain with federally-backed mortgages, yet recent flooding in Florida

revealed that many at-risk properties remain uninsured (Flavelle, 2022; Santana and Phillis,

2022; Tolan and Devine, 2022). This gap highlights the need for enhanced awareness and

accessibility of flood insurance. What makes things worse is that while risk management

generally reduces the impacts of floods, it struggles with unprecedented events, which are

becoming more frequent owing to climate change (Kreibich et al., 2022).

Accurate models serve as an essential foundation for policymakers to design resilient in-

frastructures and implement proactive mitigation strategies for flood risks. Accurate flood

risk prediction enhances the resilience of communities and economies, reducing the overall

socioeconomic impact of flooding events (Surminski et al., 2015). For the insurance industry,

precise flood risk assessments underpin the development of appropriate insurance products,

inform pricing strategies, and ensure the financial stability of insurance providers (Kousky

and Kunreuther, 2018). Moreover, a robust framework for flood risk modeling that is both

calibratable and transferable across different markets is also critical for flood insurance de-

velopment.

Despite their importance, developing accurate flood risk models presents significant chal-

lenges. Traditional statistical models often fail to capture the complex interactions between

hydrological and meteorological factors that influence flood events. The limited spatial
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and temporal resolution of data also results in substantial prediction inaccuracies (Bouwer,

2013). Moreover, the dynamic nature of climate change introduces additional variability,

further complicating reliable flood risk prediction. Physical models for catastrophe model-

ing, which simulate the mechanisms of hazards, are costly and slow to build and maintain.

As a result, they are often largely unavailable for the majority of flood-prone areas, even in

developed markets (Swiss Re, 2021). For example, the U.S. National Precipitation Expec-

tations Standard, known as Atlas 14, developed by the National Oceanic and Atmospheric

Administration (NOAA), found that over half of the U.S. population now lives in areas that

are twice as likely to experience a severe “1-in-100-year flood” event as expected from Atlas

14 (Eby, 2023). While NOAA plans to update these standards with Atlas 15, the revisions

are not expected until 2027 (NOAA, 2023). Inaccuracies in flood risk modeling not only

undermine program effectiveness but also lead to limited public awareness, affecting the

willingness to pay for insurance (Thistlethwaite et al., 2020).

The objective of this chapter is to address these challenges by developing an innovative

Geo-Hierarchical Deep Learning (GHDL) framework specifically designed for flood risk pre-

diction and flood insurance pricing. This framework leverages high-resolution meteorological

and hydraulic data within a uniquely coded geographical structure. The model integrates

the geographical connectivity of critical locations such as cities, dams, levees, reservoirs,

harbors, and river crossings into the deep learning structure, thereby enhancing its relevance

and transferability in varied physical contexts and anthropogenic conditions.

In the GHDL framework, we employ a Convolutional Neural Network (CNN) system for

pluvial risk and a Wavelet Neural Network (WNN) system for fluvial risk, each integrating

high-resolution climate and hydraulic data. The CNN layers can extract intricate information

by processing image data, allowing the model to use more detailed meteorological data for

enhanced training efficiency (Li et al., 2022). Conversely, the WNN layers excel in handling

multiresolution and non-stationary time series information, making them effective for flood

risk assessment techniques in the literature (Mosavi et al., 2018; Shafaei and Kisi, 2016). This

dual system allows our model to understand the relationship between inland flood risks and

the climatic conditions that contribute to both fluvial and pluvial floods concurrently. To
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incorporate geographical information, at each designated site, the GHDL structure processes

local data and then combines it with information from upstream locations. This integration

provides predictive factors for downstream areas, thereby enhancing the accuracy of flood

risk modeling.

The GHDL structure has three key advantages. First, it enhances the model’s inter-

pretability by integrating both local and upstream data, providing more transparent in-

sights into the basis of its predictions. Second, this model is highly effective in handling

spatio-temporal data, which is crucial for improving climate-related forecasts and develop-

ing effective pricing strategies. Flood risk exhibits strong spatial and temporal correlations,

especially in tail-risk scenarios, as shown in Figure 3.1(a). We can see that this correlation

becomes less pronounced in moderate-risk situations (Figure 3.1(b)). These findings suggest

that the utilization of spatio-temporal data can improve the flood risk prediction accuracy

by enhancing the model predictability in extreme scenarios. Third, the model effectively

mitigates the risk of overfitting, a common issue in complex deep learning models with a

large number of parameters. By introducing a geographical structural constraint, the GHDL

model achieves the best bias-variance tradeoff, ensuring that the inclusion of spatial data

not only enhances the model’s precision but also maintains its generalizability.

Utilizing the Mississippi River data, we provide compelling evidence that our proposed

GHDL model outperforms its natural machine learning model benchmarks in forecasting

flood risk and determining accurate pricing. Our empirical analysis reveals that in cities

with upstream regions, the improvement in flood risk forecasting accuracy, as measured

by the out-of-sample relative root mean squared error (RRMSE), can be as high as 12.5%

to 16.5% in the most severe scenarios. The capability of the proposed GHDL model to

provide more accurate predictions for extreme flood events is particularly valuable, given the

documented inefficiency in traditional risk assessment models in extreme climate scenarios

(Kreibich et al., 2022).

We further apply the calibrated model in pricing NFIP insurance policies. The results

demonstrate substantial enhancements in net premiums and solvency capital requirements.

In particular, the GHDL model consistently provides the most accurate predictions for claims
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(a) Extreme flood risk scenarios (b) Moderate flood risk scenarios

Figure 3.1. Spatio-temporal flood risk correlation across a cluster of six cities in the Mississippi River
basin

Panel (a) plots the extreme flood risk scenarios (the most extreme 0.25% cases) and Panel (B) plots the
moderate flood risk scenarios (the most extreme 10% cases). For example, the plot (x, y) in panel (a) shows
if there is a flood event that exceeds the 0.25% threshold in city x at day 0, what is the probability that city
y has a flood event happen between day [-14, 14].
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in both in-sample and out-of-sample data. Moreover, the pricing analysis shows that incor-

porating spatial and hierarchical structures significantly enhances flood risk pricing, with

weather information playing a critical role. In addition, the GHDL model reduces the sol-

vency capital requirement by 32.3%, when compared to benchmark ratemaking methods

that overlook spatial and temporal flood risk factors.

The scope of this research is focused on the Mississippi River for two reasons. First, the

availability of the NFIP datasets allows us to test the performance of the proposed GHDL

model on a policy level. Second, the city clusters in the middle of the Mississippi River

basin, with clear geographical connectivity, provide an excellent laboratory to demonstrate

the GHDL model.

The time scope of our research covers several major flood events that occurred along the

Mississippi River between 2009 and 2020. Significant floods during this period include the

2009 flood, which primarily impacted North Dakota, South Dakota, Minnesota, and Iowa,

causing widespread damage to properties and infrastructure. The 2011 flood, one of the

most significant in recent history, affected Missouri, Tennessee, Arkansas, Mississippi, and

Louisiana, resulting in extensive agricultural and infrastructural damage. The 2013 flood,

triggered by heavy rains and snowmelt, significantly impacted Illinois, Missouri, and Iowa.

The severe flood from late December 2015 to early January 2016 primarily affected Missouri

and Illinois, displacing residents and causing considerable damage. Lastly, the 2019 flood, one

of the longest-lasting, affected Iowa, Illinois, Missouri, Arkansas, Mississippi, and Louisiana,

leading to extensive agricultural losses and property damage. These events underscore the

frequent and severe nature of flooding in the Mississippi River basin, highlighting its critical

importance for flood risk research and management.

The discussion of flood risk modeling and its social impact has been extensively covered

in engineering and social science literature over the past two decades (Lechowska, 2018). A

diverse array of machine learning techniques has been scrutinized, including artificial neural

networks (Li et al., 2009; Wu et al., 2009; Abbot and Marohasy, 2014), classification and

regression trees (Dehghani et al., 2017; Choubin et al., 2018), support vector machines (Sang

et al., 2008), and wavelet neural networks (Kumar et al., 2015; Seo et al., 2015; Shafaei and
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Kisi, 2016). More recently, advanced deep learning techniques such as convolutional neural

networks and recurrent neural networks (Guo et al., 2020; Zhang and Xiao, 2000) have

been explored.1 However, the engineering literature tends to focus on short-term horizons,

typically limited to a single day, which is suitable for risk reduction and relief but not for

insurance pricing. Moreover, it lacks methodologies for estimating the financial impact of

flood risks.

Another stream of literature studies flood risk mitigation from an actuarial and insurance

perspective. For instance, Boudreault et al. (2019) explore private insurance pricing and

spatial segmentation of flood risk using a hierarchical model, enabling individual-level risk

assessment. In contrast, Browne et al. (2018) identify a negative correlation between county-

wide housing development in Florida and participation in the mandatory NFIP. Additionally,

Wing et al. (2020) conduct a comprehensive analysis of the NFIP claim dataset, challenging

the conventional assumption that flood damage increases monotonically with rising water

depth. Their findings suggest that flood losses more accurately follow a beta function. Collier

et al. (2022) analyze households’ flood insurance coverage decisions recorded in the NFIP,

finding that consumers often fully insure their homes despite high premium loads, influenced

by industry practices and probability distortions in decision-making. More recently, Tesselaar

et al. (2022) and Hossain et al. (2022) examine the demand and coverage gaps in flood

insurance between developed regions, like Europe, and developing areas, such as Bangladesh,

in the context of evolving climate conditions. Furthermore, Boudreault and Ojeda (2022)

emphasize that the challenges in achieving risk differentiation at the homeowner level can

be mitigated by forming homogeneous ratemaking groups. They introduce a clustering

technique to establish these risk pools and thoroughly examine the potential problem of

adverse selection. Conell-Price et al. (2022) demonstrate that behavioral interventions, such

as default enrollment in supplemental flood insurance, significantly increase take-up rates,

highlighting the potential of auto-enrollment to enhance financial resilience against flood

risks. From a financial perspective, Hu (2022) highlights the influence of peer effects on flood

insurance decisions, estimating that an individual’s likelihood of purchasing flood insurance

increases by 1-5% when a distant connection experiences a flood event. Lastly, Boonen et al.
1Further details on these advancements can be found in Mosavi et al. (2018).
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(2024) study the risk-sharing mechanism of the centralized insurance market and apply the

theory to the NFIP, finding clear benefits in risk aggregation and geographical diversification.

The GHDL model presented in this chapter makes an important contribution to the lit-

erature by integrating geographic hierarchical structures with advanced deep learning tech-

niques. This approach not only enhances the accuracy of flood risk predictions but also

facilitates the development of dynamic insurance products. By providing a robust predictive

model, the GHDL framework offers significant theoretical and practical implications, par-

ticularly in improving risk assessment and insurance pricing strategies in the context of a

changing climate.

The rest of the chapter proceeds as follows. Section 3.2 introduces the GHDL model

proposed in this chapter. Section 3.3 illustrates the prediction performance of the GHDL

model in empirical flood risk modeling. Section 3.4 applies the prediction model to price

NFIP policies. Section 3.5 addresses the interpretability of deep learning models. Section 3.6

concludes.

3.2 A Geo-Hierarchical Deep Learning Model

Flood risk forecast models are the foundation of flood insurance pricing. In the U.S.,

daily river flow has emerged as an important and promising indicator for flood risk, and

accurate predictions can provide critical information for early warning systems for flood risk

(Quinn et al., 2019). Therefore, we utilize daily river flow measurements in our analysis. In

particular, we propose a Geo-Hierarchical Deep Learning (GHDL) framework designed for

flood insurance pricing through predicting river flow. This structure combines hydraulic and

meteorological data, organizing it hierarchically based on geographical locations to enhance

predictive accuracy.

Let Qit represent the daily river flow at gauging site i = 1, . . . , I at time t = 1, . . . , T . Qit

quantifies the volume of water passing through location i in a river per unit of time.2 It is well
2Qit is also known as water discharge, and is measured in cubic feet per second (ft3/s) according to the

United States Geological Survey (USGS) historical land water dataset.
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documented in the literature that water flow tends to be non-stationary and exhibits spatial

and temporal dependencies, often correlating with hydraulic and meteorological information

(Boudreault et al., 2019). Our goal is to forecast the river flow in period t, Qit, based on

information from previous time periods up to t− 1. More specifically,

Q̂it = E [Qit|Qt−1,Wt−1] = f (Qt−1,Wt−1) , (3.1)

where Qt−1 = {Qit : i = 1, . . . , I, t = t − 1, . . . , t − l} and Wt−1 = {Wit : i = 1, . . . , I, t =

t − 1, . . . , t − l} comprise the river flow and weather information sets for all gauges from

t− l to t− 1, respectively. We denote the mean estimation of the constructed deep learning

model as f (·).

3.2.1 Model Architecture

Inland flood risks within a specified region are generally categorized into two types: fluvial

and pluvial floods. Fluvial floods are primarily influenced by river flow dynamics upstream,

while pluvial floods result from intense rainfall. The simultaneous occurrence of both types

can significantly amplify the impacts of each (Chen et al., 2010). Our study aims to explore

the relationship between inland flood risks and the climatic conditions that contribute to

both fluvial and pluvial floods concurrently.

To achieve this, we propose a Geo-Hierarchical Deep Learning (GHDL) structure that

employs a dual-system methodology. Figure 3.2 displays the information integration process

of the proposed GHDL model. Precipitation data, relevant to pluvial flood analysis, are

processed using a Convolutional Neural Network (CNN) framework. Conversely, river flow

data, crucial for fluvial flood analysis, are processed using a Wavelet Neural Network (WNN)

system. This bifurcated approach allows for a detailed understanding of the distinct mecha-

nisms driving each type of flood. This locally processed information is subsequently merged

with data integrated from upstream cities, creating a comprehensive information set for local

flood risk forecasting. This integrated dataset is not only utilized for local assessments but

is also forwarded to downstream cities.
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Figure 3.2. Information integration process of GHDL structure

This figure illustrates the information integration process of GHDL structure. For a given city k, the
meteorological data (e.g., precipitation) are processed by a CNN system, while the hydraulic data (river
flow) are processed by a WNN system. The processed meteorological and hydraulic data are then combined
with the integrated information obtained from the upstream cities. The resulting data are fed into a NN
system to generate the integrated output for City k.

The geographical hierarchy of cities (or locations) within a river basin is determined by

their connectivity along the river channel. As an illustrative example, Figure 3.3 demon-

strates the geographical hierarchy among Kansas City, Topeka City, and Bean Lake Reser-

voir. Kansas City is situated at the confluence of the Kansas River and the Missouri River,

indicating that its flood risk is influenced by the meteorological and hydraulic conditions

upstream of both rivers.

To forecast flood risk in this cluster, our GHDL structure encodes the geographical con-

nectivity of the three cities or locations into the model’s architecture, as illustrated in Fig-

ure 3.4. More specifically, the integrated data from Bean Lake Reservoir and Topeka City

are fed forward to combine with local information from Kansas City. Concurrently, the ob-

served ground truth at Kansas City is utilized in a feedback mechanism to refine the training

of flood prediction submodels in upstream cities or locations, thereby forming an integrated

information set for Kansas City. The model is trained through global optimization, using

observed flood risks at all cities or locations as ground truth. This model offers three im-

mediate advantages. First, the incorporation of connectivity into the model enhances its

interpretability. By utilizing upstream information for predictions, we gain a clearer un-

derstanding of how the model formulates its forecasts. Second, the encoded connectivity
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Figure 3.3. Geographic connectivity around Kansas city

This figure illustrates the hierarchical geographical locations between Kansas City, Topeka City (located on
Kansas River), and Bean Lake Reservoir (Located on Mississippi River).

streamlines the optimization process. It narrows the search space for the optimization al-

gorithm, leading to faster convergence times and making the model more efficient. Third,

the integration of connectivity acts as a constraint, simplifying the model, which otherwise

might be overly complex due to a large set of parameters. Hence, this approach effectively

reduces the risk of overfitting in such an intricate model.

3.2.2 Convolutional Neuron Network Model

CNNs are a specialized type of deep learning neural network widely utilized in image

recognition and computer vision tasks. We use CNNs to handle the pluvial segment of

our deep learning framework, as they can process image precipitation data. Compared to

aggregating precipitation at a certain level, image precipitation data provides high spatial

resolution, capturing detailed variations in precipitation patterns across a geographical area.

Due to local landscape variation, heavy rainfall at some locations can cause higher flood

risks than others. Such patterns may be obscured in aggregated precipitation data but can

be captured by image precipitation data.
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Figure 3.4. The GHDL structure for Kansas city

This figure demonstrate how the the geographic connectivities between Kansas City, Topeka City and bean
Lake Reservoir will be coded into the GHDL structure.

The architecture and capabilities of CNNs have been profoundly influenced by several

key developments in the field. The foundational paper by LeCun et al., introducing the

LeNet-5 model, set the stage for the use of CNNs in document recognition. Building on this

groundwork, Krizhevsky et al. in 2012 introduced AlexNet, a deeper CNN architecture that

significantly advanced image classification on the ImageNet dataset. This breakthrough

highlighted the substantial capabilities of deep learning in computer vision. Subsequent

enhancements in CNN design have further refined the model (see, e.g., Simonyan and Zis-

serman, 2014; Szegedy et al., 2015; Ronneberger et al., 2015; He et al., 2016; Redmon et al.,

2016, among others).

CNNs offer several advantages: (1) Local connections: Instead of each neuron in a layer

being connected to all neurons in the previous layer, it is connected to only a small num-

ber of neurons. This reduces the number of parameters and speeds up convergence. (2)

Weight sharing: A group of connections can share the same weights, reducing the number of

parameters even further. (3) Down-sampling: The pooling layer uses the principle of local

correlation to down-sample an image, reducing the amount of data while retaining useful

information (Li et al., 2022).

A typical CNN system comprises four main components. The “convolution” process is
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Figure 3.5. Illustration of padding, stride, convolution, and pooling procedure

This figure demonstrate the procedure of a 2-dimensional CNN system. Here, we take the padding = 1,
stride = 2, convolutional kernel size = 3, and max pooling = 2. In the last step, the convolution output is
vectorized and ready to be utilized in the following layers.

crucial for feature extraction, yielding “feature maps” as the output. To mitigate information

loss at the borders during convolution with a specific kernel size, “padding” is introduced.

Padding adds zero values around the input, indirectly adjusting its size. The “stride” pa-

rameter controls the convolution density, where a larger stride results in less dense coverage.

Post-convolution, these feature maps may contain an abundance of features, potentially

leading to overfitting. “Pooling” serves to reduce this redundancy by condensing the feature

maps. The complete workflow of a 2-dimensional CNN system is depicted in Figure 3.5.

3.2.3 Wavelet Neuron Network Model

While CNNs have found widespread application in insurance and actuarial science due to

their proficiency in handling structured data, Wavelet Neural Networks (WNNs) offer unique

advantages for flood risk management. This section provides a detailed discussion on the

advantages of WNNs and explains the rationale for employing them to analyze the fluvial

component within our proposed GHDL framework. We begin with an introduction to the

Discrete Wavelet Transform (DWT), which forms the foundation of the WNN approach.

The DWT is a linear operation that decomposes a signal in the space of square-integrable

functions over the real numbers, L2(R), into a series of segments, facilitating a more efficient

and accurate representation of signals. Here, R represents the set of real numbers. In the
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context of DWT, wavelets are defined as families of functions hab,

hab(x) = |a|−1/2h

(
t− b

a

)
, a, b ∈ R, a ̸= 0, (3.2)

generated from a single base function h through the processes of dilation and translation

(Daubechies, 1988). This method allows for the analysis of various signal components at

different scales, making DWT a powerful tool in signal processing.

Select a function ϕ from L2(R) such that its family of translations, denoted as {ϕ(x −

k), k ∈ Z}) , forms an orthonormal set. Here, Z represents the set of whole numbers. The

wavelet family associated with ϕ is defined as follows:

ϕjk = 2j/2ϕ
(
2jt− k

)
, j, k ∈ Z, (3.3)

It is evident that ϕjk can be reformulated to match the format of Equation (3.2) by setting

a = 2−j and b = 2jk. Utilizing ϕjk as base functions, we can construct a series of linear

spaces {Vj ⊂ L2(R), j ∈ Z}, where

Vj =
{∑

k

Akϕjk(x) :
∑

k

|Ak|2 < ∞
}
, j ∈ Z.

Assuming that ϕ is selected such that the spaces are nested,

Vj ⊂ Vj+1, j ∈ Z, (3.4)

and that ⋃
j∈Z

Vj is dense in L2(R), (3.5)

we then define the complementary set of Vj relative to Vj+1, creating another sequence of

linear spaces:

Wj = Vj+1 − Vj. (3.6)

There exist a function ψ, whose family of translations is orthonormal. The wavelet space of
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ψ, expressed as

ψjk = 2j/2ψ
(
2jt− k

)
, j, k ∈ Z, (3.7)

linearly spans the sequence of spaces {Wj ⊂ L2(R), j ∈ Z}, where

Wj =
{∑

k

Dkψjk(x) :
∑

k

|Dk|2 < ∞
}
, j ∈ Z.

If a function ϕ is chosen in accordance with the conditions specified in Equations (3.4)

and (3.5), any function g ∈ L2(R) can be uniquely represented as a convergent series within

L2(R), with respect to ϕ and ψ (see Härdle et al., 1998, for details of proofs and the method-

ology for deriving ψ once ϕ is selecte.):

g(x) =
∑

k

Akϕ0k(x) +
∞∑

j=0

∑
k

Djk · ψjk(x). (3.8)

This relation is known as the discrete wavelet transform (DWT) of g. The selected function

ϕ is called scale wavelet, and the derivation of ψ is called mother wavelet.

The expansion in Equation (3.8) exhibits the property of localization in both time and

frequency domains. The summation over k corresponds to localization in time (shifts of

functions ϕj0(x) and ψjk(x)). Conversely, summation over j corresponds to localization in

frequency. As j increases, the associated frequency of ψjk(x) becomes higher, allowing for

the analysis of finer details in the frequency domain.

Given this nature of representation, the coefficients Djk are referred to as “detail coef-

ficients.” These coefficients capture the high-frequency information at each level of the de-

composition, pinpointing the more nuanced aspects of the signal. Conversely, the coefficients

Ak, known as “approximation coefficients,” represent the remaining signal information that

is not captured by the detail coefficients. They essentially provide a smoothed or averaged

version of the signal, reflecting its broader trends.

The time and frequency localization properties of the DWT endow it with several desired

characteristics, making it a powerful tool for analyzing river flow data in flood risk manage-

ment. First, river flow data is typically non-stationary, influenced by systemic factors such
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(a) Discrete wavelet transform (b) Fast Fourier transform

Figure 3.6. Coverage of the time-frequency plane of the wavelet and Fourier based transforms

as climate change and seasonality, as well as occasional events like heavy rainfall. The ability

of DWT to localize both time and frequency allows for a more precise analysis of transient

features and anomalies in the signal (Daubechies, 1988). Second, DWT facilitates multi-

resolution analysis of river flow data. This enables the decomposition of data into different

scales, effectively capturing long-term trends, such as seasonal variations, and short-term

events, such as flash floods, within a unified framework. Third, river flow data can often

be noisy, affected by factors like sensor inaccuracies or environmental interference. DWTs

are particularly useful in denoising this data, thereby enhancing the quality of information

crucial for making informed predictions and decisions. Owing to these capabilities, DWTs

have been extensively applied in flood risk management to transform and analyze various

data types (see Shafaei and Kisi, 2016; Seo et al., 2015; Kumar et al., 2015, among others).

In practical applications, when dealing with a discrete signal g[n] and a scaling function

ϕ : R → R, the wavelet coefficients Ak and Djk are computed by progressively projecting

the signal onto the scaling and mother wavelet functions. This projection starts from the

highest selected frequency and proceeds to the lowest selected frequency (see Figure 3.7 for
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Figure 3.7. A 3-level discrete wavelet transform system

an example):

Ak =
∑

n

g[n]ϕ0k(n), (3.9)

Djk =
∑

n

g[n]ψjk(n). (3.10)

Notably, filtering a low-frequency signal using a higher-frequency filter does not result in

the loss of information. Consequently, the original signal g[n] can always be reconstructed

accurately using the acquired wavelet coefficients.

WNNs synergize the DWT with neural networks (NNs) by inputting decomposed wavelet

coefficients into a fully connected neural network architecture. Recognized as one of the

state-of-the-art machine learning methodologies in flood risk management (Mosavi et al.,

2018), WNNs have been shown to enhance model accuracy, particularly in comparison with

traditional Fourier transform methods (Shafaei and Kisi, 2016).

3.3 Performance in Flood Risk Prediction

In this section, we will assess the prediction performance of the proposed GHDL model.

Meteorological and hydraulic information will be fed into the GHDL model for forecasting

flood risk. The output will then be utilized to inform insurance pricing. This “two-step”
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procedure is more advantageous, for two reasons. First, flood and weather have better

data availability, compared to policy and claim data. Notably, while flood risk and related

data have been globally accessible since the early or mid-20th century, thanks largely to

satellite technology, policy and claim data for specific regions may only span a few years.

Second, meteorological and hydraulic data, which are often publicly available, have better

transparency. In contrast, the insurance loss data are typically available to insurers only.

This improvement in flood risk assessment, in turn, refines flood insurance pricing by enabling

the model to more accurately trace the underlying flood risks.

To empirically test the proposed GHDL structure, we selected a cluster of six cities

located in the Mississippi River basin. This basin drains an area of about 3.2 million km2 and

encompasses 41% of the 48 contiguous states of the U.S. The chosen cities are Indianapolis,

Nashville, Memphis, Louisville, Cincinnati, and St. Louis, all with a significant history

of inland flooding and a high population exposed to flood risks. Our area of interest is

displayed in Figure 3.8, and the connectivity of the six selected cities in the GHDL models is

as displayed in Figure 3.9. We have excluded the coastal city of New Orleans from our study

due to the sparse distribution of gauging stations in the lower Mississippi River, a limitation

also noted by Quinn et al. (2019). Additionally, we have omitted other major cities that are

far from our area of interest or have limited records of historical flood loss, such as Chicago,

Des Moines, and Oklahoma City.

3.3.1 Data

River Flow Data

We obtained daily river flow data from 1990 to 2020 from the United States Geological

Survey (USGS).3 The selection of gauging stations for each city, as detailed in Table 3.1, is

based on the criteria of data availability and proximity to the city’s centroid. To enhance

the interpretability of extreme values in our analysis, we apply a logarithmic transformation

to the river flow data. Subsequently, this logarithmically transformed data is normalized to
3The data can be accessed at https://waterdata.usgs.gov/nwis/sw.
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Figure 3.8. The cluster of six cities the Mississippi river basin

This figure plots the area of interest of this paper. A cluster of six cities located within the Mississippi River
basin is selected. The gradient color in the map represents the historical flood losses for each county in the
area.

fall within a range of 0 to 1 for each station, to facilitate model training. The distribution

of the transformed river flow data, segregated by station, is shown in Figure 3.10. Given the

length of river within the area of interest, we feed the previous seven days of river flow data

into the fluvial segments of the GHDL structure.

TABLE 3.1
Selected Cities and their Corresponding Counties and Stations

This table presents the information of six selected cities in the area of interest, including the population of
the city in year 2021 rounded to one thousand, the corresponding county names and Federal Information
Processing Standard (FIPS), and the corresponding gauging station names and id.

City Population County Name FIPS Station ID Station Name

Indianapolis 869,000 Marion, IN 18097 03352500 Fall Creek at Millersville
Nashville 693,000 Davidson, TN 47037 03434500 Harpeth River Near Kingston Springs
Memphis 651,000 Shelby, TN 47157 07031650 Wolf River at Germantown
Louisville 618,000 Jefferson, KY 21111 03302000 Pond Creek Near Louisville
Cincinnati 323,000 Hamilton, OH 39061 03245500 Little Miami River at Milford
St. Louis 305,000 St. Louis, MO 29510 05587000 Macoupin Creek Near Kane
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Figure 3.9. The GHDL structure

This figure displays the connectivity of the six selected cities in the area of interest in the GHDL models.

Precipitation Data

As outlined in Section 3.2.1, our proposed GHDL framework utilizes image precipitation

data within its pluvial segments to evaluate flood risks associated with heavy rainfall.

The daily image precipitation data for the period 1990 to 2020 are sourced from the

PRISM Climate Group, organized in 4 km ×4 km grid formats.4 For each city under study,

we generate 100 km radius circular buffers around the city centroids to extract precipitation

data of a consistent size for input into the CNNs. This radius is arbitrarily selected to be large

enough to cover each city and a significant portion of the surrounding area. Consequently,

for each city, we obtain a daily time series of precipitation image data with a resolution of 50

× 50 pixels (50 = 100 × 2/4), which is then fed into the CNNs. Figure 3.11 displays samples

of daily precipitation rasters for Indianapolis covering the period from December 28 to 31,

2020. In these rasters, lighter colors indicate higher precipitation levels, while darker colors

indicate lower precipitation levels, bounded at zero.
4The PRISM image precipitation data is accessible at https://prism.oregonstate.edu/.
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(a) Cincinnati (b) Indianapolis

(c) Louisville (d) Memphis

(e) Nashville (f) St Louis

Figure 3.10. The distribution of the transformed river flow data by station
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(a) December 28, 2020 (b) December 29, 2020

(c) December 30, 2020 (d) December 31, 2020

Figure 3.11. The precipitation raster of Indianapolis from December 28 to December 31 2020

3.3.2 Performance Metrics

To measure the prediction performance of the proposed GHDL model, we consider two

accuracy metrics. The first one is the relative root mean square error (RRMSE) of flood

risk. We define flood risk using extreme flood events, specifically considering river flow levels

that exceed their Value at Risk (VaR) at the α ∈ (0, 1) level.

More specifically, let FQi
denotes the distribution of Qit, then V aRα(Qi) = F−1

Qi
(1 − α).

For each level of exceedance probability α = {10%, 5%, 1%, 0.5%, 0.25%}, we define the
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observed flood indicator, 1Qit
(α),

1Qit
(α) =


1 if Qit ≥ V aRα(Qi),

0 otherwise.
(3.11)

Similarly, the predicted flood indicator 1
Q̂it

(α) is defined as:

1
Q̂it

(α) =


1 if Q̂it ≥ V aRα(Qi),

0 otherwise.
(3.12)

The RRMSE for exceedance probability α tracks the relative prediction error between the

observed flood risk Qit and the predicted flood risk Q̂it, conditional on the occurrence of a

flood event as indicated by 1Qit
(α) = 1. That is:

RMSE(α) =

√√√√√ 1
α · IT

∑
i,t

(
Qit − Q̂it

Qit

)2

1Qit
(α). (3.13)

The second metric employed to assess the predictive performance of our GHDL model

is recall, a statistical measure commonly used in machine learning and information retrieval

to evaluate the accuracy of a model. Recall represents the fraction of correctly predicted

positive instances out of all actual positive instances. In the context of flood risk prediction,

it measures the fraction of flood events that were correctly identified, where both observed

and predicted indicators agree that a flood event occurred (1Qit
(α) = 1

Q̂it
(α) = 1):

Recall = True Positives
True Positives + False Negatives . (3.14)

In practical terms, recall is a critical metric for insurers, as it reflects the model’s ability to

accurately identify potential loss occurrences due to flood events.

We compute the performance metrics at the city level and then obtain a population-

weighted average to aggregate them. This approach ensures a balanced representation that

reflects both large and small populations within the studied areas.
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3.3.3 Model Selection for Flood Risk Prediction

As mentioned before, hydraulic data and meteorological data typically have a longer

sample period than policy and claim data, which is commonly the case for insurers in practice.

We first determine the optimal structure of the GHDL model that provides the most accurate

prediction for flood risk using historical hydraulic and meteorological information, and then

test its pricing performance.

We split the data into a 70% training set and a 30% test set, preserving the temporal order

of our data. We train the GHDL models on the training set for each set of model structures

and evaluate the prediction accuracy of each model using the test set. To improve the speed

of convergence, we adopt a momentum method. Additionally, to prevent overfitting, we add

the L2 norm of the parameters to the loss function to regularize the training.

We compare models with different choices of hyperparameters built within the GHDL

structure. Table 3.2 showcases the results from these models, each with distinct layer struc-

tures. The columns in Table 3.2 detail different WNN layer structures for the fluvial segments

and the rows represent various CNN layer structures for the pluvial segments, where “i− j”

indicates a two-hidden-layer system with i and j neurons in the first and second hidden

layers, respectively. For CNN layers, we standardize the convolutional kernel size at 3 and

the stride and padding at 1 across all models, in line with the input size of the image pre-

cipitation data.5 Furthermore, max pooling with a kernel size and padding of 2 is employed

in all models to minimize redundancy.

It is notable that the GHDL structure consisting of two hidden layers in the fluvial seg-

ment and two hidden layers in the pluvial segment achieves the highest prediction accuracy,

particularly in the most extreme scenarios tested, namely when α is 0.5% or 0.25%. There-

fore, we consider this structure as the baseline and analyze its performance later in flood

risk forecasting and pricing in the following sections.
5Considering our 50-by-50 image precipitation data matrices, this setup maintains their spatial resolution,

ensuring detailed feature capture without downsizing. This configuration adheres to the “CNN Output Size
Formula.”
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TABLE 3.2
Geo-Hierarchical Deep Learning Model Selection for Flood Risk Forecasting

This table presents the results obtained from deep learning models with different layer structures. The
columns present different WNN layer structures for the fluvial segments of the models and the rows represent
different CNN layer structures for the pluvial segments of the models, where “i − j” indicates a two-hidden-
layer with i and j neurons in the first and second hidden layers, respectively. For each model, we calculate
training and test RRMSE and Recall for exceedance probabilities α = {10%, 5%, 1%, 0.5%, 0.25%}.

Fluvial Segments

1 hidden layer 2 hidden layer
64 128-64

Pluvial Exceedance RMSE Recall RMSE Recall

Segments Probability Training Test Training Test Training Test Training Test

10.00% 18.65% 23.65% 77.87% 75.18% 14.14% 16.66% 81.08% 78.55%
2 hidden layers 5.00% 16.81% 21.81% 72.89% 69.78% 9.94% 12.66% 86.72% 83.26%

16-32 1.00% 17.51% 22.51% 70.02% 66.23% 7.05% 12.53% 90.45% 82.76%
0.50% 17.14% 22.14% 68.35% 64.99% 5.42% 13.26% 92.28% 79.54%
0.25% 22.53% 27.53% 67.27% 60.84% 6.05% 11.03% 94.07% 86.94%

10.00% 21.67% 26.67% 78.47% 75.54% 26.09% 31.09% 85.27% 82.03%
3 hidden layers 5.00% 19.50% 24.50% 72.62% 68.27% 24.43% 29.43% 82.33% 78.50%

16-32-64 1.00% 18.46% 23.46% 65.99% 61.22% 21.15% 26.15% 84.51% 78.84%
0.50% 18.89% 23.89% 67.28% 62.13% 19.97% 24.97% 83.72% 79.22%
0.25% 23.75% 28.75% 66.96% 59.09% 24.16% 29.16% 86.25% 79.17%

10.00% 27.97% 32.97% 76.30% 72.60% 26.47% 31.47% 85.37% 81.63%
4 hidden layers 5.00% 23.70% 28.70% 70.21% 65.46% 21.51% 26.51% 81.88% 77.41%
16-32-64-128 1.00% 19.10% 24.10% 66.21% 61.20% 16.81% 21.81% 80.32% 74.33%

0.50% 16.19% 21.19% 64.58% 60.07% 15.34% 20.34% 78.55% 72.51%
0.25% 21.35% 26.35% 65.46% 58.11% 21.26% 26.26% 80.64% 73.32%
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3.3.4 GHDL Performance in Flood Risk Forecasting

To evaluate the performance in flood risk forecasting of the proposed GHDL model, we

employ two benchmark models that utilize the same pluvial and fluvial segments to integrate

local hydraulic and meteorological data, as displayed in Figure 3.12.

• The Spatial-Flat Deep Learning Model (SFDL Model): This model leverages the same

spatial and temporal data as our proposed GHDL model. However, it differs in its

approach to spatial data integration. The SFDL Model does not account for the

geographical connectivity among cities. Instead, it relies on a non-hierarchical, flat

concatenation of data vectors from all cities for river flow predictions, disregarding the

geographical relationships between these urban areas.

• The Local-Context Deep Learning Model (LCDL Model): Contrary to the SFDL and

GHDL models, the LCDL Model exclusively utilizes locally integrated information for

training. This model focuses on processing data within a constrained local context,

omitting broader spatial interconnections.

(a) Spatial-Flat Deep Learning Model (b) Local-Context Deep Learning Model

Figure 3.12. The model architecture of two benchmark structures on the area of interest

In addition, we also include a WNN-based machine learning model as an additional bench-

mark. This model, trained exclusively on the river flow dataset, is included due to its

recognition as a state-of-the-art approach in current literature.
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The geological hierarchy naturally divides the cities into two categories: those with cities

upstream (descendant cities) and those without (leaf cities). For simplicity, we will use these

terms going forward. As illustrated in Figure 3.9, there are two descendant cities (Louisville

and Memphis) and four leaf cities (Indianapolis, Cincinnati, Nashville, and St. Louis) in our

area of interest. Our GHDL models allow descendant cities to receive direct information from

their upstream cities; hence, we expect to see greater improvements in flood risk forecasting

for descendant cities than for leaf cities.

The performance of the GHDL structure in flood risk forecasting is presented in Table 3.3.

Panels A and B present the results for descendant cities and leaf cities, respectively. As

expected, the GHDL model brings more significant improvements to the descendant cities in

flood risk forecasting than its benchmarks, compare to leaf cities. This distinction supports

the superiority of our model, as it demonstrates that the hierarchical structure effectively

leverages more informative data pathways.

Panel A demonstrates that the GHDL model outperforms its benchmarks in the descen-

dant cities and most notably in the most extreme test cases. Specifically, the GHDL model

achieves an RRMSE of 8.74% on the testing set when focusing on the most extreme 0.25%

flood events. This performance surpasses that of the benchmark models, which exhibit

RRMSE values ranging approximately between 21% and 25%. This trend of improvement

is also evident in the recall metric, with GHDL model attaining a high recall rate of 91.26%

in the test sample, while benchmarks only manage recall rates between 75% and 79%.

It is also noteworthy that in moderate risk scenarios, the SFDL model shows comparable

capabilities to the GHDL model. For instance, with an exceedance probability of 10%, the

SFDL model’s performance (17.37% RRMSE and 82.63% recall) closely approaches that of

the GHDL model (14.17% RRMSE and 85.83% recall). However, this parity does not extend

to more extreme risk scenarios, where the SFDL model falls behind.

Panel B reveals that both the GHDL and LCDL models outperform the WNN and SFDL

models in leaf cities. Notably, the LCDL model emerges as the top performer in the test

sets for leaf cities, with the GHDL model ranking second (difference ranges from 1.8% to

4.4% for RRMSE). This result is not surprising given the relatively simpler task assigned to
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TABLE 3.3
Performance in Flood Risk Forecasting

This table details the performance of flood risk factors generated by various deep learning frameworks,
as evaluated in both training and testing samples. Performance metrics include the Relative Root Mean
Squared Error (RRMSE) and Recall. Panels A and B separately report these performance measures for
descendant cities and leaf cities, respectively.

Panel A: Cities with Upstream Nodes (Descendant Cities)

Measure Exceedance WNN Model SFDL Model LCDL Model GHDL Model

Probability Training Test Training Test Training Test Training Test

10.00% 37.26% 38.12% 6.57% 17.37% 22.99% 25.50% 10.04% 14.17%
5.00% 31.51% 30.46% 7.41% 19.07% 19.50% 21.45% 8.42% 10.52%

RMSE 1.00% 22.93% 28.23% 11.96% 22.40% 16.45% 22.10% 7.03% 11.66%
0.50% 13.69% 29.52% 10.09% 29.91% 9.69% 25.39% 1.46% 12.27%
0.25% 19.41% 25.17% 14.17% 25.22% 18.51% 21.25% 4.83% 8.74%

10.00% 62.74% 61.88% 93.43% 82.63% 77.01% 74.50% 89.96% 85.83%
5.00% 68.49% 69.54% 92.59% 80.93% 80.50% 78.55% 91.58% 89.48%

Recall 1.00% 77.07% 71.77% 88.04% 77.60% 83.55% 77.90% 92.97% 88.34%
0.50% 86.31% 70.48% 89.91% 70.09% 90.31% 74.61% 98.54% 87.73%
0.25% 80.59% 74.83% 85.83% 74.78% 81.49% 78.75% 95.17% 91.26%

Panel B: Cities without Upstream Nodes (Leaf Cities)

Measure Exceedance WNN Model SFDL Model LCDL Model GHDL Model

Probability Training Testing Training Testing Training Testing Training Testing

10.00% 20.92% 22.52% 12.69% 27.89% 15.85% 16.57% 16.77% 18.26%
5.00% 14.85% 14.92% 13.12% 27.70% 9.90% 12.30% 10.91% 14.04%

RMSE 1.00% 8.96% 12.65% 11.98% 34.95% 7.38% 10.30% 7.07% 13.09%
0.50% 10.83% 13.33% 15.96% 35.01% 6.89% 12.03% 7.96% 13.89%
0.25% 9.97% 18.95% 14.78% 36.69% 6.71% 8.12% 6.83% 12.50%

10.00% 79.08% 77.48% 87.31% 72.11% 84.15% 83.43% 83.23% 81.74%
5.00% 85.15% 85.08% 86.88% 72.30% 90.10% 87.70% 89.09% 85.96%

Recall 1.00% 91.04% 87.35% 88.02% 65.05% 92.62% 89.70% 92.93% 86.91%
0.50% 89.17% 86.67% 84.04% 64.99% 93.11% 87.97% 92.04% 86.11%
0.25% 90.03% 81.05% 85.22% 63.31% 93.29% 91.88% 93.17% 87.50%

the LCDL model, which is dedicated to processing local precipitation and river flow data for

a leaf city, tailored to make predictions exclusively for its designated location. In contrast,

each corresponding submodel in the GHDL model must not only predict outcomes for the

leaf city itself but also account for the downstream impact, thereby carrying a dual predictive

responsibility. Consequently, with equivalent model complexity, the LCDL model inherently

holds an advantage in leaf city predictions.

In practical applications, insurers could leverage river flow and precipitation data from

upstream regions of these leaf cities, transforming them into descendant cities to enhance

prediction accuracy. Moreover, simpler models tend to converge more effectively in scenar-

ios where flood risk factors are less complex. Despite incorporating spatial information,
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the SFDL model underperforms, even compared to the WNN benchmark. This could be

attributed to the complexity of the model, potentially leading the optimization algorithm

astray. A noticeable discrepancy between training and test results in the SFDL model fur-

ther signifies this issue, indicating that the SFDL model may suffer from an overfitting.6

This highlights the notion that indiscriminately feeding extensive climate data without ap-

propriate constraints may not yield optimal results in flood risk management contexts.

In summary, our forecasting results show that the GHDL model is more competitive

than its benchmarks in flood risk forecasting for all exceedance probabilities. The improve-

ment is most significant in descendant cities, and the model partially addresses the issue of

performance degradation that commonly associated with increasing model complexity.

3.4 Performance in Flood Insurance Pricing

In this section, we assess the pricing performance of the GHDL model using the policy

and claim datasets from National Flood Insurance Program (NFIP).

3.4.1 National Flood Insurance Program

The NFIP was established by the U.S. government to provide insurance coverage for losses

caused by flooding. Its main objective is to offer financial assistance to property owners who

experience flood damage, which is typically not covered by standard homeowner’s insurance

policies in the U.S. As of 2020, the program covers 3,053 out of the 3,143 counties in the U.S.

The Federal Emergency Management Agency (FEMA) maintains the NFIP policy and claim

datasets.7 See Kousky and Michel-Kerjan (2017) and Michel-Kerjan and Kousky (2010) for

detailed examinations of the NFIP’s claim and policy dataset.

To obtain the NFIP policy and claim datasets, we source the data from OpenFEMA

and filter it by the Federal Information Processing Standards (FIPS) number of the selected
6We have repeated the training for the SFDL model for several times and confirmed the discrepancy is

systematic.
7The NFIP policy and claim dataset is accessible at https://www.fema.gov/about/openfema/

data-sets.
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TABLE 3.4
Descriptive Statistics of the NFIP

This table provides descriptive statistics for the NFIP policy and claim dataset from 2009 to 2020. Panel A
details the policy dataset for each city, including the total number of effective policies (“Policies in-force”),
the average coverage amount per policy (“Coverage per policy”), and the average premium collected per
policy (“Premium per policy”). It also calculates “Flood-prone policies”, representing the proportion of
policies in the Special Flood Hazard Area (SFHA) relative to total policies. NFIP defines SFHA as an
area with a 1-percent or greater annual chance of flooding. Panel B summarizes the claim dataset by city,
showing the total number of claims (“Claims”) and the average payment amount per claim (“Amount paid
per policy”).

Panel A: Policy Dataset

Cincinnati Indianapolis Louisville Memphis Nashville St. Louis

Policies inforce (k) 25.3 68.5 69.1 51.7 85.8 4.8
Coverage per policy ($k) 210 187 170 271 234 296
Premium per policy ($) 1227 1007 852 566 777 1589
Flood prone policies (%) 76.6 84.1 81.6 32.3 54.9 57.7

Panel B: Claim Dataset

Cincinnati Indianapolis Louisville Memphis Nashville St. Louis

Claims (k) 1.9 2.2 5.7 1.1 4.5 0.7
Coverage per policy ($k) 111 105 115 139 169 88
Amount paid per policy ($k) 15.0 7.6 14.7 21.6 37.4 11.8
Flood prone policies (%) 92.6 92.2 95.0 70.7 83.4 92.3

cities’ respective counties. The policy dataset consists of 305,121 policy-level observations

from 2009 to 2020, including information on policy effective and termination dates, premi-

ums, coverage, deductibles, first policy dates, and house characteristics. The claim dataset

comprises 16,001 transaction-level observations from 2009 to 2020. We focus on the poli-

cies that cover residential properties and match the policy and claim data by comparing

the policy features and building characteristics of the two datasets. See Table 3.4 for sum-

mary statistics of the policy and claim data. For training and testing data segmentation, we

designate January 1, 2017, as the dividing date within our 2009-2020 policy-claim dataset,

resulting in a roughly 70%-30% training-test split that preserves temporal order.

3.4.2 Flood Insurance Pricing

Let Ykt be a random variable representing the total flood loss associated with the kth

insured building located near gauging site i during the time period [t− 1, t] (i = 1, . . . , I; k =
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1, . . . , K, t = 1, . . . T )8. In practice, we estimate Ykt by multiplying its corresponding damage

ratio Ukt ∈ [0, 1], with the insured building value θk that is, Ykt = θk ·Ukt. Given a deductible

dk and a limit lk the total claim of a flood insurance policy Y L
kt is defined as below:

Y L
kt =



0 if Ykt < dk,

Ykt − dk if dk ≤ Ykt < lk,

uk − dk if Ykt ≥ lk.

(3.15)

To simplify the analysis, we take dk = 0, lk = θk, that is Y L
kt = Ykt. Conceptually, for a

specific insured building k, there should exist a monotonically increasing damage function

hk : Qit → Ukt that maps the river flow observation {Qit = qit} to the corresponding loss

event {Ukt = ukt}. Let fQit
represent the probability density function of Qit. The pure

premium, pkt, can be obtained by applying this damage function to the expected value of

the river flow:

pkt = E
[
Y L

kt

]
=
∫ ∞

0
uktθk · fQit

(qit) dqit =
∫ ∞

0
hk (qit) θk · fQit

(qit) dqit

=θk E [hk (Qit)] . (3.16)

In this study, we utilize a set of generalized linear models (GLM) to establish the re-

lationship between river flow, building characteristics, and the loss ratio. We denote the

claim frequencies (i.e., number of claims incurred) as Nkt, and the severity (i.e., loss ratio

per claim) as Ukt, then we have

E
[
Y L

kt

]
= θk E [Nkt] E [Ukt] . (3.17)

We create separate GLMs for Nkt and Ukt, utilizing the forecasted expectation of river
8Note that Ykt does not include the indexing of i because the kth insured building corresponds to only

one gauging site in our setting. Thus, indexing flood loss by k is sufficient to represent it.
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flow, Q̂it, provided by the GHDL model, and the individual-level building characteristics,

xk = (xk1, . . . , xkp)′:

νkt = E
[
Nkt|Q̂it,xk

]
= g−1

n

(
λnQ̂it + x′

kβn

)
, (3.18)

µkt = E
[
Ukt|Q̂it,xk

]
= g−1

u

(
λuQ̂it + x′

kβu

)
, (3.19)

where gn and gu are link functions with respect to frequency and severity GLM models,

respectively; λn and λu are their regression coefficients which corresponds to flood risk factor;

and βn and βu are p×1 regression coefficients associated with building characteristics. Here,

(λn, βn) and (λu, βu) are estimated from historical observations. Finally, the net premium

can be calculated as follow:

pkt = θk · νkt · µkt. (3.20)

3.4.3 GLM Model Summary

We test the pricing performance of GHDL generated flood risk factors on one-year term

flood insurance policies, consistent with industry practice, noting that over 99% of policies

in our sample have this term duration. For each year t, we use the optimal GHDL model

structure identified in Section 3.3.3, extending the forecast period to 365 days and utilizing

the prior year’s (t − 1) meteorological and hydraulic data for daily river flow predictions.

These predictions are aggregated on a monthly basis to form 12 risk factors.9 Additionally,

we include city dummy and loss month dummy variables, along with building characteristics,

to refine our pricing model.

Table 3.5 presents the results of the GLMs integrating risk factors obtained from the

GHDL model and benchmarks on the training set. Besides the two benchmark models

(SFDL and LCDL) considered in Subsection 3.3.4, we also compare the pricing results with

a GLM model that overlooks flood risk factors (Non-Flood Risk Factor GLM), to illustrate

how flood risk factors generated by different DL models can improve the pricing. Panel A
9Our evaluation encompasses a range of aggregation methods, including monthly mean, median, and

maximum, as well as the average of the top 10 and top 5 monthly risk factors. Our analysis of various
aggregation methods reveals that the monthly mean yields the most precise pricing.
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details the frequency GLMs, utilizing a log-link function and Poisson distributions for claim

counts. Panel B, on the other hand, describes the severity GLMs, which employs a log-link

function with Gamma distributions for claim amounts. We can see that the GHDL model

is superior to all benchmarks in both frequency and severity GLMs in terms of goodness-

of-fit, indicated by lower values in negative log-likelihood (NLL) and Akaike information

criterion (AIC). Coefficients λ1 to λ12 in GLM models are mostly significant, indicating that

the extracted risk factors from the GHDL models play a critical role in the pricing models.

In Section 3.5.1, we will interpret the pricing model by providing a detailed analysis of the

relative importance of the risk factors in the GLM models.

3.4.4 Net Premium and Solvency Capital Requirement

Figure 3.13 shows the net premium charged under different forecasting models alongside

the actual losses incurred every year. The grey vertical line distinguishes between the in-

sample and out-of-sample years. The light blue bars represent the actual claims paid, dark

blue bars represent the net premium based on the proposed GHDL model, orange and red

bars stand for the net premiums based on the benchmarks of the SFDL and LCDL models,

respectively, and green bars show premiums from a model with no weather information

incorporated. We have a few interesting observations from this figure. First, the GHDL

model consistently provides the most accurate predictions for claims, evident in both in-

sample and out-of-sample data. Second, incorporating spatial and hierarchical structures

significantly enhances flood risk pricing; excluding these structures results in greater model

variance and less consistency. As we can see, although the SFDL and LCDL models perform

competitively in-sample, they exhibit significant prediction variability in out-of-sample years.

Finally, weather information is critical in flood risk pricing. We can see that the net premium

from the model with no weather information performs poorly in both samples.

We report the pricing performance of various deep learning structures on the test sample

in Table 3.6. To mitigate the impact of occasional outliers, we employ a bootstrapping

approach, repeatedly sampling policy and claim pairs from the test sample 10,000 times.

The net premium for each policy is predetermined as of December 31 of the preceding
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TABLE 3.5
General Linear Model Result in Flood Risk Pricing

This table displays the results of generalized linear models in flood risk pricing, focusing on pricing power
of flood risk factors generated by different deep learning models. Panel A shows the regression results for
the frequency GLM, while Panel B addresses the severity GLM. Each panel presents coefficients for model-
generated flood risk factors across months, from January to December (denoted as λ1 to λ12). “***” indicates
a p-value < 0.01, “**” signifies a p-value < 0.05, and “*” denotes a p-value < 0.1.

Panel A: Frequency GLM

Non-Fld Factor GLM SFDL-based GLM LCDL-based GLM GHDL-based GLM

λ1 -10.39*** -4.09*** -1.43**

λ2 5.64*** 5.26*** 9.98***

λ3 0.76 -1.12*** -8.56***

λ4 -3.83*** -0.05 2.67***

λ5 17.39*** 8.32*** 12.16***

λ6 -20.28*** -6.57*** -9.06***

λ7 10.83*** 3.55*** 5.34***

λ8 6.56*** 4.35*** 7.12***

λ9 -8.45*** 4.09*** -7.98***

λ10 -2.45** -11.18*** -7.95***

λ11 -0.48 -4.52*** 0.93
λ12 -2.07*** 6.02*** 1.48**

NLL 20754 18419 18079 17830
AIC 41573 36588 36247 35747
Building characteristics Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes
County fixed effect Yes Yes Yes Yes

Panel B: Severity GLM

Non-Fld Factor GLM SFDL-based GLM LCDL-based GLM GHDL-based GLM

λ1 1.09 -1.63** 2.45***

λ2 -1.73* 0.26 0.35
λ3 0.54 -0.57 -2.18***

λ4 0.31 -0.05 2.09**

λ5 1.94*** 3.01*** 0.94
λ6 -2.82*** -4.22*** -3.67***

λ7 3.80*** 3.63* 3.75**

λ8 -3.07*** 1.27 3.6352
λ9 4.09*** -4.48** -4.12**

λ10 -3.65*** 1.65 -0.70
λ11 0.64 -0.20 -0.12
λ12 0.65 -1.80*** 0.71

NLL -1743 -1796 -1776 -1802
AIC -3427 -3509 -3470 -3522
Building characteristics Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes
County fixed effect Yes Yes Yes Yes
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Figure 3.13. Net premium vs. Loss

This figure plots the total net premium charged under different risk forecasting models and the actual losses
incurred by year.

year. Subsequently, we calculate the aggregate total net premium and total claims for each

calendar year. Panel A of the table presents the average annual total net premium results,

while Panel B details the solvency capital requirements as computed under the Solvency II

framework.10

The proposed GHDL structure leads to a 33.5% reduction in net premium relative to

the pricing model that overlooks flood risk information. The SFDL and LCDL benchmarks

also provide net premium improvements of 16.6% and 18.7%, respectively. Specifically, the

proposed GHDL structure reduced the net premium by USD 7.87 million per annum. The

lower net premium in our model results from the improved accuracy of the proposed GHDL

flood model.

Next, we discuss the implications of our model on capital requirements. Under the Sol-

vency II framework, insurers are required to hold a minimum level, known as the Solvency

Capital Requirement (SCR), to cover their risks with a 99.5% probability over a one-year

period (EIOPA, 2023). To simplify our discussion, we assume that the insurer operates ex-
10The predominant regulatory framework for insurance companies in the U.S. is the Risk-Based Capital

(RBC) rather than Solvency II. However, we opt for the Solvency II framework in our calculations because the
solvency capital requirement (SCR) under this framework is less restricted by company-specific information.
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clusively within this flood insurance business line and has no other operational income. This

assumption aligns the SCR directly with the Basic Solvency Capital Requirement (BSCR)

for this specific insurance program.

BSCR is calculated as the difference between the total net premium charged, and the

Value-at-Risk (VaR) at the 0.5% level (VaR0.5%) on loss. The introduction of the proposed

GHDL model results in a notable decrease in net premiums, which in turn slightly reduces

the VaR on losses—from 0.05 million to -0.23 million. Importantly, the GHDL model reduces

the BSCR by 32.3%, outperforming the benchmarks. For comparison, the SFDL and LCDL

benchmarks provide BSCR improvements of 15.3% and 18.3%, respectively. This reduction

in BSCR signifies a potential decrease in the capital required to be held by insurers, thereby

reducing their capital costs and enhancing financial efficiency. The superior performance of

the GHDL model demonstrates its effectiveness in more accurately predicting flood risks and

optimizing financial resources under regulatory requirements.

TABLE 3.6
Performance in Flood Insurance Pricing

This table compares the out-of-sample pricing performance of various deep learning frameworks. Panel A
presents the improvements in net premium, while Panel B illustrates the enhancements in solvency capital
requirements. We calculate the Basic Solvency Capital Requirement (BSCR) as the difference between
difference between total net premium and the VaR at 0.5% level on loss. These comparisons shed light on
the effectiveness of different deep learning approaches in insurance financial management.

Panel A: Net Premium Results

Non-Flood Risk SFDL-based LCDL-based GHDL-based
Factor GLM GLM GLM GLM

Panel A: Net Premium Results
Net Premium ($m, an.) 23.52 19.61 19.12 15.65
Net Premium Reduced ($m, an.) 3.91 4.40 7.87
Net Premium Improvement (%) 16.62% 18.71% 33.45%

Panel B: Solvency Capital Requirement Results

Non-Flood Risk SFDL-based LCDL-based GHDL-based
Factor GLM GLM GLM GLM

Value-at-Risk 0.5% ($m, an.) 0.05 -0.26 -0.04 -0.23
Expected Shortfall 0.5% ($m, an.) -0.41 -0.58 -0.42 -0.63
BSCR ($m, an.) 23.47 19.87 19.17 15.88
BSCR Reduced ($m, an.) 3.60 4.30 7.59
BSCR Improvement (%, an.) 15.34% 18.34% 32.33%
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3.5 Interpretability of the GHDL Model

Previous sections have demonstrated the superiority of the GHDL model in flood risk

forecasting and flood insurance pricing. It is also important to improve the interpretability

and transparency for deep learning-based models such as GHDL (Chen et al., 2023b; Cong

et al., 2019). In this section, we study the relative importance (see Section 3.5.1) and partial

dependence (see Section 3.5.2) of the risk factors extracted from GHDL model that are used

for pricing in GLM models.

In our interpretability analysis in this section, we separate the annual flood insurance

policy to twelve monthly insurance policies, each priced by the forecasted risk factor of

that month. It is important to note that we use the same flood risk forecasting results

as in Section 3.4. Therefore, the structure of the monthly flood insurance program allows

policyholders to select specific months they wish to cover, which provides flexibility based

on anticipated risk.

To ensure that the forecasted risk factor reflect not just historical averages but also short-

term weather risks, we incorporate a lagged flood risk factor into our GLM models. This

factor considers the average monthly river flow from the previous year for each city, providing

a dynamic adjustment to environment variations.

3.5.1 Relative Importance Analysis

Figure 3.14 shows the top 20 most relatively important factors in the GHDL-based fre-

quency and severity GLM models. The relative importance of a factor is calculated as its

corresponding regression coefficient (λ or βp as in equation 3.4.2) times the correlation co-

efficient between the factor and dependent variable, scaled to 0 and 100. This figure shows

that the GHDL forecasted risk factors significant relative importance than the building char-

acteristics.
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(a) Frequency (b) Severity

Figure 3.14. GHDL foretasted flood risk factor relative importance

This figure displays the top 20 most relatively important factors in the frequency and severity GLM mod-
els. The figure shows that the forecasted risk factors are more important than the building and housing
characteristics.

3.5.2 Partial Dependence Analysis

To further demonstrate the explanatory power of the forecasted risk factors for flood

risk, we compute the partial dependence of the GHDL forecasted risk factor in the fitted

frequency GLM model, as shown in Figure 3.15(c).11 In addition, we also calculate the

partial dependence of the forecasted risk factor from the GLMs fitted using risk factors

forecasted by the SFDL and LCDL models, which are shown in Figure 3.15(a) and 3.15(b),

respectively. For comparison, we fit a GLM model using realized river flow data, with its

partial dependence plotted in dashed lines across all three figures. We can see that the

proposed GHDL structure’s forecasted risk factors most closely approximate the anchor.

3.6 Conclusion Remarks

In this research, we introduce a GHDL framework specifically designed to enhance flood

risk modeling through the effective integration of high-resolution meteorological and hy-
11We omit the partial dependence analysis for the severity GLM in our study, because we observed that the

severity GLM shows a stronger association with the building characteristics variables and exhibits significant
imbalances across these variables, which is consistent with the observations of Kousky and Michel-Kerjan
(2017). Consequently, the partial dependence analysis would be less meaningful and informative for the
severity GLM in this context.
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(a) SFDL-based GLM (b) LCDL-bassed GLM (c) GHDL-based GLM

Figure 3.15. Forecasted risk factor partial dependence

This figure displays the partial dependence between the risk factors produced by the GHDL model, the
SFDL model, the LCDL model, and the claim counts. To provide a point of reference, we fit a GLM model
that replace the forecasted flood risk factor with the realized river flow and plot its partial dependence in
the three panels with dashed lines.

draulic data. The geographical hierarchical structure in this framework is tailored to reflect

geographical locations, providing the adaptability needed to model complex flood scenarios.

We apply the framework to data from the Mississippi River and show that the GHDL model

is superior to traditional deep learning benchmarks that do not incorporate geographical

connectivity and/or spatial information. This improved accuracy establishes a more robust

foundation for flood risk assessment and insurance pricing.

Importantly, the risk factors generated by our model not only enhance net premiums but

also contribute to reducing the solvency capital requirements. This is particularly beneficial

for the National Flood Insurance Program. Additionally, our model employs a global opti-

mization approach to effectively process spatial and temporal data, while its geo-hierarchical

structure enhances model interpretability. The GHDL framework can potentially address

complexities such as anthropogenic factors, promising to provide more informed and reliable

strategies in flood risk management.

Future research can explore the application of the GHDL model to a broader range

of geographical regions and river systems, especially in developing countries, to validate

the versatility and scalability of the model. Additionally, incorporating different climate

scenarios into the GHDL framework would be interesting. Exploring the model’s capacity to

dynamically adapt to changing environmental factors amid climate uncertainty could further
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refine its predictive capabilities and enhance its utility in real-world applications. We leave

these discussions for future work.
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Chapter 4

Bridging the Protection Gap: A Tax

Redistribution Solution Under a

Private-Public Partnership

Framework

4.1 Introduction

The escalating impacts of climate change have disproportionately magnified the risks of

catastrophes in regions highly vulnerable to climate variability (Aczel, 2022; Thomas et al.,

2018; Levy and Patz, 2015; Hirabayashi et al., 2013; Holland and Bruyère, 2013; Mann and

Emanuel, 2006; Westerling and Bryant, 2007). Although evidence suggests that individuals

are inclined to mitigate climate risk through insurance (Hossain et al., 2022; Botzen et al.,

2009), the increase in net premiums induced by climate change, coupled with heightened

capital requirements posed by these risks, often results in insurance costs exceeding what

many households are prepared to pay (Netusil et al., 2021; Charpentier, 2007). As 37% of

Americans do not have $400 in liquid funds for an emergency1, this economic disparity has
1The statistic is from Economic Well-Being of U.S. Households in 2022 report published by Board of Gov-

ernors of The Federal Reserve System. Accessable at: https://www.federalreserve.gov/publications/
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further widened the protection gap in areas already at risk, underscoring the urgent need for

innovative solutions to address these challenges.

The escalating threat of climate-related catastrophes has led insurers to retreat from high-

risk areas, reducing coverage Capacity and exacerbating the climate protection gap. This

trend has made obtaining P&C insurance increasingly difficult and costly in high climate

risk regions (Isidore and Nilsen, 2023). For example, in California, emerging wildfire risks

have led to a significant reduction in the number of domestic P&C insurers operating in the

state—from 112 in 2012 to 90 in 2022, marking an approximate 20% decrease, in contrast

to the 7% nationwide decline in P&C domestic insurers.2 Several national insurers have

withdrawn from the state (Gall, 2023; Morris and Botros, 2023). Similar patterns have been

observed in Florida (Gall, 2023; Hudak, 2022; Isidore, 2023; Leefeldt, 2024; Rahman, 2023;

The Guardian, 2023) and Louisiana (Henderson, 2023), indicating a widespread issue across

various regions. Such trend underscores the pressing need for innovative solutions to address

this growing challenge

Insurers prefer certain markets based on climate exposure, which is rational from a port-

folio optimization point of view. However, this preference increases insurance supply in

moderate-risk regions while expanding the protection gap in high-risk areas.

On the demand side, although the risk profile of regions with high climate exposure is

deteriorating as climate change progresses, the increase in demand for insurance may not

keep pace with the escalating risks (Browne and Hoyt, 2000; Andor et al., 2020; Raschky and

Weckhannemann, 2007). The concept of the Samaritan’s dilemma, as described by Buchanan

(1975), elucidates how governments in modern welfare states often find themselves implic-

itly compelled to provide public disaster relief (PDR) to those affected. This expectation of

government disaster relief can logically diminish individual households’ incentives to secure

insurance coverage, a phenomenon referred to as “charity hazard”. This dynamic poses a sig-

nificant challenge to closing the protection gap from demand side in regions most vulnerable

to climate change.

The charity hazard and its impact on the demand for climate insurance have been exten-
files/2022-report-economic-well-being-us-households-202305.pdf

2Data sourced from the NAIC P&C Market Share Report (2013-2022).
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sively analyzed within the framework of the climate risk protection gap, both theoretically

(Raschky and Weckhannemann, 2007) and empirically (Browne and Hoyt, 2000; Andor et al.,

2020; Tesselaar et al., 2022). Raschky and Weckhannemann (2007) analyze the economic

impact of governmental financial relief on the natural disaster insurance market, suggesting

that charity hazard deters individuals from purchasing insurance and hampers the market’s

development by blocking the widespread adoption of natural hazard insurance. Browne and

Hoyt (2000) examine the financial records of the United States’ National Flood Insurance

Program (NFIP) from 1983 to 1993, revealing that income and price significantly influence

flood insurance purchasing decisions, with state-level purchases strongly correlated with the

previous year’s flood losses. Andor et al. (2020) examine survey data from German home-

owners and find significant charity hazard among residents in flood-prone areas and a positive

correlation between government aid and non-financial protections. Tesselaar et al. (2022)

employ a partial equilibrium model to analyze the impact of charity hazard on the flood

insurance protection gap across EU countries through 2050, finding that uncertainty in gov-

ernment compensation and increased flood risks reduce charity hazard. However, existing

literature often overlooks a critical aspect: the funding mechanism of PDR plans. Like most

public expenditures, these plans are typically funded through taxation, whether existing or

imposed after the fact, in many countries. In nations with varied climate dynamics within

their borders, the financial burden of taxation-funded PDR efforts in high-risk regions does

not fall solely on the residents of these areas but is also shared by those in moderate-risk

regions. Therefore, even without direct exposure, residents of moderate-risk regions are still

impacted by liabilities induced by climate change.

The liability associated with PDR illustrates the negative externalities caused by inade-

quate coverage of climate risks. This means that populations indirectly affected by climate

risks can also suffer the consequences of damages not covered in areas of high exposure.

Evidence shows that climate risks can impact regions without direct exposure through eco-

nomic linkages, such as disruptions in the economic supply chain (See, e.g., Er Kara et al.,

2020; Ghadge et al., 2019; Pankratz and Schiller, 2022) and impacts on financial markets

(Venturini, 2022). Furthermore, Ge (2021) finds that insurance companies with diversified

portfolios in both life and P&C lines may increase their premiums for life insurance policies
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following significant natural catastrophe losses in their property lines. This phenomenon

highlights another way in which climate risk externalities are transferred from affected to

unaffected individuals. Consequently, strategies to narrow the protection gap in high-risk

areas could benefit residents across all risk regions.

A natural response to the withdrawal of private sector insurers from high-risk areas is

the introduction of public insurance programs. Charpentier and Le Maux (2014) argue that

public insurance offers a better solution for hedging against climate risk compared to private

insurance because public entities can levy taxes ex-post to cover premiums when faced with

deficits. This approach is considered sustainable under the assumption that governments,

unlike private insurers, cannot go bankrupt. Public insurance is also cheaper than private

insurance. However, relying solely on public insurance has its drawbacks. Issues of fairness

arise, particularly in how premiums are settled through taxation. Additionally, public insur-

ance pricing often reflects factors beyond actuarial calculations and introduces inefficiencies.

For instance, the NFIP has been criticized for politically motivated subsidies that dispro-

portionately benefit high-risk regions, often under the guise of protecting property values

(Michel-Kerjan and Kunreuther, 2011). Similarly, Citizens Insurance in Florida, designed as

an insurer of last resort for properties unable to secure insurance elsewhere, faces solvency

challenges that necessitate capital injections to remain operational (Born et al., 2021).

The public-private partnership (PPP) framework is a promising alternative to pure pri-

vate and public insurance programs for hedging against climate risks. PPP in insurance

represents a collaborative framework where both the private and public sectors share risks

and rewards in providing insurance coverage. In this model, the private sector’s role is

primarily focused on underwriting risks and managing insurance operations, leveraging its

expertise in risk assessment and customer service (Kunreuther, 2015). On the other hand,

the public sector often assumes a regulatory role, providing a safety net or backstop that

ensures the sustainability and affordability of insurance, especially in high-risk areas. This

partnership allows for a more efficient distribution of risk and can enhance the accessibility

of insurance to a broader segment of the population. A notable example of a climate risk

hedging PPP in action is the United Kingdom’s Flood Re scheme. Flood Re is designed
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to make flood insurance more affordable and accessible to households at the highest risk of

flooding. Under this scheme, insurers pass on the flood risk associated with high-risk homes

to Flood Re, which is funded by a levy on insurers. This approach ensures that homeowners

in flood-prone areas can obtain insurance at a reasonable cost, demonstrating a successful

application of PPP in mitigating climate risk through insurance.3

The Flood Re program in the UK and the NFIP in the US both aim to provide flood

insurance coverage but employ distinct operational models. Flood Re operates as a private-

public partnership, where the private sector handles the delivery of insurance, supported by

public funding to mitigate financial risks. In contrast, the NFIP directly provides insurance

to property owners facing flood risks. This program assumes full responsibility for under-

writing and claims, with the government centrally managing all aspects of risk and insurance

coverage.

While the PPP framework limits public involvement in market development and helps

reduce the cost of acquiring insurance, it is not without its challenges. For instance, in the

Flood Re program, as the government assumes responsibility for high-risk homes, the risk

profile of insurance companies shifts. This transfer can lead to less prudent behavior among

insurers, as they are relieved of the burden of managing their riskiest policies.

In this chapter, we propose a tax-redistribution solution to narrow the substantial pro-

tection gap in high-risk regions through a self-financed tax-redistribution scheme under the

PPP framework. A tax will be levied on the surplus of insurance coverage in moderate-

risk regions, with the proceeds used to augment coverage in high-risk areas. The collected

taxes will be utilized through a dual approach that includes offering subsidies to high-risk

regions and expanding coverage capacity via co-insurance. This strategy aims to effectively

redistribute resources, ensuring that the heightened risk in vulnerable areas is mitigated.

We solve the optimal redistribution by modeling the rational demand and supply dy-

namics between residents and insurers. In our model, residents are characterized as risk

averse, price takers, and expected utility maximizers, while insurers are also characterized

as risk neutral, price takers, and expected utility maximizers. We differentiate climate risk
3Notably, Flood Re also receives criticisms for being economically inefficient and failing to be a vehicle to

promote behavioral change in the interests of sustainable flood risk management (Penning-Rowsell, 2015).
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by modeling it as a distinct distribution, separate from that of moderate risks. Additionally,

PDR is represented within our model as a fixed proportion of the uncovered loss, activated

based on the magnitude of economic loss.

Our model explains several phenomena. First, on the demand side, we observe that

wealth transfer from moderate-risk to high-risk regions via public disaster relief diminishes

demand in high-risk areas. Conversely, the liability shift from high-risk to moderate-risk

regions amplifies demand among risk-prudent residents in moderate-risk region. Second,

from the supply perspective, the increased demand for solvency capital compels insurers

seeking a specific rate of return to offer less actuarially favorable premiums to high-risk

regions.

By aligning the tax redistribution mechanism with insurers’ supply dynamics, we identify

an optimal tax redistribution plan. Given a tax collection amount that is exogenously

determined, we derive an implicit solution for the proportions of co-insurance and premium

subsidy. Most importantly, our analysis reveals that by balancing the trade-off associated

with PDR liability, the tax redistribution plan can facilitate a Pareto improvement across

the entire population, benefiting residents of all risk regions.

To our knowledge, this study is the first to explore how extreme climate risk liability is

transferred to the indirectly exposed populations, in the literature of rational demand for

climate insurance.

This project contributes to the ongoing debate regarding the government’s role in climate

risk protection. One body of literature advocates for the benefits of public insurance in

climate risk hedging, highlighting its immunity to insolvency risk and its capacity to finance

claims through ex-post funding (Charpentier and Le Maux, 2014; Bruggeman et al., 2010).

Conversely, another segment of the literature critiques the efficiency of public involvement

in this domain (Cummins, 2006; Michel-Kerjan and Kunreuther, 2011; Born et al., 2021). In

light of these perspectives, the PPP framework emerges as a promising alternative, offering a

middle ground between the two viewpoints. This chapter builds upon the concept of private-

public risk-sharing, guiding the redistribution of social resources to achieve maximization of

social welfare.
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The remainder of this chapter is organized as follows: Section 4.2 introduces the proposed

tax redistribution framework. Section 4.3 characterizes the rational demand and supply dy-

namics within this framework, detailing the conditions for optimal redistribution. Section 4.4

concludes the chapter.

4.2 The Tax Redistribution Model

Consider two regions where one is exposed to high climate risks and the other only

experiences moderate risks. We call the former the high-risk region (HR) and the latter the

moderate-risk region (MR). To simplify our discussion, we assume the residents of the two

regions are homogeneous in all aspects except for risk exposure. The risks of the residents

in the two regions are denoted as ϵH and ϵM , with their means and standard deviations as

µH , µM and σH , σM , respectively. It follows that µH > µM and σH > σM .

Let SH(·), SM(·) and DH(·), DM(·) denote the supply and demand function of insur-

ance at HR and MR in the absence of tax redistribution, respectively. We denote Q∗
H

and Q∗
M as the equilibrium coverage ratios in HR and MR, and denote π∗

H and π∗
M as the

equilibrium premium in HR and MR, respectively. By definition, Q∗
H and Q∗

M solve the

problem of SH(Q) = DH(Q) and SM(Q) = DM(Q), with πH = SH(Q∗
H) = DH(Q∗

H) and

πM = SM(Q∗
M) = DM(Q∗

M).

We use the elasticity (E = (dQ/Q)/(dπ/π)) to measure the supply and demand change in

response to premium change. Denote ESH(Q) and ESM(Q) as the elasticity of the insurers’

supply curve in HR and MR at coverage ratio Q, and denote EDH(Q) and EDM(Q) as the

elasticity of the residents’ demand curve in HR and MR at coverage ratio Q.

With the presence of tax redistribution, a tax τ will be charged to insurers operating in

MR, which will then be utilized to subsidize premium or provide capital injection to insurers

operating in HR.
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4.2.1 Public Disaster Relief Liability

One reason residents may be reluctant to purchase insurance for catastrophe exposure is

the expectation that the government will provide PDR following extreme catastrophic events.

To model the payment of PDR, we assume that when ϵH surpasses a certain threshold L

at time t = 1, the government will initiate PDR to address the uncovered losses, financed

through ex-post taxation, which is common practice. We assume that only residents in HR

areas face extreme climate risks; therefore, PDR will never be triggered in MR. Nevertheless,

our model remains robust if the assumption is modified to allow ϵM > L to also trigger PDR,

though with a lower probability, i.e., P (ϵM > L) < P (ϵH > L).

Although PDR is typically funded by contributions from both HR and MR regions,

only residents of HR directly benefit from it. Consequently, the PDR scheme essentially

constitutes a conditional wealth transfer from MR to HR. We define the parameters of

public disaster relief as follows:

Public Disaster Relief =


θ if ϵH ≥ L,

0 if 0 ≤ ϵH < L,

(4.1)

where θ is the wealth transfer from MR to HR, which is effectively the present value of future

taxation collected from MR to finance the PDR. Apparently, PDR is pecuniarily unfair for

the residents of MR. Therefore, in principle, it should be employed sparingly and only serve

as a safety net.

4.2.2 Insurers’ Incentive

For an insurer with a liability portfolio ω = (QH , QM)′, where QH ≥ 0 and QM ≥ 0

denote the total coverage she provides to HR and MR separately, her insurance outcome at

t = 1 is represented as

R(ω) = QHπH +QMπM −QHϵH −QMϵM . (4.2)
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Assume the government (planner) requires the insurer to set aside a solvency capital v0(ω)

at t = 0 to ensure her expected probability of solvency at t = 1 is no less than a ratio α4 i.e.

,

P (R(ω) + v1(ω) ≥ 0) ≥ α, (4.3)

where v1(ω) represents the value of reserving v0(ω) at t = 1.

To focus our analysis on the liability aspect of insurers, we simplify their asset man-

agement by imposing two constraints. First, insurers cannot finance through borrowing.

Therefore, their initial financial position, v0(ω), together with any insolvency premium, can-

not exceed their initial endowment, denoted as v. Although credit financing is uncommon

among insurers due to the increased risk of insolvency it presents, our framework can still

be extended to scenarios where credit financing is permissible. Second, we require insurers

to invest their reserves exclusively in risk-free assets, meaning v1(ω) = (1 + rf ) · v0(ω), where

rf represents the risk-free rate of return. This assumption allows us to bypass the variability

in investment outcomes.

If the insurer is solvent at t = 1, she can enjoy a wealth of R(ω) + v1(ω). If the insurer

becomes insolvent at t = 1, she will file for bankruptcy. To mitigate this risk, insurers are

required to pay an insolvency premium, πi, to the planner at t = 0, ensuring coverage of

their liabilities in case of bankruptcy. It is assumed that the planner is risk-neutral and that

the insolvency premium is priced to be actuarially fair, as described below:

πi = −E{[R(ω) + v1(ω)] ∧ 0}. (4.4)

Should an insurer become insolvent, the planner utilizes the insolvency premium, pooled

from insurers, to address the remaining liabilities. Given the assumption that the planner

cannot go bankrupt, the policies of residents are effectively guaranteed.
4Under Solvency II, the required solvency ratio is 99.5%
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In sum, assuming risk neutral, the insurer’s objective function is represented as

max
ω,v0

(1 + β)(v − v0 − πi) + E{[R(ω) + v1(ω)] ∨ 0}, (4.5)

s.t. 0 ≤ v0 + πi ≤ v.

Here, β represent the insurers required rate of return. Insurers generally prefer to offer

coverage in MR rather than HR. This preference is influenced by two main factors. First,

the higher average loss (µH) and variability of loss (σH) in HR areas reduce the marginal

utility for insurers of increasing coverage, unless this is compensated by significantly higher

premiums. Second, the greater exposure to severe climate risks in HR areas poses challenges

to the insurers’ capacity. Thus, one may expect that the insurers’ supply is more elastic to

premium in MR than in LR, which we will formally discuss in corollary 4.2.

4.2.3 Residents’ Incentive

We assume that residents’ utility is solely influenced by their pecuniary outcomes. As

discussed in Section 4.2.1, the wealth transfer from MR to HR regions via the PDR scheme

can be represented by θ(1 − QH)1{ϵH > L}, consumed exclusively by HR but financed

through ex-post taxation from the entire population. Consequently, the PDR scheme results

in MR residents bearing a portion of the liabilities of HR residents.

Following the convention, we model the insurers’ risk transfer as residents will cede a

portion of their risks to the insurer, denoted as QH for HR and QM for MR. We describe

the incentives for residents in both regions as follows. For residents in HR,

vH = EU [w −QHπH − (1 −QH)ϵH + θ(1 −QH)1{ϵH ≥ L}], (4.6)

and for residents in MR,

vM = EU [w −QMπM − (1 −QM)ϵM − θ(1 −Q∗
H)1{ϵH ≥ L}]. (4.7)

Here, w represents the initial wealth of the residents, and U(·) is a von-Neumann Morgenstern
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utility function that captures their risk aversion.

Notably, the utility of residents in MR partially depends on the equilibrium coverage

outcome in HR (Q∗
H), which is exogenous to them. Through taxing insurance offerings in

MR to redistribute to HR, MR residents’ coverage is reduced, creating a trade-off between

local risk liability and PDR liability.

4.2.4 Redistribution

As established in Section 4.2.3, the liability associated with PDR for MR residents can

be mitigated by increasing the coverage ratio in HR areas. In this section, we propose a

redistribution scheme that levies taxes on insurance policies in MR regions to either subsidize

or provide the capital to enhance the coverage ratio in HR areas. The primary goal of this

redistribution effort is to elevate the overall welfare of all residents.

Tax Collection

Tax collection from both insurers and residents can fulfill identical objectives. The former

leads to an upward shift in the supply curve, while the latter results in a downward shift in

the demand curve. We elucidate this concept by examining the scenario in which taxes are

imposed on insurers. Let τ represent the tax levied per policy issued in the MR region, and let

Qτ
M denote the new equilibrium coverage ratio. The effect of tax collection on the equilibrium

coverage ratio is illustrated in Figure 4.1, demonstrating the dynamic adjustments within

the market.

Notably, the tax levied will increase the equilibrium premium for residents in MR. This

adjustment will alter the insurance demand among MR residents. However, it remains

uncertain whether this change in demand will be positive or negative. In Section 4.3.2,

we will explore how the direction of this demand shift is influenced by the specifics of the

residents’ utility functions and considerations of premium fairness. Nonetheless, the variation

in demand elasticity should be regarded as a matter of secondary importance.
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Figure 4.1. Taxation on per policy written in low risk regions

In Figure 4.1, we depict the supply and demand curves as having a linear relationship

between the premium and coverage ratio for illustrative purposes. However, our model does

not necessitate this linear relationship.

Subsidy Distribution

The optimal allocation of collected taxes is determined by the total available capacity

within the HR insurance supply market. The supply decisions of insurers (ω) are influenced

not only by risk-return efficiency but also by constraints related to their initial endowments

(Cummins and Weiss, 2000; Cagle and Harrington, 1995), as shown in Equation (4.3). The

endowment constraint dictates an insurer’s capacity, and collectively, the capacity of all

insurers shapes the market’s capacity. This, in turn, is manifested through the elasticity

of the supply curve. We will further discuss the impact of supply capacity on equilibrium

coverage ratio in Section 4.3.3.

There are two ways the tax can be used to increase coverage supply in HR:

• Subsidy Premium: A fixed ratio of the premium will be subsidized by the scheme.

When the collected taxes are redistributed to the insurers operating in HR as a pre-

mium subsidy per policy written, the insurers are able to supply a same amount of

coverage with a lower premium charged from residents. Therefore, tax redistribution
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through premium subsidy is effectively shifting the supply curve downward, as depicted

in Figure 4.2(a).

• Increase Capacity: There are several ways to increase the insurance market capacity.

Here, we propose that the planner provides proportional co-insurance with the insurer

for the claims incurred in HR. Subsidizing the capital requirement essentially reduces

the inelasticity of the supply curve, as depicted in Figure 4.2(b).
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(a) Subsidy Premium
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Figure 4.2. Description of tax redistribution in high and low risk regions

Offering co-insurance is not a sole strategy planners can employ to augment the market’s

capacity. For instance, planners could offer excess-loss insurance on top of the insolvency

insurance for policies written in HR at no cost, utilizing tax revenues as a form of risk capital.

When compared to the provision of excess-loss insurance, the approach of providing co-

insurance carries several advantages. Considering that insurers can operate across both HR

and MR, providing excess-loss insurance can alter the risk profile of the insurers, potentially

leading to a scenario where capacities intended for HR are partially absorbed by the insurers’

business in MR, detracting from the original objective. In addition, providing excess-loss

insurance at no cost will alter the insurers’ risk decisions. In our analysis, we advocate for

the use of co-insurance as a planner’s intervention to enhance market capacity.

When the elasticity of supply is low, subsidizing premiums would not be effective, given
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the total capacity of the market restricts the insurers’ ability to insure more risk in HR. On

the other hand, when the elasticity of supply is high, meaning the capacity of the market

is sufficient, providing further capacity would be less efficient. In specific market situations,

the most efficient subsidy distribution method lies between these extremes.

As redistribution increases the optimal coverage ratio in HR areas, the protection gap

narrows, reducing the tax burden of PDR for MR residents in the event of a catastrophe.

As both insurers and residents exhibit more elastic supply and demand functions in HR

compared to MR regions5, the distribution scheme predominantly benefits property owners

in HR, with the majority of the financial impact being absorbed by insurers in MR. Despite

the fact that the tax imposition initially compromises the benefits for property owners, the

resulting increase in the equilibrium coverage ratio within HR effectively reduces the post-

tax liability of MR residents funding the PDR scheme. Therefore, the levy placed on MR

areas holds the potential to facilitate a Pareto improvement for property owners in MR.

4.2.5 Planer’s Problem

The planner’s objectives can vary, each leading to a different problem formulation. In

this section, we outline two potential objectives a planner might consider: first, achieving

Pareto efficiency among the residents; and second, striving for Kaldor-Hicks efficiency. These

objectives frame the planner’s approach to optimizing the welfare of the residents through

different efficiency criteria.

For the sake of discussion, denote τ as tax collection at MR and δ as tax redistribution

at HR. With the tax redistribution scheme (τ, δ), denote Qδ
H and Qτ

M as the equilibrium

coverage ratio in both region, πδ
H = Sδ

H(Qδ
H) = Dδ

H(Qδ
H) and πτ

M = Sδ
M(Qτ

M) = Dτ
M(Qτ

M) as

the equilibrium premium in both region. Therefore, under (τ, δ), the HR residents’ utility is

vδ
H = EUH{wH −Qδ

Hπ
δ
H − (1 −Qδ

H)ϵH + θ(1 −Qδ
H)1{ϵH > θ}}, (4.8)

5Later we will show in Corollary 4.2 and Corollary 4.1.
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and the LR residents’ utility is

vτ
M = EUM{wM −Qτ

Mπ
τ
M − (1 −Qτ

M)ϵM − θ(1 −Qδ∗
H )1{ϵH > θ}}. (4.9)

Pareto Efficiency among Residents

To achieve Pareto efficiency, the planner must ensure that the collected tax is utilized in

the most efficient way possible, specifically through the allocation of premium and capacity

subsidies. They must then limit the tax collection to a point where the reduction in public

aid liability is at least as great as the tax burden on residents. Therefore, the planner’s

objective involves a two-step maximization process:

max
τ

(
max

δ

(
vδ

H + vτ
M

))
, (4.10)

s.t. vH ≤ vτ
H , vM ≤ vτ

M , τQτ
M = δQδ

H .

Kaldor-Hicks Efficiency among Residents

To achieve Kaldor-Hicks efficiency among residents, the planner has decided to maximize

the total welfare of the residents, albeit with the possibility of causing some utility loss for

those in MR:

max
τ

(
max

δ

(
vδ

H + vτ
M

))
, (4.11)

s.t. τQτ
M = δQδ

H .

4.3 Insurance with Extreme Loss

Despite evidence suggesting spatial dependency of climate risks (Tack and Ubilava, 2015;

Ker et al., 2015), we assume the risk ϵH and ϵM are independent to simplify our model and

focus on the core mechanics of the proposed redistribution scheme.
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4.3.1 Risk

To simplify the representation of extreme loss, we have categorized ϵH into three possible

states, cH ∈ {0, l, L}, and ϵM into four states, cM ∈ {00, l0, 0L, lL}. In HR, 0 represents no

loss incurred, l a moderate loss, and L a large loss that triggers PDR. For MR, 00 denotes

no loss in MR and no large loss in HR, with PDR not triggered, l0 denotes a moderate loss

in MR without a large loss in HR, also with PDR not triggered, 0L denotes no loss in MR

but a large loss in HR, triggering PDR, and lL denotes both a moderate loss in MR and a

large loss in HR, triggering PDR. Four states are used to represent the situations in MR as

we assume the moderate loss in MR is independent from large loss HR.

High Risk Region Risk

Within the three states framework, the risk of HR manifests itself in one of three dis-

tinct scenarios. The most severe outcome is an extreme loss, symbolized by L, which, if it

occurs, results in a significant loss uniformly affecting all residents. The likelihood of this

extreme event is represented by the probability r. This scenario underscores the potential

for widespread impact under certain conditions, emphasizing the critical nature of planning

for and mitigating such risks.

In situations where the extreme loss does not occur, the model shifts focus to more

common but less severe outcomes. These include scenarios where residents either face no

loss at all or incur a moderate loss l. The transition between no loss and this moderate state

under normal circumstances is governed by the probability p. The moderate risk outcome

may vary across different residents.

In the state of L, residents in HR will receive a wealth transfer financed in MR through

the PDR schemes to cover the unprotected loss. Under this three-states framework, the

actuarially fair premium of ϵH is p(1 − r)l + rL. Define the premium loading factor λH =

πH/(p(1 − r)l + rL). For λH > 1, λH = 1, and λH < 1, the premium will be actuarially

unfair, actuarially fair, and actuarially favorable, respectively.

In the case where a resident of HR experiences an extreme loss, a wealth transfer from
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MR to HR will be triggered through the PDR scheme. The wealth of the three states, with

and without the existence of insurance coverage, is displayed in Table 4.2 Panel A.

TABLE 4.1
Joint Probability Structure of HR Risk

No Moderate Loss Moderate Loss

Moderate Scenario 0 l 1 − r

Extreme Scenario L r

1 − p p

Moderate Risk Region Risk

We model the risk in MR using a two-point distribution, governed by a probability q

of incurring a loss. In the states 00 and 0L, residents within the MR region experience

no loss. Conversely, in the states l0 and lL, they endure a moderate loss represented by

l. Consequently, the actuarially fair premium for MR residents is ql. Similar to the HR

scenario, we define λM = πM/(ql) to evaluate pricing fairness.

Unlike HR, MR is not susceptible to extreme losses. However, MR faces a contingent

liability for wealth transfer via PDR should an extreme loss event occur in HR. Specifically,

when HR’s residents encounter an extreme loss—occurring with a probability r as described

in Section 4.3.1—MR’s residents then bear part of the burden, manifesting in states 0L and

lL. This liability takes the form of ex-post taxation, valued at a present value of θ, designed

to compensate for the financial shortfall from HR’s catastrophic loss.

The wealth of MR in the four states is displayed in Table 4.2 Panel B.

4.3.2 Insurance Demand Function

High Risk Region Residents’ Demand Function

Given the premium πH , the residents’ objective is to choose a level of coverage QH ≥ 0

that maximizes their expected utility (4.6). A first-order condition for an interior solution
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TABLE 4.2
Discrete States Framework

Panel A: High Risk Region

State cH 0 l L

Probability (1 − p)(1 − r) p(1 − r) r
Wealth, no insurance cover w w − l w − L
Wealth, insurance cover at QH w − πH w−πH −l+QH l w − πH − L +

QHL + (1 −
QH)θ

Panel B: Moderate Risk Region

State cM 00 l0 0L lL

Probability (1 − q)(1 − r) q(1 − r) (1 − q)r qr
Wealth, no insurance cover w w − l w − (1 − QH)θ w−l−(1−QH)θ
Wealth, insurance cover at QM w − πM w − πM − l +

QM l
w − πM − (1 −

QH)θ
w − πM − l +
QM l − (1 −

QH)θ

to this program is

πH(1 − r)(1 − p)u′
0 + (πH − l)(1 − r)pu′

l + (πH + θ − L)ru′
L = 0. (4.12)

Here, for the sake of notation convenience, u′
c denotes the marginal utility in state c. Ex-

pected utility is concave in QH , so the second order condition is trivially satisfied. The

solution (QH , πH) of the first-order condition (4.12) forms a demand function of the res-

idents in HR, with ∂QH/∂πH < 0. The following proposition states the upper bound of

residents’ optimal coverage demand:

Proposition 4.1. With θ ≥ 0, the optimal coverage QH ≤ 1 when the premium pricing is

actuarially fair, and strictly less than 1 when θ > 0.

Contrary to the well-established result in insurance literature, which states that a risk-

averse individual offered an actuarially fair premium will opt for full coverage, Proposition 4.1

suggests that the existence of PDR leads residents of HR areas to demand less than full

coverage, even at an actuarially fair premium.

The following proposition characterizes the demand for insurance coverage for PDR scale:

Proposition 4.2. For each level of premium ratio πH , the optimal coverage ratio for HR

105



residents QH decreases with the scale of public disaster relief θ, and is strictly decreasing if

QH > 0.

The rationale behind Proposition 4.1 and 4.2 is that PDR effectively mitigates the losses

of HR residents during extreme events without requiring a premium, thereby altering their

incentive to seek full insurance coverage. Proposition 4.1 and 4.2 explain the phenomenon

wherein the charity hazard leads to a reduction in the demand for climate insurance.

Stemmed from Proposition 4.2 and Proposition 4.4, we have the following corollary.

Corollary 4.1. ∃ θ′ > 0 and L′ > 0, such that when θ ≤ θ′ and L ≥ L′, residents’

demand is more elastic to premium in MR than in LR for coverage ratio 0 < Q < 1, i.e.,

|EDM(Q)| > |EDH(Q)|.

The intuition behind this corollary is that when the PDR offers coverage that only par-

tially mitigates the extreme risks faced by residents in HR, their fundamental risk exposure

remains largely unchanged. Consequently, the demand for insurance among these residents

shows lower elasticity in response to increases in premiums due to their higher expected

losses and greater volatility.

HR Demand Function in the Case of Constant Absolute Risk Aversion

If the utility function satisfies constant absolute risk aversion, that is, u′ ∝ e−γx for some

coefficient of absolute risk aversion γ, the first-order condition (4.12) can be rearranged to

give the explicit demand function that maps the optimal coverage ratio to premium rates.

Lemma 4.1. For a resident in HR with constant absolute risk aversion of γ > 0, her demand

function DH : QH → πH is

DH(QH ; γ) = (1 − r)pl exp[(1 −QH)lγ] + r(L− θ) exp[(1 −QH)(L− θ)γ]
(1 − r)(1 − p) + (1 − r)p exp[(1 −QH)lγ] + r exp[(1 −QH)(L− θ)γ] . (4.13)

Moderate Risk Region Residents’ Demand Function

Similar to the HR residents’ scenario, the MR residents’ objective is to choose a level

of coverage QM ≥ 0 that maximizes their expected utility (4.7). Given that HR residents’
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coverage decision is not affected by the decisions of MR, the optimal coverage ratio Q∗
H is

taken as exogenously given for the residents in MR. A first-order condition for an interior

solution to this program is

πM(1 − r)(1 − q)u′
00 + (πM − l)(1 − r)qu′

l0 + πMr(1 − q)u′
0L + (πM − l)rqu′

lL = 0, (4.14)

where u′
c denotes the marginal utility in state c. Expected utility is concave in QM , so

the second order condition is trivially satisfied. The solution (QM , πM) of the first-order

condition (4.14) forms a demand function for the residents in MR, with ∂QM/∂πM < 0.

The following proposition states the characteristics of residents’ optimal coverage demand

in terms of pricing fairness:

Proposition 4.3. With θ ≥ 0, the optimal coverage ratio QM = 1 when the premium pricing

is actuarially fair.

Contrary to residents in HR, insurance demand among MR residents does not escalate

with an increase in the scale of PDR. The underlying rationale is that while an increase in θ

enhances the wealth contingency for MR residents, it does not address a risk that traditional

insurance against localized risks can mitigate. Consequently, although an increase in θ

decreases the expected utility for MR residents, it does not stimulate an increased demand

for insurance.

The following proposition characterises the demand for insurance coverage for post dis-

aster relief scale, when premiums are actuarially unfair.

Proposition 4.4. When the pricing is actuarially unfair, the optimal coverage ratio QM

is increasing in the scale of public disaster relief θ if two conditions are satisfied. (1) the

residents are risk prudent, indicated by

u′′′(·) > 0.

(2) the premium loading factor satisfies

λM ≤ u′′
lL

(1 − q)u′′
0L + qu′′

lL

. (4.15)
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Otherwise, the QM is strictly decreasing as θ increases.

This proposition states that residents who are risk-prudent show a greater willingness to

manage additional risks under favorable financial conditions, specifically in states 00 and 0L.

Consequently, their demand for insurance is expected to increase as the PDR scale increases.

MR Demand Function in the Case of Constant Absolute Risk Aversion

In the case where the residents’ utility is constant absolute risk aversion, we can obtain

an explicit form of the demand function.

Lemma 4.2. For a resident in MR with constant absolute risk aversion of γ > 0, her

demand function DM : QM → πM is

DM(QM ; γ) = ql exp[(1 −QM)lγ]
(1 − q) + q exp[(1 −QM)lγ] . (4.16)

Notice that the demand function for MR is independent of θ, which represents a special

case of Proposition 4.4. When the resident of MR follows constant absolute risk aversion

utility, both sides of condition (4.15) are equal. This can be easily verified by substituting

πM = λMql into the left-hand side of Equation (4.16).

The HR and MR demand functions in the case of constant absolute risk aversion are

depicited in Figure 4.3.

4.3.3 Insurance Supply Function

In our discrete states framework, it is reasonable to assume that the probability of incur-

ring a loss ({l, L} for HR and {l0, lL} for MR) exceeds the solvency requirement threshold

α (i.e., 1 − (1 − r)(1 − p) > α and q > α). If this were not the case, the required solvency

reserve for insurers would be zero. This scenario would allow insurers to profit from premi-

ums in loss-free states, but in the event of any loss, they would face bankruptcy, transferring

the remaining liabilities to the planner and thus defeating the purpose of private sector

participation.
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(a) High risk region (b) Moderate risk region

Figure 4.3. Coverage demand curve of both region under constant absolute risk aversion utility.

Our analysis focuses solely on the rational supply from domestic insurers operating in

either region. This approach is taken because the complexities of the internal capital markets

of multi-regional insurers would significantly complicate our model6.

Denote D = 1
1+rf

as the non-contingent discounting factor. The following statement

characterizes the supply curve of insurers operating in HR and MR under different risk

scenarios:

Proposition 4.5. For risk-neutral insurers who have the objective function (4.5), their pre-

redistribution insurance supply in HR and MR is described as follows:

• In MR, the supply remains perfectly elastic at the premium rate of πM(β) = lq +

lD(β−rf ) up to a coverage level of QM(v) = v/(lD), beyond which it becomes perfectly

inelastic.
6A firm’s internal capital market is a mechanism within a conglomerate or multi-divisional company that

facilitates the redistribution of capital and resources among its various divisions or subsidiaries, based on
their potential returns and strategic importance (Stein, 1997; Shin and Stulz, 1998). Research indicates that
insurers operating both life and P&C divisions often increase premiums in the life division when the P&C
division experiences unexpected catastrophic shocks (Ge, 2021). This strategic use of the firm’s internal
capital market helps stabilize the performance of affected divisions. Insurers with business across multiple
regions could similarly manage premium requirements and insurance coverage supply decisions.
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• In HR, if r ≥ α, the supply remains perfect elastic at the premium rate of πH(β) =

l(1 − r)p+ Lr + LD(β − rf ) up to a coverage level of QH(v) = v/(LD) beyond which

it becomes perfectly inelastic.

• In HR, if r < α, the supply remains perfect elastic at the premium rate of πH(β) = l(1−

r)p+lr+Lr+(β−rf )D[l+r(L−l)] up to a coverage level of QH(v) = v/[D(rL+(1−r)l]

beyond which it becomes perfectly inelastic.

The supply curve for insurers in HR and MR features a critical turning point, denoted

as (QH(v), πH(β)) for HR and (QM(v), πM(β)) for MR, respectively. As the risks are exoge-

nously given, this turning point is determined by the characteristics of the insurer, including

her initial capital v and her required rate of return β. The terms QH(v) and πH(β) represent

the maximum coverage an insurer with (β, v) can offer and the minimum premium required

by her, respectively. Similarly, QM(v) and πM(β) denote the corresponding maximum cov-

erage and minimum premium for an insurer with (β, v) operating in MR. For the sake of

notation simplicity, hereafter we denote (QH(v), πH(β)) and (QM(v), πM(β)) as (QH , πH)

and (QM , πM).

Proposition 4.5 illustrates that a public insolvency guarantee allows the planner to de-

fine the level of public sector involvement in mitigating climate risk by setting appropriate

solvency requirements, α.

When α is set smaller than catastrophe probability, such that r ≥ α, the public sector

carries limited catastrophe loss liability (or, in our discrete states model, no liability at

all), placing the burden of HR’s climate risk and the obligation to meet solvency capital

requirements entirely on the private sector. The capital requirement for full coverage is

therefore L, and the insurer will demand an additional premium on top of the net premium

to meet the required rate of return, whose present value at t = 0 is LD(β − rf ). The

maximum coverage that the insurer can provide is given by QH(v) = v/(LD).

Conversely, by choosing an α greater than catastrophe probability, where r < α, the

public sector effectively acts as a provider of excess loss reinsurance to the private sector.

Consequently, this reduces the minimum required premium πH(β) and increases the maxi-

mum coverage QH(v).
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Following Proposition 4.5, we have the following corollary.

Corollary 4.2. For 0 ≤ v̄0 < ∞, insurers’ supply is more elastic to premium in MR than

in LR for coverage ratio 0 < Q < 1, i.e., |ESM(Q)| > |ESH(Q)|.

This corollary says that the supply function is more elastic in the MR than in HR within

the feasible range of coverage ratio.

Building upon the supply functions outlined in Proposition 4.5, the subsequent theorem

describes the availability of insurance coverage in both HR and MR.

Theorem 4.1. For an insurer characterized by a required rate of return β ≥ rf and an initial

endowment v, and when p = q, it is established that QH < QM and πH > πM , irrespective

of whether r ≥ α or r < α.

This theorem illustrates that when resources are identical, the presence of climate risk

results in a less favorable insurance supply for residents in HR compared to those in MR

regions. This disparity manifests as a more unfavorable lower bound for premium require-

ments and reduced coverage availability in HR areas, both consequences of the increased

challenge climate risk poses to meeting solvency capital requirements.

For traceability purposes, we assume insurers are risk-neutral in this chapter. However,

Theorem 4.1 still holds when insurers are risk-averse. Unlike the transition from perfect

elasticity to perfect inelasticity at the turning point, the supply curve instead exhibits a

gradual increase with diminishing rates of growth on both sides of the turning point.

To utilize the fact that the supply curve is simpler than the demand curve, in this chapter,

we focus on tax redistribution from the insurer’s side.

4.3.4 Optimal Redistribution

Recall that we propose using the collected tax to subsidize premiums on policies written

and to increase capacity in HR. For a tax redistribution scheme denoted as (τ, δ), the distri-

bution of collected taxes is categorized into two methods: ψ ≥ 0 for premium subsidy and

ϕ ≥ 0 for providing additional capacity, such that δ = (ψ, ϕ).
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Before discussing the optimal form of tax redistribution, we first establish the relationship

between these two uses of the collected tax and their impact on insurance supply in HR:

• For per coverage provided by insurer, denote ϕ as the additional coinsurance provided

by the planner. The turning point of supply curve is increased to Qδ
H = (1 + ϕ)QH .

• For per coverage provided by insurer, denote ψ as the premium subsidy rate provided by

the planner. The required premium before the turning point is reduced to πδ
H = πH −ψ.

Recall that the tax rate per coverage unit provided in MR is denoted as τ , and the post-

taxation coverage equilibrium in MR is Qτ
M . In cases where the subsidy and coinsurance are

fully financed by the tax revenues from coverage provided in MR, the total tax expenditure

in HR is limited to the tax collection amounting to τQτ
M .

Given the tax collected, the optimal tax redistribution plan is outlined in the following

theorem:

Theorem 4.2. The post-redistribution supply curve Sδ∗
H (Q) of the optimal redistribution plan

δ∗ = (ψ∗, ϕ∗) intersects the demand curve of HR residents DH(Q) at the turning point of

Sδ∗
H (Q), i.e. (Qδ∗

H , π
δ∗
H ).

The optimize redistribution plan that maximizes the expected utility of residents in HR,

denoted as δ∗ = (ψ∗, ϕ∗), solves the following equations


ϕ = τQτ

M − ψ(1 + ϕ)QH

rL+ (1 − r)pl ,

ψ = πH −DH((1 + ϕ)QH).
(4.17)

The optimal redistribution solution presented in Theorem 4.2 is expressed implicitly.

Obtaining a closed-form solution would require detailed knowledge of the demand function

for residents in the high-risk region, which depends on their utility functions. We will not

pursue this further because making explicit assumptions about these utility functions could

introduce biases into the theorem’s conclusions.
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4.4 Conclusion Remarks

In this chapter, we expand on the concept of a private-public partnership by introducing

a self-financing tax redistribution framework. This framework levies taxes on the excess

insurance coverage in regions of moderate risk and reallocates these funds to high-risk regions

in the form of co-insurance provision and premium subsidies. While this redistribution

scheme directly benefits residents in high climate risk regions, it also potentially increases

overall utility for those in moderate-risk regions by mitigating climate risk externalities.

Utilizing public disaster relief as an example of climate externalities, which is effectively a

wealth transfer from low- to high-risk regions, we develop a discrete states model to capture

the essence of climate risk. Through this model, we illustrate the challenges faced by domestic

insurers operating in high-risk areas and propose an optimal redistribution plan based on

predetermined tax collection to help improve their situation. The analyses underscore the

importance of accounting for climate externalities in risk-sharing arrangements and modeling

willingness to pay, offering a novel approach to closing the climate risk protection gap within

a PPP framework.
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4A Appendix

4A.1 Proofs

Proof for Proposition 4.1 By substituting QH = 1 into the implicit demand func-

tion (4.12), we conclude the condition for full coverage is πH ≤ pl(1 − r) + (L − θ)r, which

is less than or equal to the actuarially fair premium of pl(1 − r) + Lr when θ ≥ 0, resulting

optimal coverage ratio demand from HR residents is always less than or equal to 1 when the

premium pricing is actuarially fair.

Q.E.D.

Proof for Proposition 4.2 For the sick of simplifying notation, we denote the first-order

condition (4.12) as f(QH , θ) = 0. By implicit function theorem, the demand for insurance

coverage for PDR scale can be obtained from

∂QH

∂θ
= −

∂f
∂θ
∂f

∂QH

, (4A.1)

where

∂f

∂QH

= π2
H(1 − r)(1 − p)u′′

0 + (πH − l)2(1 − r)pu′′
l + (πH + θ − L)2ru′′

L, (4A.2)

and
∂f

∂θ
= ru′

L − (L− θ − πH)ru′′
L (4A.3)

are both strictly negative, given that u′(·) > 0 and u′′(·) < 0. Thus, ∂QH

∂θ
< 0. As QH is

lower bounded at zero, when QH = 0, the demand for insurance no longer decreases as θ

increases.

Q.E.D.
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Proof for Proposition 4.3 When QM = 1, the implicit demand function (4.14) become

πM(1 − r)(1 − q)u′(w − πM) + (πM − l)(1 − r)qu′(w − πM)+

πMr(1 − q)u′(w − πM − (1 −QH)θ) + (πM − l)rqu′(w − πM − (1 −QH)θ) = 0.

With some derivations, we have πM = lq. The coverage demand premium ratio is equal to

the actuarially fair premium ratio of ql when θ ≥ 0, resulting optimal coverage ratio demand

from HR residents is equal to 1 when the premium pricing is actuarially fair.

Q.E.D.

Proof for Proposition 4.4

Proof For the sick of simplifying notation, we denote the first-order condition (4.14) as

f(QM , θ) = 0. By implicit function theorem, the demand for insurance coverage for PDR

scale can be obtained from
∂QM

∂θ
= −

∂f
∂θ
∂f

∂QM

, (4A.4)

where

∂f

∂QM

= π2
M(1−r)(1−q)u′′

00 +(πM − l)2(1−r)qu′′
l0 +π2

Mr(1−q)u′′
0L +(πM − l)2rqu′′

lL, (4A.5)

is strictly negative, given that u′′(·) < 0. Therefore, the relation of QM and θ is depend on

the sign of
∂f

∂θ
= πMr(1 − q)u′′

0L + (πM − l)rqu′′
lL. (4A.6)

When ∂f/∂θ is positive, QM strictly increases as θ increases, which requests

πM(1 − q)
(l − πM)q <

u′′
lL

u′′
0L

. (4A.7)

Substituting πM = λMql, we have

λM(1 − q)
(1 − λMq)

<
u′′

lL

u′′
0L

. (4A.8)
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Given that the pricing is actuarially unfair, which means λM > 1, it follows that the left-

hand side of inequality (4A.8) exceeds 1. For this inequality to be valid, it is necessary

for residents to exhibit risk-prudent behavior, characterized by u′′(·) < 0 and u′′′(·) > 0.

Otherwise, the right-hand side of inequality (4A.8) would be strictly less than 1, rendering

the condition unsatisfied.

Notably, the condition (1 − λMq) > 0 is trivially satisfied; if not, πM would be greater

than or equal to l, which would undermine the rationale for demanding insurance. After

further derivations, we obtain the second condition as detailed in Equation (4.15).

Q.E.D.

Proof for Proposition 4.5 For a risk-neutral insurer operating in a MR region, given

that q > α, her VaR at the α-level is l. Within the framework of the discrete states model,

she is required to reserve solvency capital amounting to v0 = lQM/(1 + rf ) to underwrite

this coverage. With such capital reservation, her risk of insolvency is nullified, resulting in

πi = 0. The insurer’s objective function, as detailed in equation (4.5) under the discrete

states model, is presented as follows

max
QM

(1 + β)
(
v − lQM

1 + rf

)
+ πMQM − lqQM + lQM , (4A.9)

s.t. 0 ≤ lQM

1 + rf

≤ v.

The first-order condition is

−(1 + β) l

1 + rf

+ πM − lq + l = 0. (4A.10)

After deriving and substituting D = 1/(1 + rf ), we arrive at the formula πM(β) = lq +

lD(β − rf ). The maximum coverage an insurer can offer occurs when the solvency capital

requirement equals her initial endowment, which is achieved at QM = v/(lD).

For a risk-neutral insurer operating in a HR region, when 1 − (1 − r)(1 − p) ≥ α and

r ≥ α, her VaR at the α-level is L. Within the framework of the discrete states model,
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she is required to reserve solvency capital amounting to v0 = LQH/(1 + rf ) to underwrite

this coverage. With such capital reservation, her risk of insolvency is nullified, resulting in

πi = 0. The insurer’s objective function, as detailed in equation (4.5) under the discrete

states model, is presented as follows

max
QH

(1 + β)
(
v − LQH

1 + rf

)
+ πHQH − lp(1 − r)QH − LrQH + LQH , (4A.11)

s.t. 0 ≤ LQH

1 + rf

≤ v.

The first-order condition is

−(1 + β) L

1 + rf

+ πM − lp(1 − r) − Lr + L = 0. (4A.12)

After deriving and substituting D = 1/(1+rf ), we arrive at the formula πH(β) = l(1−r)p+

Lr + LD(β − rf ). The maximum coverage an insurer can offer occurs when the solvency

capital requirement equals her initial endowment, which is achieved at QH = v/(LD).

For a risk-neutral insurer operating in a HR region, when 1 − (1 − r)(1 − p) ≥ α and

r < α, her VaR at the α-level is l. Within the framework of the discrete states model, she

is required to reserve solvency capital amounting to v0 = lQH/(1 + rf ) to underwrite this

coverage. With such capital reservation, her insolvency risk premium based on equation (4.4)

is πi = r(L − l)QH/(1 + rf ). The insurer’s objective function, as detailed in equation (4.5)

under the discrete states model, is presented as follows

max
QH

(1 + β)
(
v − lQH

1 + rf

− r(L− l)QH

1 + rf

)
+ πHQH − lp(1 − r)QH − lrQH + l(1 − r)QH ,

(4A.13)

s.t. 0 ≤ lQH

1 + rf

+ r(L− l)QH

1 + rf

≤ v.

The first-order condition is

−(1 + β) l

1 + rf

− (1 + β)r(L− l)
1 + rf

+ πH − lp(1 − r) − lr + l(1 − r) = 0. (4A.14)
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After deriving and substituting D = 1/(1 + rf ), we arrive at the formula πH(β) = l(1 −

r)p+ lr + Lr + (β − rf )D[l + r(L− l)]. The maximum coverage an insurer can offer occurs

when the solvency capital requirement equals her initial endowment, which is achieved at

QH(v) = v/[D(rL+ (1 − r)l].

Q.E.D.

Proof for Theorem 4.1 When r ≥ α, it follows naturally from L > l that v/(LD) <

v/(lD), leading to the conclusion that QH < QM . To demonstrate that πH > πM , we need

to establish the following inequality:

l(1 − r)p+ Lr + LD(β − rf ) > lq + lD(β − rf ).

Upon derivation, this simplifies to:

r >
l(q − p) − (L− l)D(β − rf )

L+ l
,

which is satisfied under the conditions p = q, β ≥ rf , and r ≥ 0.

When r < α, it follows naturally from L > l that v/[D(rL+ (1 − r)l] < v/(lD), leading

to the conclusion that QH < QM . To demonstrate that πH > πM , we need to establish the

following inequality:

l(1 − r)p+ lr + Lr + (β − rf )D[l + r(L− l)] > lq + lD(β − rf ).

Upon derivation, this simplifies to:

r >
l(q − p) − (L− l)D(β − rf )

l(1 − p) + L+ (L− l)D(β − rf ) ,

which is satisfied under the conditions p = q, β ≥ rf , and r ≥ 0.

Q.E.D.
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Proof for Theroem 4.2 Given that the planner is risk-neutral and not subject to insol-

vency risk, the tax allocated to finance the premium for additional co-insurance is calculated

as ϕ times the fair premium for the HR region’s background risk, denoted by ϕ(rL+(1−r)pl).

Concurrently, the tax allocated for subsidizing coverage is expressed as ψQδ
H = ψ(1 +ϕ)QH .

The aggregate of these two components is limited by the total tax revenue collected from

the MR region:

τQτ
M = ϕ(rL+ (1 − r)pl) + ψ(1 + ϕ)QH .

Deriving from this, we establish the first equation that guides the implicit optimal redistri-

bution strategy (4.17).

In this framework, the equilibrium following redistribution is identified at the juncture

where the HR demand curve, DH(Q), intersects with the post-redistribution supply curve,

Sδ∗
H (Q). As a result, the adjusted premium post-redistribution is captured by πδ∗

H = DH((1+

ϕ)QH), and the subsidy ratio is determined by the difference between πH and πδ∗
H :

ψ = πH −DH((1 + ϕ)QH),

yielding the second equation for the implicit optimal redistribution strategy (4.17).

Q.E.D.
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Chapter 5

Resilience Through Responsibility:

The Impact of ESG Status on Firm

Resilience to Climate-Induced

Disruptions

5.1 Introduction

Global annual economic losses from Natural Catastrophes (NatCats) have shown a near-

continuous increase over recent decades. Studies show that annual economic losses from

NatCats exceeded $350 billion in both 2011 and 2017, maintaining a consistent baseline of

over $100 billion annually. Before 2010, such losses had never surpassed the $300 billion

threshold.1

The insurance industry is likely the industry most affected by NatCats within the finance

sector, as such events impact both the assets and liabilities of insurers. Consider life insurance

companies for an example. It is well established that climate change can influence human

life expectancy through both direct and indirect effects on health and economic development
1The statistics in use are retrieved from Munich Re’s climate change study: https://www.munichre.

com/en/risks/climate-change.html.
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(See Rocque et al., 2021, for a detailed review). This complexity makes premium pricing

increasingly challanging. Additionally, life insurers are required to maintain substantial

reserves with long durations to cover future claim obligations. The challenges posed by

climate change on asset valuation further complicate the selection of assets for reserves,

adding another layer of challenge for insurers. Beyond insurers, the impact of climate change

on asset valuation is also a great concern for policymakers and institutional investors globally.

Recent studies have provided evidence that assets with exceptional Environmental, Social,

and Governance (ESG) performance exhibit lower climate beta (i.e., the sensitivity of asset’s

value to changes in climate-related factors), suggesting a general trend of resilience to climate-

related risks (e.g., Pástor et al., 2021; Bolton and Kacperczyk, 2021; Krueger et al., 2020;

Choi et al., 2020; Engle et al., 2020; Hong et al., 2019; Dietz et al., 2018). This body

of research underscores the potential of green assets (i.e., equities or credits issued by firms

with good ESG practices) as a category that may offer relative stability in the face of climate

change challenges.

The existing body of literature generally agrees that firms’ ESG devotion is beneficial.

From a risk management perspective, studies have highlighted how ESG initiatives contribute

to a reduction in systematic risk (e.g, El Ghoul et al., 2016; Albuquerque et al., 2019), credit

risk(e.g., Jiraporn et al., 2014), and downside risk (e.g., Hoepner et al., 2023; Ilhan et al.,

2019). In terms of financing, firms with robust ESG profiles benefit from a lower cost of

capital (e.g., El Ghoul et al., 2011; Chava, 2014; Goss and Roberts, 2011).

However, the discussion on how ESG contributions are reflected in share prices is ongoing,

especially on the timing of value realization. Some researchers posit that ESG’s value is

quickly reflected at pivotal moments (e.g., Deng et al., 2013; Flammer, 2015; Gillan, 2010),

suggesting an immediate market reaction to ESG advancements. Conversely, others argue

for a gradual incorporation of ESG value into stock prices, unfolding over an extended period

(e.g., Edmans, 2011; Dimson et al., 2015; Lins et al., 2017; Barko et al., 2017), indicating a

longer-term investment perspective on ESG’s financial impacts. As the connection between

ESG practices and firms’ valuation is not straightforward, further exploration is needed to

understand how ESG affects a company’s financial health.
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In this chapter, we conduct a comprehensive study of how ESG commitments impact a

company’s ability to withstand climate-related challenges. We test three potential expla-

nations for why companies focused on sustainability tend to have lower climate risk: the

market sentiment view, the representation of financial stability view, and the capacity for

climate risk hedging view. After settling causality, our analysis establishes and reveals that

the channel of investors’ preference for green assets (market sentiment channel) offers the

strongest explanation for the resilience of green assets against climate change. Moreover, in

sectors most affected by climate change, the strategy of using investments to offset climate

risks (climate risk hedging channel) also plays a significant role. However, the aspect of

financial stability as a sign of resilience (financial stability proxy channel) is less significant

in explaining why green assets are more resilient to climate change. This chapter contributes

to the ongoing discussion about the value of ESG activities by illustrating how high ESG

ratings enhance a firm’s ability to recover from natural disasters, using these events as a

natural experiment to demonstrate the tangible benefits of ESG commitments in enhancing

resilience to external shocks.

A hurricane is a type of tropical cyclone, a powerful storm system with strong winds,

heavy rainfall, and thunderstorms that forms over warm ocean waters. These storms can

cause significant damage through high winds, storm surges, and flooding (Pielke Jr et al.,

2008). Another common type of tropical cyclone is a typhoon. The main difference between

a hurricane and a typhoon is their location: hurricanes occur in the Atlantic and Eastern

Pacific Oceans, while typhoons occur in the Western Pacific Ocean. Climate change is

expected to make hurricanes more intense (Balaguru et al., 2023) and more frequent (Lin

et al., 2016), with stronger winds and increased rainfall due to rising sea surface temperatures.

Additionally, higher sea levels may lead to more severe storm surges and coastal flooding,

amplifying the overall impact of hurricanes (Strauss et al., 2021).

We categorize publicly traded firms on U.S. stock exchanges into three groups based on

their exposure to hurricanes with damages exceeding 5 billion 2019 U.S. dollars: hurricane-

impacted, hurricane-adjacent, and unimpacted firms. Utilizing Difference-in-Differences

(DID) analysis, we uncover a significant relationship between firms’ ESG practices and their
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resilience to unexpected hurricane-related shocks, as evidenced by their Cumulative Abnor-

mal Returns (CAR) during the period of hurricane impact. Further, to establish causal

link, we conduct Regression Discontinuity Design (RDD) analysis, which leveraged the out-

comes of shareholder proposal votes that narrowly passed or failed as an instrumental shock,

examining its effect on firms’ CAR within the hurricane impact window.

This chapter makes contribution to the climate finance literature. Prevailing research in

climate asset pricing within the realm of climate finance has traditionally emphasized the

long-term impacts of climate change, as seen in studies by Addoum et al. (2020), and Baldauf

et al. (2020). Recent works have introduced another stream of literature exploring the short-

term effects on market efficiency. In particular, Schlenker and Taylor (2021) uncover evidence

that weather derivatives now possess the capability to mirror weather shocks for duration

extending up to two weeks. Similarly, Alok et al. (2020) investigate whether fund managers

exhibit overreactions to climate risks proximal to their firms, influenced by the salience and

information effects. Their findings reveal that in the aftermath of a natural disaster occurring

near a fund company, managers are likely to divest from companies based in the affected area

at prices that undervalue these firms. This chapter contribute to the literature by reviewing

that assets segregated by their ESG status exhibit varying degrees of climate resilience. It

also reviews the mechanisms behind such segregation.

The remainder of this chapter is structured as follows: Section 5.2 discusses the three

channels tested in this chapter and their rationales. Section 5.3 outlines the empirical

methodology and data employed in this study. Section 5.4 reports our findings. Section 5.5

tests the robustness of our results. Section 5.6 concludes.

5.2 Potential Channels of Resilience Improvements

What are the potential reasons that firms with good ESG practices are more climate

resilient towards catastrophe risk? In the following, we discuss three potential channels. (1)

Market sentiment: Some investors derive non-pecuniary utility from investing ESG firms, and

the presence of these ESG investors can reduce the likelihood of fire sales during hurricane
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events. (2) Financial stability proxy: A firm’s ESG status may serve as a proxy for the

firm’s financial health, suggesting that firms with higher ESG ratings could be less prone to

financial distress in times of crisis. (3) Climate risk hedging: A firm’s ESG status can also

indicate its climate hedging status. Firms with higher climate awareness may engage in more

climate hedging activities, thereby improving their resilience to climate-related catastrophes.

5.2.1 Market Sentiment

Some investors prefer to invest in ESG firms. They often hold onto these investments,

even during troubling events. Pedersen et al. (2021) and Pástor et al. (2021) point out

that the ESG investors enjoy a non-pecuniary utility through holding the stocks issued by

firms with good ESG status which alters the efficient frontier (Pedersen et al., 2021) and the

equilibrium market return (Pástor et al., 2021).

Evidence suggests that brown assets have higher climate beta than green assets. Engle

et al. (2020) find that using ESG scores to measure a company’s climate risk helps in creating

investment portfolios that perform better in returns. Choi et al. (2020) observe that indi-

vidual investors tend to sell off investments in companies with high carbon footprints during

unusually hot weather. Bolton and Kacperczyk (2021) discover that investors expect higher

returns from companies with greater carbon risks due to their potential negative impact on

the environment. Bansal et al. (2016) point out that climate change is a significant risk for

long-term investments. Finally, Krueger et al. (2020) note that large investors see climate

risk as an important factor in making investment decisions.

The preference for ESG firms, coupled with their reduced climate beta, typically positions

these assets as the last to be liquidated during climate crises. Additionally, the market

sentiment channel suggests that investors generally favor industries with an ESG focus.

However, this preference may lead to some ambiguity in the assessment of specific assets.

Should the resilience of green assets against natural catastrophes be attributable to be-

havioral and market sentiment, this hypothesis could be verified by examining the variation

in holdings of green versus brown assets before and after NatCat events.
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5.2.2 Financial Stability Proxy

ESG metrics may serve as indicators of a firm’s financial health. A higher ESG score is

associated with reduced systematic risk (El Ghoul et al., 2011; Albuquerque et al., 2019),

lower downside risks (Hoepner et al., 2023; Ilhan et al., 2019), and diminished credit risks

(Jiraporn et al., 2014; Seltzer et al., 2020). Furthermore, evidence suggests that firms with

strong environmental credentials can secure financing at a more favorable cost of capital

(El Ghoul et al., 2011; Chava, 2014; Goss and Roberts, 2011). Additionally, Luo and Balvers

(2017) identified a premium associated with boycott risk.

In this chapter, we examine the financial stability proxy view by investigating whether

a strong ESG status enhances a firm’s long-term fundamentals following hurricane events.

Alternatively, if financial distress is a significant factor enhancing the resilience of green assets

during climate-related events, this hypothesis can be tested through a two-stage least square

regression analysis. In the first step, the firm’s ESG score is employed as the independent

variable. Subsequently, financial distress, measured by Tobin’s Q, is used as the instrumental

variable. This approach allows for a detailed examination of the relationship between a firm’s

commitment to ESG principles and its resilience to financial distress in the context of climate

events. We will schedule this analysis in future works.

5.2.3 Climate Risk Hedging

ESG metrics may serve as indicators of a firm’s climate risk hedging strategies and

concerns regarding climate risks. Zhang et al. (2023) have shown that firms with high ESG

scores exhibit a greater managerial focus on long-term development, including an increased

emphasis on resilience in the face of climate change. Companies more aware of climate risks

are likely to engage in hedging activities, such as diversifying production, suppliers, and sales

across geographically disparate regions to mitigate these risks.

To validate whether climate risk hedging effectively enhances resilience to disruptive

climate events, one could examine the comparative climate resilience of firms that are suf-

ficiently diversified against those that are not. This investigation would involve assessing
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the impact of climate-related disruptions on both sets of firms to identify any significant

differences in their resilience.

5.3 Methodology

5.3.1 Data

Our data are obtained from several sources. Stock data are from the daily Center for

Research in Security Prices (CRSP) database, accounting data are from the Compustat An-

nually and Quarterly database, shareholders’ proposal voting outcomes are from the Risk-

Metrics database (RiskMetrics), Hurricane event and loss data are from the Spatial Hazard

Events and Losses Database v20.0 (SHELDUS), and ESG rating data are from MSCI ESG

KLD database (KLD).

We use data of all U.S. common stocks traded on NYSE (New York Stock Exchange),

AMEX (American Stock Exchange), and Nasdaq from 2003 to 2020 to construct stock-level

CARs. This period was selected because prior to 2003, KLD only covered a small fraction

of publicly traded firms (see Figure 5.1). We filter our sample by requiring all observations

to have non-negative book equity, price equal to or greater than $1, and at least three daily

stock returns within a CAR window.

5.3.2 Key Variables Definition

Measure of a Firm’s ESG Status

The KLD database encompasses approximately 650 companies before 2003 and expands

to around 2,500 companies post-2003 (see Figure 5.1). It provides extensive data on firm-

level ESG ratings across dimensions that are broadly categorized into Environmental, Social,

and Governance sectors.

Following the methodology outlined by Chen et al. (2020), we selected 53 dimensions

to assess a firm’s ESG status. These dimensions cover areas such as environmental impact,
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community engagement, workforce diversity, employee relations, product quality, and cor-

porate governance. We evaluate each firm’s ESG performance by summing the scores in the

“strengths” dimensions and subtracting the scores in the “concerns” dimensions.

We observe a strong time-series correlation in firms’ ESG scores (see Figure 5.2). To

avoid forward-looking bias in our analysis, we lag the firms’ ESG scores by one year in the

subsequent regression analysis.

To derive separate scores for Environmental (E), Social (S), and Governance (G) com-

ponents, we calculate the net scores specifically for each category. For the E score, we focus

on environmental impact by subtracting the sum of “concerns” from the sum of “strengths”

in this dimension. Similarly, for the S score, we aggregate the dimensions related to commu-

nities, workforce diversity, and employee relations. The G score is derived from evaluating

product quality and corporate governance, ensuring a comprehensive assessment of a firm’s

governance performance.

Table 5.1 presents the correlations among the composite ESG score and the individual

E, S, and G scores. The composite ESG score shows the highest correlation with the S score

(0.89), followed by the E score (0.58), and then the G score (0.32). Additionally, the E score

is more correlated with the S score (0.25) than with the G score (0.10). The correlation

between the S and G scores is notably low, at just 0.02.

Figure 5.1. Number of firms covered by MSCI ESG database by year.
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Figure 5.2. Lagged correlation of ESG scores between year t and year t + k(k = 1 to 4).

TABLE 5.1
Correlation Matrix of ESG, E, S, and G Scores

This table presents the correlation matrix for Environmental (E), Social (S), Governance (G), and overall
ESG scores. Each cell in the matrix displays the correlation coefficient between the respective variables,
capturing the strength and direction of their linear relationship. Below each correlation coefficient, the
p-values are provided in parentheses.

E S G

ESG 0.5758 0.8942 0.3153
(0.0000) (0.0000) (0.0000)

E 0.2546 0.1031
(0.0000) (0.0000)

S 0.0154
(0.0003)
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Measure of a Firm’s Resilience

We utilize an event study methodology to assess the impact of hurricane events on stock

prices. In our study, we employ the cumulative abnormal return (CAR) to evaluate the

resilience of firms’ valuations in response to hurricane events. Further, in Section 5.4.1,

we conduct a univariate DID analysis using the CAR calculated for the period from the

formation to the dissipation of the hurricane. We then compare these results with CARs

derived from a control period, chosen arbitrarily, to understand the differential impact of

hurricanes on firm valuation. The CAR, calculated over a specified window of days, is a

widely used metric for assessing the short-term impact of an event on a firm’s valuation.

Our calculation is detailed in Appendix 5A.2.

Impacted Region, Adjacent Region, and Non-impact Region

Hurricanes pose a significant risk across a broad swath of the US, especially in coastal

areas stretching from Texas to Maine. Not only do these regions face direct threats, but

inland areas can also suffer from related flooding and strong winds.

The SHELDUS records 15 post-1980 hurricanes that made landfall in the continental U.S.

that resulted in economic losses exceeding $5 billion (in 2019 dollars). Detailed information

about these hurricanes, including names, categories, and dates, alongside their economic

impacts, is presented in Table 5.2. The table offers detailed information on each hurricane,

including its name (Name), the Saffir-Simpson category (Category) it falls under, the year it

occurred (Year), the date of formation (Start Date), the date it dissipated (End Date), the

date it first made landfall (Landfall Date), the number of fatalities (Fatalities), and the cost

of property damage adjusted to the 2019 dollar value (Damages, $b). Focusing on hurricanes

since 2003, we treat 10 significant hurricane events as pivotal in our analysis.

We categorize US counties based on their experience with each hurricane into three

groups: impacted, adjacent, and non-impacted. Impacted counties are those with recorded

losses for a specific hurricane in the SHELDUS database. Following Dessaint and Matray

(2017), each affected county is matched with the five nearest counties, based on geographic
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TABLE 5.2
Hurricanes Utilized for Analyses: Characteristics and Impact

This table summarizes the hurricanes incorporated into the analyses as shocks, detailing key attributes and
consequences of each event. For each hurricane, the table lists its name, Saffir-Simpson category, year of
occurrence, event start and end dates, landfall date, fatalities, and damages. The damages are adjusted to
reflect 2019 dollar values to ensure consistency in economic impact assessment across different years.

Name Category Year Start Date End Date Landfall Date Fatilities Damages, $b

Hugo 4 1989 10/9/1989 22/9/1989 22/9/1989 21 12.3
Andrew 5 1992 16/8/1992 28/8/1992 24/8/1992 26 41.2
Opal 3 1995 27/9/1995 5/10/1995 4/10/1995 9 7.4
Fran 3 1996 23/8/1996 8/9/1996 6/9/1996 26 5.8
Floyd 2 1999 7/9/1999 17/9/1999 14/9/1999 56 9
Alison TS 2001 5/6/2001 17/6/2001 5/6/2001 41 11.1
Isabel 2 2003 6/9/2003 19/9/2003 18/9/2003 16 6.4
Charley 4 2004 9/8/2004 14/8/2004 13/8/2004 10 17.4
Frances 2 2004 25/8/2004 8/9/2004 5/9/2004 7 11
Ivan 3 2004 2/9/2004 24/9/2004 16/9/2004 25 21.7
Jeanne 3 2004 13/9/2004 28/9/2004 26/9/2004 4 8.8
Katrina 3 2005 23/8/2005 30/8/2005 25/8/2005 1500 120.6
Rita 3 2005 18/9/2005 26/9/2005 24/9/2005 7 13.4
Wilma 3 2005 15/10/2005 25/10/2005 24/10/2005 5 23.5
Ike 2 2008 1/9/2008 14/9/2008 13/9/2008 20 29.9
Irma 5 2017 31/8/2017 14/9/2017 10/9/2017 134 77.16

proximity, outside the disaster area. These are categorized as adjacent counties. Prox-

imity is determined using the average latitude and longitude of urban centers within each

county. Counties that do not fall into these groups are considered non-impacted. For exam-

ple, Figure 5.3(a) illustrates Hurricane Irma’s trajectory and the three categories of areas,

while 5.3(b) shows the SHELDUS recorded economic losses by each county.

Consequently, firms are identified as impacted, adjacent, or non-impacted based on the

classification of the county where their headquarters are located. The geographic distribution

of firm headquarters at the firm-year level within our sample is illustrated in the Figure 5.4.

Table 5.3 presents the summary statistics for the variables utilized in the regression anal-

yses of this chapter. The sample is divided into three categories based on their proximity to

the event: impacted firms, adjacent firms, and non-impacted firms. Details of the definitions

and calculations of the variables can be found in Table 5A.1. Several features are worth not-

ing. Based on the statistics, firms located in the impacted regions have significantly lower

ESG scores and market-to-book ratio compared to those in adjacent and non-impacted re-
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(a) Affected and Nearby Region (b) Property loss distribution

Figure 5.3. Impact regions of hurricane irma.

Figure 5.4. Geographical distribution of Compustat firms’ firm-year headquarters at the county level
from 2003 to 2020.
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gions. This suggests that the performance of firms disrupted by the hurricane event may

lead to a reduced focus on their ESG commitments (Jiao, 2010).

5.3.3 Empirical Methodology

To empirically examine how the stock market reacts to the hurricane events for the green

and brown firms, we report the association on CAR in response to the hurricane events

for the impacted, adjacent, and non-impacted firms. Specifically, we estimate the following

regression:

CARijst = β1D
I
is × ESGit + β2D

A
is × ESGit + β3D

N
is × ESGit

+ β4D
I
is + β5D

A
is + β6D

N
is + γ′Xijt + αi + αs + ϵijst,

where i indexes firms, j indexes industries, s indexes events, and t indexes years. ESGit

represents the one-year lagged ESG score or its composites for firm i of year t. DI
is, DA

is, and

DN
is represent the dummy indicator for impacted, adjacent, and non-impacted firm i during

the event s, respectively. The firm and event fixed effects are captured in αi and αs. CARijst

is the firm-level CAR during each event. Xijt is a vector of control variables. ϵijst is the

error term. We cluster the standard errors at the county level to account for cross-sectional

correlation. Given that hurricane events represent shocks applied over time, we choose not

to cluster standard errors on the time dimension.

The control variables include firm size, market-to-book ratio, leverage, gross profit, asset

growth, and sales growth for each company. To mitigate the concern of forward-looking bias,

these variables are lagged by one year. The computations for these variables are performed

using data from the Compustat Annual and Quarterly database. Detailed methodologies

for calculating each control variable are provided in Appendix 5A.1. Table 5.3 provides the

summary statistics of the main and control variables utilized in our baseline results.

To reinforce the causal link suggested by our baseline findings, we employ a quasi-natural

experiment approach following Cuñat et al. (2012), focusing on shareholder proposals related

to ESG topics that are on the margin of approval or rejection. This analysis is carried
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TABLE 5.3
Summary Statistics

The sample encompasses 26,959 firm-event level observations spanning from 1995 to 2017. Panels A, B, and
C provide summary statistics for firms impacted by hurricanes, those adjacent to the impacted areas, and
firms not impacted. We sourced our ESG data from the MSCI ESG KLD database, adjusting the aggregated
ESG scores to industry averages. The accounting variables for the firms were retrieved from the Compustat
annual and quarterly databases. The calculations of firms fundamentals are defined in Table 5A.1.

Panel A: Hurricane Impacted Firms

Variable Mean STD Skewness Kurtosis 1st Quartile Median 3rd Quartile

Log Asset 7.264 1.585 0.333 -0.342 6.130 7.068 8.261
Market-to-Book 1.905 1.086 2.444 7.415 1.201 1.585 2.214
Leverage 0.248 0.188 0.652 0.063 0.098 0.226 0.372
Gross Profit 0.457 0.409 1.790 3.805 0.144 0.339 0.627
Asset Growth 0.212 0.329 2.113 4.979 0.023 0.108 0.272
Sale Growth 0.238 0.415 3.017 13.448 0.025 0.136 0.364
ESG Score -1.133 3.315 -0.898 1.984 -3.074 -0.847 0.926
E Score -0.284 1.417 -2.142 5.836 -0.335 0.169 0.220
S Score -0.825 2.427 -0.221 0.374 -1.527 -1.110 0.491
G Score -0.035 1.180 -0.386 0.967 0.004 0.232 0.433

Panel B: Hurricane Adjacent Firms

Variable Mean STD Skewness Kurtosis 1st Quartile Median 3rd Quartile

Log Asset 7.105 1.710 0.412 -0.108 5.963 6.831 8.284
Market-to-Book 2.011 1.267 2.772 9.331 1.241 1.639 2.289
Leverage 0.241 0.210 0.723 -0.102 0.047 0.229 0.371
Gross Profit 0.485 0.402 1.831 4.407 0.198 0.392 0.633
Asset Growth 0.165 0.364 3.370 13.913 -0.001 0.083 0.197
Sale Growth 0.180 0.307 2.763 11.023 0.025 0.108 0.252
ESG Score -0.706 4.021 -0.268 1.401 -3.074 -0.847 0.926
E Score -0.133 1.276 -2.122 6.482 0.119 0.169 0.220
S Score -0.531 3.340 0.363 1.116 -2.087 -0.492 0.601
G Score -0.025 1.321 -0.104 -0.207 -1.428 0.232 0.433

Panel C: Non-impacted Firms

Variable Mean STD Skewness Kurtosis 1st Quartile Median 3rd Quartile

Log Asset 7.155 1.736 0.556 -0.014 5.892 6.944 8.214
Market-to-Book 2.139 1.359 2.275 6.119 1.264 1.667 2.496
Leverage 0.217 0.202 1.051 1.044 0.027 0.189 0.331
Gross Profit 0.419 0.337 1.771 3.890 0.181 0.332 0.551
Asset Growth 0.159 0.320 2.892 10.948 0.007 0.082 0.201
Sale Growth 0.174 0.347 2.542 10.515 0.021 0.107 0.240
ESG Score -0.201 3.726 0.093 1.182 -2.847 -0.806 1.153
E Score -0.038 1.205 -2.329 8.608 0.146 0.169 0.220
S Score -0.049 3.247 0.737 1.347 -1.527 0.204 0.890
G Score -0.130 1.313 -0.241 0.234 -1.529 0.232 0.262
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out using a Regression Discontinuity Design (RDD). Specifically, we estimate the following

regression model:

CARijst = θDT
is + Pr(Xijt, γr) + Pl(Xijt, γl) + αi + αs + ϵijst, (5.1)

where the indices of the variables and the fixed effects are the same as the baseline model. DT
is

is the dummy representing the treatment effect, which in the context of this chapter indicates

the ESG proposal passed on shareholder meetings at the margin. The model allows different

polynomials Pr(Xijt, γr) and Pl(Xijt, γl) on both sides of the treatment.

5.4 Results

In this section, we provide the results for cumulative abnormal return during hurricane

events, the improvements ESG brings to climate resilience, the channel testing, and long-

term firms fundamentals.

5.4.1 Impact of Hurricane Events on Stock Returns

In Table 5.4, we report the CARs for the full sample of firms as well as the subsamples

of impacted, adjacent, and other (non-impacted) firms. Panel A shows the CARs using the

window of hurricane events. For the full sample, the mean CAR(Start, End), CAR(Start,

Landfall), and CAR(Landfall, End) are all positively significant at the 5% level. This positive

significance is likely driven by the demand for humanitarian resources and infrastructure re-

building created by the hurricane shocks. The subsample results show that these positive re-

turns are mostly driven by the non-impacted firms: the mean CAR(Start, End), CAR(Start,

Landfall), and CAR(Landfall, End) for these firms are all positively significant at the 5%

level, with larger magnitudes and higher significance. In contrast, the mean CAR(Start,

End) and CAR(Start, Landfall) for impacted firms are negative and significant. The mean

CAR(Start, End) for the adjacent firms is negative and significant at a lower magnitude

than the impacted firms. The median CARs show a similar pattern. Tests for equality in
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CAR(Start, End), CAR(Start, Landfall), and CAR(Landfall, End) between impacted and

non-impacted subsamples are all rejected at the 5% significance level.

Following the convention in the literature, we also calculate the CARs using the arbitrary

days window before and after the hurricane landfall dates. Panel B shows the CAR(-1, 1),

CAR(-2, 2), CAR(-5, 5), CAR(-10, 10), and CAR(-20, 20) for the full sample and the

subsamples. The mean and median CAR(-2, 2), and (-5, 5) are significantly positive for the

full sample as well as for the non-impacted subsample. However, only the tests for equality

in CAR(-10, 10) and CAR(-20, 20) between impacted and non-impacted subsamples are

rejected at the 5% significance level.

Overall, the results presented in Table 5.4 show that impacted firms experience lower

returns, while non-impacted firms see higher returns during hurricane events. Significantly,

these differences are more accurately captured when calculating CARs over the hurricane

event window. This approach naturally accounts for the dual uncertainties associated with

hurricanes: (1) the ambiguity surrounding whether a forming hurricane will make landfall,

and (2) the extent of damage and loss post-landfall. Considering these benefits, we henceforth

utilize CARs calculated over the hurricane event window to assess the financial impact of

hurricane shocks.
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5.4.2 ESG and Climate Resilience

Univariate Test

In Table 5.5, we report the CARs for the three subsamples of impacted, adjacent, and

other (non-impacted) firms in Panels A to C. Within each subsample, we further divided the

firms into high and low ESG groups according to the sample median of adjusted ESG scores.

Panel A shows that the differences in mean CAR(Start, End) and CAR(Start, Landfall)

between the high and low ESG groups among the impacted firms are positive and significant

at the 5% level. Panel B reveals that the difference in mean CAR(Start, End) between the

high and low ESG groups among adjacent firms is positive and significant at the 5% level,

albeit at a lower magnitude than in the impacted firms. Panel C shows that the differences

in mean CAR(Start, End) and CAR(Landfall, End) between the high and low ESG groups

are negative and significant at the 5% level.

The negative significance among the non-impacted firms is probably driven by the substi-

tution effect: the low (high) ESG groups in the impacted region are more (less) affected by

the hurricane shock, thus their peers in the same industry but located at the non-impacted

counties would benefit more (less) by providing substitution products or services to occupy

the supply gap left by the business disruption of the impacted firms.

Results in Table 5.5 provide evidence that a good ESG status improves resilience during

hurricane events for impacted firms. However, for non-impacted firms, a good ESG status

may result in them benefiting less through the substitution effect during hurricane events.

Cross-sectional Regression Analysis

To better estimate the cross-sectional variation in firms’ climate resilience, we present

estimates from the multivariate regression using CAR(Start, End) as the dependent variable

and the interaction between firms’ hurricane exposure dummy and adjusted ESG scores as

the main variables. The OLS model utilized are as described in Section 5.3.3.

The results are presented in Table 5.6. T -statistics in this table are calculated using
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TABLE 5.5
Univariate Analysis of Cumulative Abnormal Returns: Assessing Hurricane Impact on High

and Low ESG Score Firms
This table provides a detailed univariate analysis of CAR to evaluate the impact of hurricanes on firms,
segmented by their proximity to the event. Panel A, B and C cover the hurricane-impact firms, the hurricane-
adjacent firms, and the non-impacted firms. Each panel contains three rows, presenting CAR across three
periods: from the start date to the landfall date, from the landfall date to the end date, and from the start
date to the end date, offering insights into market behavior at different stages of the hurricane’s impact.
Each panel also contains three columns, showing the CAR on high ESG firms (H), low ESG firms (L) and the
difference between the two. Each column is further divided into two sub-columns indicating the mean and
median CAR, with standard errors provided in parentheses below each value to indicate variability. “***”
stands for p-values < 0.01, “**” stands for p-values < 0.05, and “*” stands for p-values < 0.1.

Panel A: Hurricane-Impacted Firms

High ESG Group (H) Low ESG Group (L) Difference: H - L

Mean Median Mean Median Mean Median

CAR(Start,End) -1.341*** -1.341*** -2.979*** -2.979*** 1.638*** 1.638*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.056)
CAR(Start,Landfall) -0.623 -0.623 -2.320*** -2.320*** 1.697** 1.697

(0.259) (0.383) (0.000) (0.001) (0.023) (0.126)
CAR(Landfall,End) -0.390 -0.390 -0.889*** -0.889* 0.500 0.500

(0.222) (0.307) (0.005) (0.075) (0.265) (0.641)

Panel B: Hurricane-Adjacent Firms

High ESG Group (H) Low ESG Group (L) Difference: H - L

Mean Median Mean Median Mean Median

CAR(Start,End) -0.298 -0.298 -1.166*** -1.166*** 0.869** 0.869***

(0.185) (0.331) (0.000) (0.000) (0.014) (0.002)
CAR(Start,Landfall) -0.479 -0.479 -0.818 -0.818* 0.339 0.339

(0.289) (0.478) (0.118) (0.089) (0.623) (0.391)
CAR(Landfall,End) -0.068 -0.068 -0.571** -0.571** 0.503 0.503

(0.790) (0.528) (0.021) (0.017) (0.154) (0.202)

Panel C: Non-Impacted Firms

High ESG Group (H) Low ESG Group (L) Difference: H - L

Mean Median Mean Median Mean Median

CAR(Start,End) 0.193*** 0.193*** 0.380*** 0.380*** -0.187*** -0.187**

(0.000) (0.000) (0.000) (0.000) (0.002) (0.027)
CAR(Start,Landfall) 0.094 0.094 0.229** 0.229** -0.136 -0.136

(0.225) (0.117) (0.010) (0.018) (0.250) (0.463)
CAR(Landfall,End) 0.014 0.014* 0.182*** 0.182*** -0.168** -0.168***

(0.792) (0.065) (0.000) (0.008) (0.022) (0.001)
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standard errors adjusted for heteroskedasticity and county clustering. In Column 1, we

report the DID results where the firm’s ESG status is measured by the complete ESG scores.

We find that the coefficient estimated on the interaction between the impacted dummy and

ESG scores is positive and significant at the 1% level, while the coefficient estimated on the

impacted dummy is negative and significant at the 1% level. This result suggests that the

green firms are more resilient towards the disruptive hurricane events than the brown firms.

Next, in Columns 2 through 4, we reestimate the DID analysis from Column 1 but sub-

stitute the ESG rating into E, S, and G ratings (as defined in Section 5.3.2). Column 3

shows that the interaction between the impacted dummy and S scores is positive and signif-

icant at the 1% level, and the magnitude of the coefficient is twice as large as the coefficient

estimated in Column 1. Conversely, the coefficient estimated on the interaction between the

impacted dummy and E and G scores is not statistically significant, as reported in columns

2 and 4. The coefficient estimated on the impacted dummy is negative and significant at

the 1% level throughout the three columns. These results suggest that the climate resilience

improvement of the green assets is mainly sourced from its social components, rather than

its ’green’ (environmental) components. This is unfavourable to the climate risk hedging

view of the improvement, as the firms’ climate risk hedging status is directly captured in E

scores.

Overall, the regression results reported in Table 5.6 confirm the univariate results reported

in Table 5.5 and support the market sentiment and financial stability proxy views.

5.4.3 Natural and Unnatural ESG Firms

In this section, we further support the market sentiment view by repeating the baseline

results, substituting the individual ESG scores with the natural ESG indicator. These indi-

cators represent an alternative approach to assessing firms’ ESG standing, not through their

individual scores but via the average ESG score of their respective industries. Specifically,

we calculate the average excess ESG status and the distinct ESG components for firms across

the Fama-French 48 industries. We then categorize our sample into natural and unnatural
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TABLE 5.6
Baseline Analysis: The Influence of ESG Status and Hurricane Impact on Firms

This table presents the results of regression analyses aimed at exploring the relationship between firms’
Environmental, Social, and Governance (ESG) statuses and their varying degrees of impact from hurricanes.
Specifically, columns (1) through (4) detail the regression outcomes associated with each component of
ESG (namely E, S, G, and the composite ESG score) and their interactions with firms’ hurricane impact
statuses, categorized as Impacted, Adjacent, and Others. The coefficients are meticulously quantified, with
corresponding t-statistics provided in parentheses directly below each coefficient. “***” stands for p-values
< 0.01, “**” stands for p-values < 0.05, and “*” stands for p-values < 0.1.

(ESG):=(ESG) (ESG):=(E) (ESG):=(S) (ESG):=(G)
(1) (2) (3) (4)

Main Variables
Impacted × (ESG) 0.00213*** -0.00055 0.00491*** -0.00487

(2.73058) (-0.29806) (2.82163) (-1.15023)
Adjacent × (ESG) 0.00027 0.00121 0.00079 -0.00335

(0.32764) (0.42302) (0.82689) (-1.12528)
Others × (ESG) -0.00022 -0.00017 0.00001 -0.00129

(-0.80891) (-0.27631) (0.03363) (-1.41294)
Impacted Region -0.01496*** -0.01797*** -0.01388*** -0.01848***

(-3.54831) (-3.42427) (-4.38039) (-3.42251)
Adjacent Region 0.00071 0.00012 0.00069 -0.00050

(0.22214) (0.03460) (0.21744) (-0.14920)
Control Variables
Log(Lagged Asset) -0.00343 -0.00356 -0.00354 -0.00393

(-1.31933) (-1.32184) (-1.32847) (-1.41019)
Lagged Market-to-Book -0.00011 -0.00010 -0.00012 -0.00011

(-0.11763) (-0.10639) (-0.12801) (-0.11810)
Lagged Leverage -0.01695 -0.01679 -0.01675 -0.01667

(-1.49373) (-1.51159) (-1.48902) (-1.48334)
Lagged Gross Profit -0.01613* -0.01749* -0.01560* -0.01786*

(-1.70273) (-1.72982) (-1.75088) (-1.75716)
Lagged Asset Growth 0.00045 0.00045 0.00045 0.00048

(0.54729) (0.55171) (0.54269) (0.59769)
Lagged Sale Growth 0.00001 0.00001 0.00001 0.00001

(1.28866) (1.26666) (1.36418) (1.28979)
Constant 0.03472 0.03624 0.03526 0.03883

(1.55744) (1.55351) (1.57090) (1.61450)

Observations 19,813 19,813 19,813 19,813
R-squared 0.223 0.223 0.224 0.223
Firm FE Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes
County SE Yes Yes Yes Yes
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ESG firms based on the average excess ESG of the firms’ industries.

The top and bottom 10 industries by ESG and each component are illustrated in Fig-

ure 5.5. Some industry rankings are generally consistent across four classifications, such

as consumer goods (Hshld), beer & liquor (Beer), and measuring and control equipment

(LabEq), which are generally considered strong in natural ESG, E, and S sectors. Addition-

ally, the coal industry (Coal) is generally regarded as one of the most unnatural industry by

ESG, E, and S standards. However, the decomposition of ESG scores is not merely a proxy

for the composite ESG scores. The designation of an industry’s ESG status as “natural” or

“unnatural” changes depending on which component of ESG is used for measurement. For

instance, tobacco products (Smoke) are considered the second most natural E industry due

to the limited pollution generated during production, but they are viewed as one of the most

unnatural S industries due to their adverse societal impacts. The logic for G industries is

distinct from the rest of the measures. Top G industries such as precious metals (Gold),

textiles (Txtls), banking (Banks), shipbuilding & railroad equipment (Ships), and utilities

(Util) are all considered naturally heavily regulated or competitive.

Should firms within the “natural” ESG category exhibit heightened resilience to hurricane

impacts, it would suggest a preference by investors for the inherent characteristics of a firm’s

industry over its specific ESG performance. This result would support the behavior and

market sentiment channel. Nonetheless, while this observation offers insights, it does not

entirely negate the influence of other channels. A more thorough examination of this channel

would require an analysis of trading activities, as elaborated in Section 5.2.1.

Table 5.7 reports on the climate resilience of natural and unnatural ESG firms during

hurricane events. Column 1 shows that the coefficient associated with the interaction between

the impacted indicator and the natural ESG indicator is positive and significant at the 5%

level. This result suggests that an industry with an average outstanding ESG status is more

climate resilient towards hurricane events, which, as established, favors the market sentiment

view.

In Columns 2 to 4, we replace the aggregate ESG indicator with separate natural in-

dicators for Environmental (E), Social (S), and Governance (G) and then re-estimate the
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Figure 5.5. Natural and unnatural ESG industries, classified by their excess ESG scores.
The industries are sorted into top and bottom 10 categories based on their Excess ESG Scores. (A-D)
illustrate the distribution of Excess Scores, distinguishing between Natural and Unnatural ESG industries.
These classifications are made according to their respective excess ESG, E, S, and G Scores.
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TABLE 5.7
Natural and Unnatural ESG Firms’ Resilience to Hurricane Impact

This table presents the results of regression analyses aimed at exploring the relationship between the natural
and unnatural ESG firms’ and their resilience towards hurricanes impact. Specifically, columns (1) through
(4) detail the regression outcomes associated with each component of ESG (namely E, S, G, and the com-
posite ESG score) and their interactions with firms’ hurricane impact statuses, categorized as Impacted,
Adjacent, and Others. The coefficients are meticulously quantified, with corresponding t-statistics provided
in parentheses directly below each coefficient. “***” stands for p-values < 0.01, “**” stands for p-values
< 0.05, and “*” stands for p-values < 0.1.

(ESG):=(ESG) (ESG):=(E) (ESG):=(S) (ESG):=(G)
(1) (2) (3) (4)

Main Variables
Impacted × (Natural ESG) 0.01694** 0.01694** 0.01820* -0.00934

(2.23631) (2.23631) (1.95534) (-0.83835)
Adjacent × (Natural ESG) 0.00939 0.00939 0.01775* -0.00295

(1.17106) (1.17106) (1.67462) (-0.40344)
Impacted Region -0.02448*** -0.02448*** -0.02666*** -0.01350***

(-5.77006) (-5.77006) (-4.49586) (-2.61018)
Adjacent Region -0.00466 -0.00466 -0.01069 0.00122

(-0.84849) (-0.84849) (-1.35857) (0.28727)

Observations 19,813 19,813 19,813 19,813
R-squared 0.223 0.223 0.223 0.223
Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes
County SE Yes Yes Yes Yes
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coefficients. Column 3 reveals that the interaction between the impacted indicator and the

natural S indicator is positively correlated and statistically significant at 10%. This finding

aligns with the results presented in Table 5.6, albeit with a lower magnitude and statistical

significance. Moreover, the interaction between the adjacent indicator and the natural S

indicator is also positive and significant at 10%. This observation is consistent with Dessaint

and Matray (2017) such that investors overreact to salient risk. Column 2 demonstrates

that the interaction between the impacted indicator and the natural E indicator is positive

and significant at 5%. This outcome suggests that industries with superior environmental

practices exhibit greater resilience to hurricane impacts, a relationship that does not extend

to individual firms.

In summary, Table 5.7 demonstrates that the baseline results are preserved when replac-

ing the firm-specific ESG measure with natural and unnatural ESG indicators defined at the

industry level. These results support the market sentiment view, suggesting that investors

favor firms within industries recognized for their ESG, despite some ambiguity regarding

their specific ESG statuses. We will further elaborate on this mechanism in the subsequent

section.

5.4.4 The Impact of Being ESG Enthusiasts

As outlined in Section 5.4.3, the market sentiment view suggests that investors may not

clearly distinguish among firms during their selection process, often favoring industries rec-

ognized for natural ESG rather than conducting thorough evaluations of each firm’s ESG

performance. In this section, we provide additional support for the market sentiment hy-

pothesis by demonstrating that a high ESG rating within industries not typically recognized

for ESG does not necessarily enhance a firm’s resilience to climate-related challenges.

We calculate an industry-adjusted ESG score for each firm, categorizing them as high

ESG performers or low ESG performers based on whether they score above or below the

industry median, respectively.

If being categorized as an ESG enthusiast is associated with improved climate resilience,

it supports the climate hedging and financial stability proxy measure channels. Specifically,
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Figure 5.6. ESG enthusiasts in natural and unnatural ESG industries.

firms labeled as ESG enthusiasts are anticipated to demonstrate superior financial health

and a proactive stance towards managing climate risks, thereby bolstering their resilience to

climate-induced adversities. Conversely, should the status of a firm as an ESG enthusiast

not be associated with enhanced climate resilience, this would underscore the market senti-

ment hypothesis. It suggests that investors’ selection processes might not comprehensively

evaluate individual firms’ ESG performances but rather heavily rely on impressions of the

corresponding industries, aligning with the view that there is a blurred distinction among

firms in their investment decisions.

To conduct this analysis, we utilize a Difference-in-Differences-in-Differences (DDD)

model to establish the relationship between a firm’s ESG enthusiasm and the cumulative

abnormal return (CAR) it experiences during hurricane events. We interact three key vari-

ables in our model: the impact status indicator (categorized as impacted, adjacent, or other),

the non-natural ESG industry indicator, and the ESG enthusiasm indicator, which is our

primary variable of interest. Unlike in Table 5.7, where we used a natural ESG indicator,

here we switch to a non-natural ESG indicator—labeling non-natural ESG firms as 1 and

natural ESG firms as 0. We hypothesize that the effects of ESG enthusiasm will be more

pronounced within non-natural ESG industries. Should the ESG efforts of these firms be
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reflected in their CAR during hurricane events, it would substantiate the claim that investors

genuinely value ESG enthusiasm. Conversely, a lack of correlation would suggest that in-

vestors may struggle to discern ESG commitments at the firm level, potentially indicating a

lack of clarity in their ESG selection process.

Column 1 of Table 5.8 presents the effects of ESG enthusiasm on firms’ climate resilience

during hurricane events. The results show that firms identified as enthusiasts within non-

natural ESG industries do not enjoy any benefits in terms of CAR during hurricanes, irrespec-

tive of their location in impacted, adjacent, or non-impacted (others) counties. Importantly,

the coefficient for the “others” indicator combined with ESG enthusiasm is significantly neg-

ative at the 1% level. This indicates that being an ESG enthusiast, particularly within

non-natural ESG industries, is associated with adverse effects on CAR for firms situated in

regions unaffected by hurricanes.

Columns 2 to 4 of Table 5.8 substitute the general ESG indicator and ESG enthusiast

indicator with specific E, S, and G indicators, along with their respective enthusiast indica-

tors, to replicate the analysis conducted in Column 1. In alignment with the findings from

Column 1, the data show that firms identified as enthusiasts in the non-natural E, S, or G

sectors do not exhibit any statistically enhanced climate resilience.

Overall, Table 5.8 indicates that firms identified as enthusiasts within non-natural ESG

industries do not experience additional climate resilience. These findings lend support to the

market sentiment view, suggesting that the extra efforts these firms invest in ESG improve-

ments, compared to their industry peers, are not recognized or rewarded during hurricane

events.

5.4.5 Long-term ESG Status and Fundamentals after Hurricane

Shocks

In this section, we explore the potential impact of hurricane shocks on firms’ long-term

ESG metrics and fundamental financial indicators, including asset growth, sales growth,

gross profit, and leverage. To prevent forward-looking bias, we use ESG scores lagged by
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TABLE 5.8
ESG Enthusiasts’ Resilience to Hurricane Impact

This table presents the results of regression analyses aimed at exploring the relationship between the firms’
ESG enthusiasm and their resilience towards hurricanes impact. Specifically, columns (1) through (4) detail
the regression outcomes associated with each component of ESG (namely E, S, G, and the composite ESG
score) and their interactions with firms’ hurricane impact statuses, categorized as Impacted, Adjacent, and
Others. The coefficients are meticulously quantified, with corresponding t-statistics provided in parentheses
directly below each coefficient. “***” stands for p-values < 0.01, “**” stands for p-values < 0.05, and “*”
stands for p-values < 0.1.

(ESG):=(ESG) (ESG):=(E) (ESG):=(S) (ESG):=(G)
(1) (2) (3) (4)

Main Variables
Impacted × (Non-Natural ESG) × Enthusiast -0.01348 0.00151 -0.00406 0.00028

(-0.80382) (0.10831) (-0.40373) (0.01935)
Adjacent × (Non-Natural ESG) × Enthusiast -0.00376 0.00200 -0.00742 -0.00259

(-0.19011) (0.10325) (-0.43728) (-0.14205)
Others × (Non-Natural ESG) × Enthusiast 0.00359 -0.00254 -0.00208 -0.00194

(0.74541) (-0.59529) (-0.47851) (-0.43933)
Impacted × Enthusiast 0.01340 -0.02783 0.00736 -0.00306

(1.44386) (-1.40384) (0.52270) (-0.19243)
Adjacent × Enthusiast 0.00020 -0.03887* 0.00563 -0.00364

(0.01872) (-1.79923) (0.72890) (-0.40853)
Others × Enthusiast -0.00615*** -0.00092 -0.00113 -0.00273

(-2.76758) (-0.30679) (-0.45088) (-1.16693)
Impacted × (Non-Natural ESG) -0.02393*** -0.02616*** -0.02576*** -0.02641***

(-2.58905) (-3.10508) (-3.11237) (-2.78461)
Adjacent × (Non-Natural ESG) -0.01345* -0.01467** -0.01366* -0.01459**

(-1.79387) (-2.13301) (-1.90176) (-1.98567)
Impacted -0.00338 0.00012 -0.00180 -0.00089

(-0.64023) (0.02321) (-0.35231) (-0.16521)
Adjacent 0.00603 0.00824** 0.00578 0.00707

(1.44163) (2.17123) (1.44982) (1.62738)

Observations 25,549 25,549 25,549 25,549
R-squared 0.209 0.209 0.209 0.209
Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes
County SE Yes Yes Yes Yes

147



one year and predict the outcomes of these variables one year post-hurricane. This approach

enables us to examine whether the financial stability proxy of ESG status is a significant

channel that affects firms’ climate resilience.

Panel A of Table 5.9 presents the findings. Columns 1-4 detail the impacts of hurricane

shocks and the interaction between the impact indicator and firms’ ESG status on their

long-term ESG performance, including the individual components of ESG. While the co-

efficients for the hurricane impact indicator alone do not reach statistical significance, the

interaction between the impact indicator and the firms’ ESG scores is positively significant

for both overall ESG and E scores as dependent variables at the 1% level. This suggests that

firms with strong ESG credentials are more aware of climate risks; hurricane shocks heighten

their concern, which in turn leads to increased commitment to climate risk mitigation and

adaptation strategies. Columns 5-8 detail the effects of hurricane shocks and the interaction

between the impact indicator and firms’ ESG status on their long-term financial fundamen-

tals. The analysis reveals that hurricane shocks do not significantly impact the long-term

financial metrics of firms, consistent with previous findings (Alok et al., 2020).
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Panel B of Table 5.9 repeats the analysis from Panel A, focusing on decomposing the ESG

score into E and S scores, while omitting the G score due to its relative lack of importance in

previous analyses. Consistent with the results from Panel A, we observed no significant long-

term impact of hurricane shocks on firms’ ESG status or financial fundamentals. However,

the interaction between the impact indicator and the E score is positively significant at a 1%

level, influencing both the long-term ESG score and the E score. Similarly, the interaction

with the S score is positively significant at a 5% level for the long-term S score.

In summary, our analysis reveals no evidence that firms with relatively strong ESG

standings gain long-term fundamental benefits following hurricane events. Consequently, we

find no support for the hypothesis that the financial stability proxy channel explains the

superior climate resilience observed in ESG-oriented firms during such events.

5.5 Robustness tests

To ensure the robustness of our findings, we conducted several additional tests. Sec-

tion 5.5.1 confirms that our results are not influenced by ESG endogeneity. Section 5.5.2

strengthens our understanding of the causal relationship between ESG scores and firms’

climate resilience through repeating the baseline analyses on the most impacted industries

subsample.

5.5.1 ESG Endogeneity

To address potential endogeneity in firms’ ESG status, such as reverse causality and the

high correlation of ESG scores with omitted variables that may causally influence firms’

climate resilience, we conducted a Regression Discontinuity Design (RDD) analysis based on

our baseline results. The methodology and settings for this test are detailed in Section 5.3.3.

Given the relatively small size of the shareholders’ voting data, we expanded our sample

to include a broader range of events. Specifically, we extended our analysis beyond the

hurricanes causing over $5 billion in losses, as listed in Table 5.2, to include NatCat events
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with loss larger than $500 million for a single state, recorded in the SHELDUS 20.0 database

after 2006. This expansion ensures a sufficient dataset for RDD analyses.

Table 5.10 presents the results. We test the treatment effects of the passage of ESG

proposals on firms’ CAR when firms are affected during NatCat events. This analysis was

conducted on the full sample and five subsamples, where shareholders’ ESG proposals were

passed by narrow margins, specifically within the vote percentage ranges of [-15%, 15%],

[-10%, 10%], [-5%, 5%], [-2.5%, 2.5%], and [-1%, 1%]. Across the full sample and all subsam-

ples, the interaction between the impacted indicator (NatCat) and ESG proposal passing

indicator (ESG) shows a positive and statistically significant effect, with a p-value of less

than 0.01.

TABLE 5.10
Regression Discontinuity Analysis: The Impact of ESG Policy Adoption on Firm Resilience

to Natural Catastrophe Shocks
This table presents the findings from a Regression Discontinuity Design analysis examining shareholder
voting behavior on ESG related actions, particularly in the context of passing thresholds and their interaction
with natural catastrophe shocks. The analysis leverages data from the historical catastrophe events with
loss larger than 500 million 2019 dollar listed in the SHELDUS 20.0 database post-2006 to define natural
catastrophe shocks. The main variable is the interaction between ESG action passing thresholds and these
natural catastrophe events, aiming to uncover the impact of ESG action on firms’ catastrophe resilience.
Column (1) showcases the regression results for all voting outcomes, while columns (2) through (6) present
differentiated findings for votes within varying margins of the threshold: +/-15%, +/-10%, +/-5%, +/-2.5%,
and +/-1%, respectively. The corresponding t-statistics are provided in parentheses below each coefficient.
“***” stands for p-values < 0.01, “**” stands for p-values < 0.05, and “*” stands for p-values < 0.1.

All +/-15% +/-10% +/-5% +/-2.5% +/-1%
(1) (2) (3) (4) (5) (6)

Main Variables
ESG × NatCat 0.00933*** 0.01180*** 0.01156*** 0.01825*** 0.03569*** 0.05863***

(3.19708) (3.25732) (3.31880) (3.67624) (5.62645) (15.95542)

Observations 91,730 21,264 11,681 5,374 2,397 518
R-squared 0.069 0.0470 0.052 0.039 0.049 0.154
Controls Yes Yes Yes Yes Yes Yes
Event FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
State SE Yes Yes Yes Yes Yes Yes

The ESG proposal passed on shareholders’ meeting at small margin can be treated as

a random treatment. Therefore, the quasi-experimental framework established via RDD

analysis substantiates the causal relationship between firms’ ESG initiatives and their climate

resilience. We find no evidence that the observed improvement in climate resilience associated
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with firms’ ESG status can be attributed to the potential endogeneity of ESG scores.

5.5.2 Climate Resilience in the Most Impacted Industries

We further examine causality by testing whether the impact of hurricane shocks on firms

is more pronounced within industries that suffer the greatest damage from hurricane events.

Should causality be confirmed, it would imply that within the most impacted industries,

green firms exhibit greater resilience to hurricane impacts compared to those in less affected

industries.

For each hurricane event, we assess the total market capitalization loss for firms impacted

by and adjacent to the event, categorized by the Fama-French 48 industries. The top five

industries most affected by each hurricane are identified and presented in Table 5.11. These

top five industries are subsequently aggregated and analyzed as the most affected industries

in our subsequent analyses.

TABLE 5.11
Top Five Industries Most Impacted by Hurricane Strikes

This table catalogs the impact of hurricanes in-use on market capitalization of different industries, ranking
industries according to the extent of their financial losses during the hurricane event window. COlumn 1 lists
the names of the hurricanes, serving as the pivotal events under study. Columns 2 to 6, detail the industries
that experienced the most significant market capitalization losses, ranked from the first to the fifth most
affected.

Industry Market Cap Loss Rank

Hurricane 1st 2nd 3rd 4th 5th
(1) (2) (3) (4) (5) (6)

Alison Whlsl Util Oil PerSv Cnstr
Isabel LabEq Mach Mines Banks Drugs
Charley Rtail Trans Whlsl LabEq Boxes
Frances Rtail Hlth Chips LabEq Drugs
Ivan Util Paper Food Rtail Banks
Jeanne Paper Drugs Insur RlEst Fun
Katrina Trans Mines Meals Food Rtail
Rita Whlsl Fin Hlth PerSv Insur
Wilma Hlth Aero Rtail Chips Telcm
Ike Oil Util Mach BusSv BldMt
Irma BusSv Chips Whlsl Banks Fin

Panel A of Table 5.12 replicates the baseline analysis from Table 5.6 using the subsample

of the most affected industries. Columns 1 and 3 reveal that the interactions between the
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impact indicator and both the ESG and S scores are significantly positive at the 1% and

5% levels, respectively, with magnitudes exceeding those of the corresponding coefficients in

Table 5.6. Notably, Column 2 demonstrates that firms with high Environmental (E) scores

report higher CAR, regardless of their positioning in impacted, adjacent, or non-impacted

(other) areas. This evidence suggests that the climate risk hedging channel has explanatory

power among the most impacted industries for each hurricane event.

We observed that the wholesale (Whlsl) and retail (Rtail) industries are prominently

featured in Table 5.11, appearing five and four times, respectively, across various hurricanes.

To validate the robustness of our findings in Panel A of Table 5.12, we excluded these two

industries from our subsample to create a new subset and conducted the analyses again. The

outcomes, presented in Panel B of Table 5.12, align closely with those in Panel A, exhibiting

comparable magnitudes and levels of statistical significance for the coefficients.

These results demonstrate that the effect of ESG status on enhancing climate resilience

is more pronounced within industries most affected by hurricane events. Furthermore, the

perspective of climate risk hedging can explain the improvement in climate resilience at-

tributable to ESG status in the industries that are most impacted.

5.6 Conclusion Remarks

In this study, we explore the impact of firms’ ESG status on their resilience to climate-

related disruptions, specifically hurricane events. By categorizing firms based on their ex-

posure—impacted, adjacent, and non-impacted—we present compelling evidence that those

with superior ESG credentials demonstrate greater resilience to disruptive climate events.

We examine three possible channels to elucidate the observed ESG benefits on climate re-

silience: the market sentiment, financial stability proxy, and climate risk hedging views. The

market sentiment hypothesis predicts that investors favor ESG-themed assets amidst some

ambiguity, occasionally without granular analysis at the individual firm level. The financial

stability proxy perspective suggests ESG status as an indicator of financial health, attribut-

ing the enhanced resilience of ESG-favorable assets to the inherent stability of financially
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TABLE 5.12
Robustness Analysis: The Impact of ESG Status on Climate Resilience in the Most

Impacted Industries
This table presents the results of regression analyses aimed at exploring the relationship between firms’
Environmental, Social, and Governance (ESG) statuses and their varying degrees of impact from hurricanes in
the most impacted industries. Specifically, columns (1) through (4) detail the regression outcomes associated
with each component of ESG (namely E, S, G, and the composite ESG score) and their interactions with firms’
hurricane impact statuses, categorized as Impacted, Adjacent, and Others. The coefficients are meticulously
quantified, with corresponding t-statistics provided in parentheses directly below each coefficient. “***”
stands for p-values < 0.01, “**” stands for p-values < 0.05, and “*” stands for p-values < 0.1.

Panel A: Subsample Analysis on Most Affected Industry

(ESG):=(ESG) (ESG):=(E) (ESG):=(S) (ESG):=(G)
(1) (2) (3) (4)

Main Variables
Impacted x (ESG) 0.00323*** 0.02284*** 0.00363** -0.00480

(2.67814) (4.30677) (2.08880) (-1.52552)
Adjacent x (ESG) 0.00077 0.01019** 0.00112 -0.01057*

(0.38053) (2.23181) (0.33726) (-1.71337)
Others x (ESG) 0.00071 0.00483** 0.00073 -0.00140

(0.93541) (2.05556) (0.97265) (-0.69713)
Impacted Region -0.03634*** -0.03670*** -0.03667*** -0.04072***

(-2.77410) (-2.94191) (-2.84969) (-3.08778)
Adjacent Region -0.00621 -0.00582 -0.00568 -0.00934

(-0.52711) (-0.54390) (-0.50213) (-0.80734)

Observations 2,769 2,769 2,769 2,769
R-squared 0.548 0.550 0.548 0.547

Panel B: Subsample Analysis on Most Affected Industry Exclude Rtail & Whlsl

(ESG):=(ESG) (ESG):=(E) (ESG):=(S) (ESG):=(G)
(1) (2) (3) (4)

Main Variables
Impacted x (ESG) 0.00318** 0.02089*** 0.00360** -0.00415

(2.50787) (3.54684) (2.06716) (-1.02295)
Adjacent x (ESG) 0.00049 0.00807* 0.00099 -0.00987

(0.23483) (1.68794) (0.29596) (-1.48272)
Others x (ESG) 0.00054 0.00404* 0.00062 -0.00156

(0.73758) (1.78986) (0.85676) (-0.84040)
Impacted Region -0.03693*** -0.03731*** -0.03735*** -0.04147***

(-2.85390) (-3.04859) (-2.92804) (-3.18536)
Adjacent Region -0.00830 -0.00815 -0.00770 -0.01132

(-0.71558) (-0.76159) (-0.70256) (-0.97970)

Observations 3,311 3,311 3,311 3,311
R-squared 0.571 0.573 0.571 0.571
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sound firms. Finally, the climate risk hedging hypothesis is predicated on the assumption

that firms with high ESG scores are more proactive in mitigating climate risks.

Upon adjusting for endogeneity bias, our findings indicate that firms within inherently

ESG-aligned industries display increased resilience to hurricane disruptions. However, firms

in industries not typically associated with ESG values do not recieve similar benefits, even

when allocating additional resources compared to their lower-ESG peers. This outcome

supports the market sentiment hypothesis. Additionally, our examination of the long-term

impact of ESG status on firm fundamentals post-hurricane reveals no substantial evidence

backing the financial stability proxy hypothesis. However, in analyzing a subset of the most

affected industries, the climate risk hedging approach emerges as a plausible explanation for

their observed resilience.

The results in this chapter underscore the significance of a high ESG status in enhancing

firm resilience to climate disruptions, primarily through the lens of market sentiment. No-

tably, within the most severely impacted sectors, this resilience enhancement is more distinct

and is partly attributable to effective climate risk management strategies.
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5A Appendix

5A.1 Variable Definitions

The variable definitions are as described in Table 5A.1.

TABLE 5A.1
Variable Definitions

Description (variable definitions in parenthese refer to
Variable Compustat designations where appropriate)

Asset The value of total book assets (atq) in millions.
Market-to-Book The market value of assets (book value of assets (atq) plus

market value of equity (prcc_f*csho) minus book value of
equity (ceq)) divided by book value of assets (atq).

Leverage The value of long-term debt (dltt) plus debt in current
liabilities (dlc) divided by book value of assets (atq).

Gross Profit Income before extraordiary item (ib) plus depreciation and
amortization (dp) divided by book value of assets (atq).

Asset Growth The percentage change in the book value of assets (atq)
compared to the same quarter of the previous year.

Sale Growth The percentage change in sale (sale) compared to the
previous year.

Impacted An indicator variable that is set to one if the county where a
firm is headquartered has recorded a hurricane or NatCat
loss for a specific event, and set to zero otherwise.

Adjacent An indicator variable that is set to one if the county where a
firm is headquartered, ranks among the ten nearest
counties adjacent to a county that has recorded a hurricane
or NatCat loss for a specific event; it is set to zero otherwise.

Others An indicator variable that is set to one if the Impacted and
Adjacent indicators are set to zero; it is selt to zero otherwise.

5A.2 Calculation of Cumulative Abnormal Returns

For each firm i, we calculate the abnormal return using the market model. To estimate

coefficients αi and βi, we apply the ordinary least squares method, using the data from 200

trading days ending 40 days before the event day (thus, for an event on day 0, the estimation

period spans from day -240 to day -41), drawing on daily data from the CRSP database.

Specifically, we calculate:

Rit = αi + βiRmt + ϵit, (5A.1)

156



where Rit is the return on the stock of the firm i on day t, αi is the intercept, βi is the

systematic risk associated with stock i, Rmt is the daily return of the equally weighted CRSP

market portfolio, and ϵit is the daily risk adjusted residual for firm i. The corresponding

estimated return on the stock of firm i on day t is given by

R̂it = αi + βi ×Rmt. (5A.2)

We then derive the abnormal return (AR) for the stock of firm i on day t by subtracting

the estimated return from the actual return:

ARit = Rit − R̂it. (5A.3)

The cumulative abnormal return (CAR) is computed by summing up the abnormal returns

over a specified period.

5A.3 Natural Catastrophes Used in RDD

Table 5A.2 summarizes the state level NatCat events incorporated into the analyses in

RDD analysis in Section 5.5.1. For each event, the table lists its name, state, year, start and

end dates, and damages. The damages are adjusted to reflect 2019 dollar values to ensure

consistency in economic impact assessment across different years.

TABLE 5A.2
Natural Catastrophes Utilized for RDD: Characteristics and Impact

Name State Year Start Date End Date Damage, $b

Hurricane Harvey TX 2017 17/8/2017 3/9/2017 94.0
Hurricane Katrina LA 2005 23/8/2005 31/8/2005 64.7
Hurricane Katrina MS 2005 23/8/2005 31/8/2005 33.2
Hurricane Sandy NJ 2012 22/10/2012 2/11/2012 28.5
California wildfires 2018 CA 2018 1/11/2018 30/11/2018 19.6
Hurricane Ike TX 2008 1/9/2008 15/9/2008 18.0
Hurricane Frances FL 2004 24/8/2004 10/9/2004 16.2
Hurricane Wilma FL 2005 15/10/2005 27/10/2005 13.7
Hurricane Laura LA 2020 20/8/2020 29/8/2020 10.7
Louisiana floods 2016 LA 2016 12/8/2016 31/8/2016 9.6
Tropical Storm Allison TX 2001 4/6/2001 18/6/2001 7.6

Continued on next page
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Table 5A.2 – Continued from previous page
Name State Year Start Date End Date Damage, $b

Hurricane Katrina LA 2005 23/8/2005 31/8/2005 6.0
The Red River flood 1997 ND 1997 1/4/1997 30/4/1997 5.9
Hurricane Floyd NC 1999 7/9/1999 19/9/1999 5.7
Hurricane Fran NC 1996 23/8/1996 10/9/1996 5.4
Hurricanes Marilyn and Opal FL 1995 12/9/1995 6/10/1995 5.4
Alabama tornadoes 2011 AL 2011 24/4/2011 26/4/2011 5.1
Nisqually earthquake 2001 WA 2001 27/2/2001 1/3/2001 4.5
Hurricane Michael FL 2018 6/10/2018 16/10/2018 4.4
Louisiana flood 1995 LA 1995 7/5/1995 10/5/1995 4.3
Hurricane Irma FL 2017 30/8/2017 14/9/2017 4.1
Hurricane Delta LA 2020 4/10/2020 12/10/2020 3.7
Oregon wildfires 2020 OR 2020 1/9/2020 30/9/2020 3.6
Hurricane Ivan AL 2004 4/9/2004 25/9/2004 3.6
Joplin tornado 2011 MO 2011 22/5/2011 31/5/2011 3.6
Arizona tornado 2010 AZ 2010 4/10/2010 7/10/2010 3.4
Hurricane Rita TX 2005 18/9/2005 26/9/2005 3.0
Hurricane Matthew FL 2016 28/9/2016 10/10/2016 3.0
California wildfire 2003 CA 2003 1/10/2003 31/10/2003 2.7
Tennessee floods 2010 TN 2010 1/5/2010 9/5/2010 2.7
Colorado hail storm 2017 CO 2017 6/5/2017 10/5/2017 2.4
Tennessee flood 2011 TN 2011 1/5/2011 31/5/2011 2.3
Texas storm 1995 TX 1995 4/5/1995 7/5/1995 2.3
New Mexico wildfire 2000 NM 2000 1/5/2000 31/5/2000 2.3
Oklahoma tornado 2013 OK 2013 19/5/2013 21/5/2013 2.3
Hurricane Dennis FL 2005 4/7/2005 18/7/2005 2.2
TEXAS 2019 October tornado TX 2019 20/10/2019 22/10/2019 2.0
Hurricane Florence NC 2018 31/8/2018 18/9/2018 2.0
Michigan flood 2014 MI 2014 9/8/2014 11/8/2014 2.0
Hurricane Gustav LA 2008 25/8/2008 7/9/2008 2.0
Houston flooding 2016 TX 2016 15/4/2016 20/4/2016 1.9
Oklahoma tornado outbreak 1999 OK 1999 2/5/1999 10/5/1999 1.8
Multiple Hurricnaes TX 2020 1/8/2020 31/8/2020 1.7
California wildfires 2018 CA 2018 1/7/2018 31/7/2018 1.6
Tennessee flood 2020 TN 2020 1/3/2020 31/3/2020 1.6
Texas flood 2020 TX 2016 9/3/2016 10/3/2016 1.6
Hurricane Michael GA 2018 6/10/2018 16/10/2018 1.6
Missouri tornado 2001 MO 2001 9/4/2001 11/4/2001 1.6
Hurricane Irene VT 2011 21/8/2011 31/8/2011 1.5
california flood 1997 CA 1997 15/12/1996 15/1/1997 1.5
2003 Alabama earthquake AL 2003 28/4/2003 30/4/2003 1.5
Hurricane Katrina AL 2005 23/8/2005 31/8/2005 1.4
Iowa flood 2008 IA 2008 7/6/2008 30/6/2008 1.4
Washington flood 2020 WA 2020 1/9/2020 30/9/2020 1.3
Hurricane Dolly TX 2008 1/7/2008 31/7/2008 1.3
Texas severe storms 2012 TX 2012 1/6/2012 30/6/2012 1.3
New York flood 2006 NY 2006 26/6/2006 28/6/2006 1.3
Red River flood 1997 MN 1997 1/4/1997 30/4/1997 1.2
Hurricane Irene NY 2011 1/9/2011 30/9/2011 1.2
Texas–Oklahoma flood and tornado 2015 TX 2015 22/10/2015 25/10/2015 1.2
Illinois tornado outbreak 2013 IL 2013 16/11/2013 18/11/2013 1.2

Continued on next page
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Table 5A.2 – Continued from previous page
Name State Year Start Date End Date Damage, $b

Mississippi River flood 2011 MS 2011 1/5/2011 31/5/2011 1.2
California flood 1998 CA 1998 1/4/1998 30/4/1998 1.2
California wildfires 2007 CA 2007 20/10/2007 16/11/2007 1.1
Hurricane Georges MS 1998 15/9/1998 1/10/1998 1.1
Oklahoma winter weather event 2007 OK 2007 8/12/2007 11/12/2007 1.0
Texas–Oklahoma flood and tornado 2015 TX 2015 24/5/2015 25/5/2015 1.0
Ohio Winter Storm 2008 OH 2008 7/3/2008 8/3/2008 1.0
Hurricane Irene NJ 2011 1/8/2011 31/8/2011 1.0
January 2009 North American ice storm. AR 2009 25/1/2009 30/1/2009 1.0
Tornado outbreak of April 3, 2012 TX 2012 2/4/2012 4/4/2012 1.0
October 1998 Central Texas floods TX 1998 17/10/1998 18/10/1998 1.0
California Earthquake 2000 CA 2000 2/9/2000 4/9/2000 0.9
Hurricane Irene NC 2011 1/8/2011 31/8/2011 0.9
Carson River Basin 1997 NV 1997 1/1/1997 3/1/1997 0.9
Tropical Storm Imelda TX 2019 10/9/2019 19/9/2019 0.9
Oklahoma severe weather 2008 OK 2008 1/6/2008 10/6/2008 0.9
Texas wildfires 2011 TX 2011 1/9/2011 30/9/2011 0.9
Hurricane Ike OH 2008 1/9/2008 15/9/2008 0.9
Iowa Tornadoes 2003 IA 2003 1/8/2003 31/8/2003 0.9
Hurricane Isabel VA 2003 6/9/2003 20/9/2003 0.9
Texas tornado outbreak 2013 TX 2013 15/5/2013 17/5/2013 0.9
June 2008 Midwest floods IN 2008 7/6/2008 1/7/2008 0.9
Hurricane Matthew NC 2016 28/9/2016 10/10/2016 0.9
Louisiana thunderstorm and tornadoes 2009 LA 2009 1/5/2009 31/5/2009 0.9
Kentucky tornadoes 1998 KY 1998 15/4/1998 17/4/1998 0.9
Hurricane Floyd NJ 1999 7/9/1999 19/9/1999 0.9
Colorado floods 2013 CO 2013 1/9/2013 30/9/2013 0.8
Hurricane Irene FL 1999 13/10/1999 24/10/1999 0.8
Hurricane Isabel MD 2003 6/9/2003 20/9/2003 0.8
California Earthquake 2014 CA 2014 23/8/2014 25/8/2014 0.8
Colorado wildfires 2012 CO 2012 1/6/2012 30/6/2012 0.8
Arkansas tornados 2000 AR 2000 1/12/2000 4/12/2000 0.8
Minnesota storms 1998 MN 1998 14/5/1998 16/5/1998 0.8
Hurricane Lili LA 2002 21/9/2002 4/10/2002 0.8
Nebraska flooding and tornadoes 2001 NE 2001 10/4/2001 23/4/2001 0.8
Hurricane Georges FL 1998 15/9/1998 10/1/1998 0.8
Kentucky flood 1997 KY 1997 1/3/1997 31/3/1997 0.7
Hurricane Isaac LA 2012 21/8/2012 3/9/2012 0.7
2006 Mid-Atlantic United States flood PA 2006 25/6/2006 5/7/2006 0.7
Tropical Storm Leslie 2000 FL 2000 4/10/2000 12/10/2000 0.7
1998 Kissimmee tornado outbreak FL 1998 21/2/1998 1/3/1998 0.7
2017 California floods CA 2017 17/2/2017 18/2/2017 0.7
2011 Mississippi River Floods MS 2011 1/4/2011 20/6/2011 0.7
Willamette Valley flood 1996 OR 1996 20/1/1996 15/2/1996 0.7
Hurricane Isabel NC 2003 6/9/2003 20/9/2003 0.7
Southern Wisconsin flood 2008 WI 2006 1/6/2006 30/6/2006 0.7
Southern California mudflows 2018 CA 2018 1/1/2018 31/1/2018 0.6
Hurricane Erin FL 1995 31/7/1995 6/8/1995 0.6
California wildfire 2007 CA 2007 1/6/2007 30/6/2007 0.6
Mississippi flood 2013 MS 2013 1/3/2013 31/3/2013 0.6

Continued on next page
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Table 5A.2 – Continued from previous page
Name State Year Start Date End Date Damage, $b

Texas tornado outbreak 2014 TX 2014 27/4/2014 30/4/2014 0.6
Florida wildfires 1998 FL 1998 1/7/1998 31/7/1998 0.6
Oklahoma tornado outbreak 2010 OK 2010 10/5/2010 13/5/2010 0.6
Memorial Day tornado outbreak 2019 OH 2019 17/5/2019 31/5/2019 0.6
Nebraska flood 2019 NE 2019 13/3/2019 19/3/2019 0.6
Kansas tornado outbreak 2012 KS 2012 13/4/2012 16/4/2012 0.6
Oklahoma tornado outbreak sequence 2003 OK 2003 30/4/2003 11/5/2003 0.6
The 1998 Elba Flood AL 1998 1/3/1998 31/3/1998 0.6
California flood 1995 CA 1995 1/1/1995 31/1/1995 0.6
Michigan windstorm 2017 MI 2017 7/3/2017 9/3/2017 0.6
Florida tornado 1998 FL 1998 21/2/1998 24/2/1998 0.5
Pennsylvania flood 2004 PA 2004 27/9/2004 30/9/2004 0.5
Idaho wildfire 2012 ID 2012 1/6/2012 30/6/2012 0.5
Colorado thunderstorm 2009 CO 2009 1/7/2009 31/7/2009 0.5
Arkansas tornado 1996 AR 1996 1/4/1996 30/4/1996 0.5
California storms and flooding 2006 CA 2006 1/1/2006 31/1/2006 0.5
California severe rainstorms 2005 CA 2005 1/12/2005 31/12/2005 0.5
Oklahoma hail 2012 OK 2012 28/5/2012 31/5/2012 0.5
Maine ice storm of 1998 ME 1998 4/1/1998 10/1/1998 0.5
Ohio flood 2006 OH 2006 27/7/2006 31/7/2006 0.5
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Chapter 6

Conclusion and Future Works

6.1 Conclusion Remarks

This dissertation explores the role that actuarial science can play in addressing the mul-

tifaceted challenges posed by climate change and enhancing sustainability efforts within the

financial and insurance industries. Through the integration of advanced computational mod-

els with actuarial practices, this thesis demonstrates how robust risk management strategies

can be developed to cope with the growing climate-related challenges. Additionally, it high-

lights the potential of policy tools and climate-resilient assets from the financial market to

enhance the sustainability of insurers and other financial institutions.

In Chapter 2, I demonstrate how a behavior-based machine learning approach can sig-

nificantly improve the basis risk associated with area-yield insurance products, presenting

a promising alternative to traditional individual yield insurance in the agricultural sector.

This method not only mitigates moral hazard but also aligns with sustainable agricultural

practices by supporting more accurate and fair insurance payouts.

Chapter 3 introduces a geo-hierarchical deep learning framework for flood risk pricing.

This model has shown its potential to integrate climate and physical data into actuarial

models at a lower cost and with greater robustness than traditional physical risk models,

thereby enhancing the financial sustainability of flood insurance.
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In Chapter 4, the focus shifted to the protection gap in climate risk insurance. The

proposed self-financing tax redistribution framework offers a novel approach to mitigate this

gap, highlighting the role of public policy in supporting private insurance solutions and

fostering a more resilient societal structure against climate risks.

Finally, Chapter 5 illustrates how a corporation’s ESG devotion can improve its cli-

mate sustainability by identifying valuation benefits during unfavorable climate conditions.

The findings from natural experiments using hurricane strikes confirmed the greater cli-

mate resilience of green assets, which reduces insurers’ insolvency risk and promotes a more

sustainable investment strategy.

This thesis highlights the critical role of actuarial science in tackling climate change

and advancing sustainability efforts. By incorporating advanced modeling techniques and

emphasizing the need for climate-resilient assets, this research provides actionable insights

for the insurance industry and policymakers. The proposed frameworks and models offer a

pathway for developing effective risk management strategies that not only protect economic

interests but also contribute to environmental and social resilience.

Looking ahead, climate change should be a focal point of future studies. The com-

plexity and variability of climate systems necessitate continuous refinement of models and

approaches to better predict and mitigate climate impacts. Actuaries and the insurance

industry should consider the evolving nature of climate risks and adapt their practices ac-

cordingly. Further research should explore new data sources, innovative modeling techniques,

and comprehensive policy interventions to enhance the resilience of financial systems against

climate-related challenges.

6.2 Future Work Directions

6.2.1 Alternative Dependence Structure for Area-yield Pooling

In Chapter 2, the dependence structure among different producers is analyzed using a

correlation matrix derived from historical yield records. An accurate dependence structure
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is crucial for the effectiveness of the behavior-based risk pooling method proposed in the

chapter. However, the reliance on extensive historical data presents a challenge, as sufficiently

long time series data are not always available, which is a common scenario in practice.

To address this, alternative dependence structure capturing methods, such as factor-based

pooling, should be explored to enhance the robustness of the model, especially in situations

where the credit history of producers is limited or inaccessible.

6.2.2 GHDL Model Application to Emerging Market

The GHDL model introduced in Chapter 3 is designed to operate without requiring

high-resolution or hard-to-access data, ensuring its applicability to emerging markets where

data and resources may be limited. In the future, I plan to evaluate the performance of the

GHDL-generated flood risk factors within the specific context of developing markets, such as

in the creation of index insurance, to further validate and strengthen the model’s predictive

capabilities.

6.2.3 General Externality in Tax Redistribution Modeling

In Chapter 4, I explore how uncovered climate losses in high-risk regions spill over into

moderate-risk regions, using public disaster relief to model a conditional wealth transfer

scheme. This scheme activates when climate losses in high-risk areas exceed a certain thresh-

old, resulting in a wealth transfer from moderate to high-risk regions. While this represents

a negative externality for moderate-risk regions and a positive one for high-risk regions, it

is a limited perspective on externalities. For future work, it is necessary to analyze the ef-

fectiveness and optimization of the tax redistribution scheme in addressing the climate risk

protection gap under broader types of externalities, including scenarios where both high-risk

and moderate-risk regions experience negative externalities.
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6.2.4 Optimal Public Sector Participation Rate

In Chapter 4, I discussed how, when the catastrophe probability r is exogenous, planners

can determine their level of participation by selecting the required solvency capital level α.

Identifying a socially optimal α that maximizes the overall welfare of both residents and

insurers is a critical consideration. I will explore this topic further in future work.

6.2.5 Releasing Assumptions in Insurers’ Financing and Investing

The propositions and theorems presented in Chapter 4 are based on two key assumptions:

(1) insurers are prohibited from financing through credit, and (2) insurers invest their re-

serves exclusively in risk-free assets. These constraints are applied to simplify the discussion.

However, the financing structure and asset portfolio of insurers can significantly influence

their decisions regarding insurance supply. As part of future work, I plan to relax these

assumptions to explore how they impact the findings of this chapter.

6.2.6 General Class of Green Assets’ Climate Resilience

In Chapter 5, the tests for climate resilience were conducted on equity assets. While

equities provide a good indication of a firm’s resilience, it is important to assess the climate

resilience of corporate bonds, which have a higher priority in payment hierarchies during a

firm’s financial distress caused by severe climate shocks. Moreover, corporate bonds typically

constitute a larger portion of insurers’ reserve portfolios compared to equities. Extending

the findings of Chapter 5 to include a broader range of asset classes would enhance my

understanding of the climate resilience properties of green assets.

6.2.7 Green Assets Climate Resilience Channel Testing

In the robustness analysis of Chapter 5, I explored the underlying mechanisms behind the

enhanced resilience of green assets in the face of hurricane strikes. However, comprehensive

investigations are necessary to thoroughly review the channels through which green assets
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demonstrate climate resilience, as highlighted in this study. Future research should aim

to delve deeper into these mechanisms to provide a more complete understanding of the

resilience attributes of green assets against climate-related adversities.

165



References

Abbot, J. and Marohasy, J. (2014). Input selection and optimisation for monthly rain-

fall forecasting in Queensland, Australia, using Artificial Neural Networks. Atmospheric

Research, 138:166–178.

Ackermann, F. (2024). Managing grand challenges: Extending the scope of problem struc-

turing methods and behavioural operational research. European Journal of Operational

Research.

Aczel, M. (2022). Confronting climate injustice. Science, 376(6590):253–253.

Addoum, J. M., Ng, D. T., and Ortiz-Bobea, A. (2020). Temperature shocks and establish-

ment sales. The Review of Financial Studies, 33(3):1331–1366.

Albuquerque, R., Koskinen, Y., and Zhang, C. (2019). Corporate social responsibility and

firm risk: Theory and empirical evidence. Management Science, 65(10):4451–4469.

Alok, S., Kumar, N., and Wermers, R. (2020). Do fund managers misestimate climatic

disaster risk. The Review of Financial Studies, 33(3):1146–1183.

Andor, M. A., Osberghaus, D., and Simora, M. (2020). Natural disasters and governmental

aid: Is there a charity hazard? Ecological Economics, 169:106534.

Annan, F., Tack, J., Harri, A., and Coble, K. (2014). Spatial pattern of yield distributions:

Implications for crop insurance. American Journal of Agricultural Economics, 96(1):253–

268.

Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer,

M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P., Trewin,

B., Achuta Rao, K., Adhikary, B., Allan, R., Armour, K., Bala, G., Barimalala, R., Berger,

S., Canadell, J., Cassou, C., Cherchi, A., Collins, W., Collins, W., Connors, S., Corti, S.,

166



Cruz, F., Dentener, F., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes, F.,

Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper,

B., Fuglestvedt, J., Fyfe, J., Gillett, N., Goldfarb, L., Gorodetskaya, I., Gutierrez, J.,

Hamdi, R., Hawkins, E., Hewitt, H., Hope, P., Islam, A., Jones, C., Kaufman, D., Kopp,

R., Kosaka, Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T.,

Meinshausen, M., Min, S.-K., Monteiro, P., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A.,

Raghavan, K., Ranasinghe, R., Ruane, A., Ruiz, L., Sallée, J.-B., Samset, B., Sathyen-

dranath, S., Seneviratne, S., Sörensson, A., Szopa, S., Takayabu, I., Tréguier, A.-M.,

van den Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld,

K. (2021). Technical summary. In Masson-Delmotte et al. (2021), pages 33–144.

Balaguru, K., Xu, W., Chang, C.-C., Leung, L. R., Judi, D. R., Hagos, S. M., Wehner,

M. F., Kossin, J. P., and Ting, M. (2023). Increased US coastal hurricane risk under

climate change. Science advances, 9(14):eadf0259.

Baldauf, M., Garlappi, L., and Yannelis, C. (2020). Does climate change affect real estate

prices? Only if you believe in it. The Review of Financial Studies, 33(3):1256–1295.

Bansal, R., Ochoa, M., and Kiku, D. (2016). Climate change and growth risks. National

Bureau of Economic Research.

Barberis, N. and Huang, M. (2008). Stocks as lotteries: The implications of probability

weighting for security prices. American Economic Review, 98(5):2066–2100.

Barberis, N., Huang, M., and Santos, T. (2001). Prospect theory and asset prices. The

quarterly journal of economics, 116(1):1–53.

Barko, P., McMichael, M., Swanson, K., and Williams, D. (2017). The gastrointestinal

microbiome: A review. Journal of Veterinary Internal Medicine, 32(1):9–25.

Barnett, B. J., Black, J. R., Hu, Y., and Skees, J. R. (2005). Is area yield insurance

competitive with farm yield insurance? Journal of Agricultural and Resource Economics,

30(2):285–301.

Barseghyan, L., Molinari, F., O’Donoghue, T., and Teitelbaum, J. C. (2013). The na-

ture of risk preferences: Evidence from insurance choices. American economic review,

103(6):2499–2529.

Benevolenza, M. A. and DeRigne, L. (2019). The impact of climate change and natural

167



disasters on vulnerable populations: A systematic review of literature. Journal of Human

Behavior in the Social Environment, 29(2):266–281.

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is “nearest neighbor”

meaningful? Lecture Notes in Computer Science, pages 217–235.

Bolton, P. and Kacperczyk, M. (2021). Do investors care about carbon risk? Journal of

Financial Economics, 142(2):517–549.

Boonen, T. J., Chong, W. F., and Ghossoub, M. (2024). Pareto-efficient risk sharing in

centralized insurance markets with application to flood risk. Journal of Risk and Insurance.

Born, P., Cole, C. R., and Nyce, C. (2021). Citizens and the Florida residential property

market: How to return to an insurer of last resort. Journal of Insurance Regulation.

Botzen, W., Aerts, J., and van den Bergh, J. (2009). Willingness of homeowners to mitigate

climate risk through insurance. Ecological Economics, 68(8–9):2265–2277.

Boudreault, M., Grenier, P., Pigeon, M., Potvin, J.-M., and Turcotte, R. (2019). Pricing flood

insurance with a hierarchical physics-based model. North American Actuarial Journal,

24(2):251–274.

Boudreault, M. and Ojeda, A. (2022). Ratemaking territories and adverse selection for flood

insurance. Insurance: Mathematics and Economics, 107:349–360.

Bourgeon, J.-M. and Chambers, R. G. (2003). Optimal area-yield crop insurance reconsid-

ered. American Journal of Agricultural Economics, 85(3):590–604.

Bouwer, L. M. (2013). Projections of future extreme weather losses under changes in climate

and exposure. Risk Analysis, 33(5):915–930.

Browne, M. J., Dehring, C. A., Eckles, D. L., and Lastrapes, W. D. (2018). Does national

flood insurance program participation induce housing development? Journal of Risk and

Insurance, 86(4):835–859.

Browne, M. J. and Hoyt, R. E. (2000). The demand for flood insurance: Empirical evidence.

Journal of Risk and Uncertainty, 20(3):291–306.

Bruggeman, V., Faure, M. G., and Fiore, K. (2010). The government as reinsurer of catastro-

phe risks? The Geneva Papers on Risk and Insurance - Issues and Practice, 35(3):369–390.

Buchanan, J. M. (1975). The Samaritan’s Dilemma, page 71–86. Russell Sage Foundation.

Cagle, J. A. and Harrington, S. E. (1995). Insurance supply with capacity constraints and

168



endogenous insolvency risk. Journal of Risk and Uncertainty, 11(3):219–232.

Cai, J., De Janvry, A., and Sadoulet, E. (2020). Subsidy policies and insurance demand.

American Economic Review, 110(8):2422–53.

Carter, M. R., Galarza, F., and Boucher, S. (2007). Underwriting area-based yield insurance

to crowd-in credit supply demand. Saving and Development, 31(3):335–362.

Casaburi, L. and Willis, J. (2018). Time versus state in insurance: Experimental evidence

from contract farming in Kenya. American Economic Review, 108(12):3778–3813.

Chambers, R. G. and Quiggin, J. (2002). Optimal producer behavior in the presence of

area-yield crop insurance. American Journal of Agricultural Economics, 84(2):320–334.

Chantarat, S., Mude, A. G., Barrett, C. B., and Carter, M. R. (2013). Designing index-

based livestock insurance for managing asset risk in northern Kenya. Journal of Risk and

Insurance, 80(1):205–237.

Chantarat, S., Mude, A. G., Barrett, C. B., and Turvey, C. G. (2017). Welfare impacts of

index insurance in the presence of a poverty trap. World Development, 94:119–138.

Charpentier, A. (2007). Insurability of climate risks. The Geneva Papers on Risk and

Insurance - Issues and Practice, 33(1):91–109.

Charpentier, A. and Le Maux, B. (2014). Natural catastrophe insurance: How should the

government intervene? Journal of Public Economics, 115:1–17.

Chava, S. (2014). Environmental externalities and cost of capital. Management Science,

60(9):2223–2247.

Chen, A. S., Djordjević, S., Leandro, J., and Savić, D. A. (2010). An analysis of the

combined consequences of pluvial and fluvial flooding. Water Science and Technology,

62(7):1491–1498.

Chen, D., Rojas, M., Samset, B., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S.,

Faria, S., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S., Plattner,

G.-K., and Tréguier, A.-M. (2021). Framing, Context, and Methods. In Masson-Delmotte

et al. (2021), page 147–286.

Chen, T., Dong, H., and Lin, C. (2020). Institutional shareholders and corporate social

responsibility. Journal of Financial Economics, 135(2):483–504.

Chen, Z., Lu, Y., Zhang, J., and Zhu, W. (2023a). Managing weather risk with a neural

169



network-based index insurance. Management Science, 0(0):1–22.

Chen, Z., Lu, Y., Zhang, J., and Zhu, W. (2023b). Managing weather risk with a neural

network-based index insurance. Management Science, forthcoming.

Choi, D., Gao, Z., and Jiang, W. (2020). Attention to global warming. The Review of

Financial Studies, 33(3):1112–1145.

Choubin, B., Zehtabian, G., Azareh, A., Rafiei-Sardooi, E., Sajedi-Hosseini, F., and Kişi, O.

(2018). Precipitation forecasting using classification and regression trees (CART) model:

A comparative study of different approaches. Environmental Earth Sciences, 77(8).

Clarke, D. J. (2016). A theory of rational demand for index insurance. American Economic

Journal: Microeconomics, 8(1):283–306.

Cole, S., Stein, D., and Tobacman, J. (2014). Dynamics of demand for index insurance:

Evidence from a long-run field experiment. American Economic Review, 104(5):284–90.

Collier, B. L., Schwartz, D., Kunreuther, H. C., and Michel-Kerjan, E. O. (2022). Insuring

large stakes: A normative and descriptive analysis of households’ flood insurance coverage.

Journal of Risk and Insurance, 89(2):273–310.

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao,

X., Gutowski, W., et al. (2013). Long-term climate change: Projections, commitments

and irreversibility. In IPCC, editor, Climate Change 2013: The Physical Science Basis.

IPCC Working Group I Contribution to AR5, chapter 12. Cambridge University Press,

Cambridge.

Conell-Price, L., Kousky, C., and Kunreuther, H. (2022). Encouraging resiliency through

autoenrollment in supplemental flood insurance coverage. Journal of Risk and Insurance,

89(4):1109–1137.

Cong, L. W., Liang, T., and Zhang, X. (2019). Textual factors: A scalable, interpretable,

and data-driven approach to analyzing unstructured information. Interpretable, and Data-

driven Approach to Analyzing Unstructured Information (September 1, 2019).

Cuñat, V., Gine, M., and Guadalupe, M. (2012). The vote is cast: The effect of corporate

governance on shareholder value. The Journal of Finance, 67(5):1943–1977.

Cummins, J. D. (2006). Should the government provide insurance for catastrophes? Review,

88(4).

170



Cummins, J. D., Lalonde, D., and Phillips, R. D. (2004). The basis risk of catastrophic-loss

index securities. Journal of Financial Economics, 71(1):77–111.

Cummins, J. D. and Weiss, M. A. (2000). Analyzing firm performance in the insurance

industry using frontier efficiency and productivity methods. Handbook of Insurance, page

767–829.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications

on Pure and Applied Mathematics, 41(7):909–996.

Dehghani, M., Saghafian, B., Rivaz, F., and Khodadadi, A. (2017). Evaluation of dynamic

regression and artificial neural networks models for real-time hydrological drought fore-

casting. Arabian Journal of Geosciences, 10(12).

Deng, X., Barnett, B. J., and Vedenov, D. V. (2007). Is there a viable market for area-based

crop insurance? American Journal of Agricultural Economics, 89(2):508–519.

Deng, X., Kang, J.-k., and Low, B. S. (2013). Corporate social responsibility and stake-

holder value maximization: Evidence from mergers. Journal of Financial Economics,

110(1):87–109.

Dessaint, O. and Matray, A. (2017). Do managers overreact to salient risks? Evidence from

hurricane strikes. Journal of Financial Economics, 126(1):97–121.

Dietz, S., Gollier, C., and Kessler, L. (2018). The climate beta. Journal of Environmental

Economics and Management, 87:258–274.

Dimson, E., Karakaş, O., and Li, X. (2015). Active ownership. Review of Financial Studies,

28(12):3225–3268.

Eby, M. (2023). NOAA’s 1-in-100 year flooding can now be expected every 8 years. First

Street Fundation.

Edmans, A. (2011). Does the stock market fully value intangibles? Employee satisfaction

and equity prices. Journal of Financial Economics, 101(3):621–640.

EIOPA (2023). European Insurance and Occupational Pensions Authority: Solvency

II. https://www.eiopa.europa.eu/browse/regulation-and-policy/solvency-ii_

en. Accessed: 2023-11-03.

El Ghoul, S., Guedhami, O., Kwok, C. C., and Mishra, D. R. (2011). Does corporate social

responsibility affect the cost of capital? Journal of Banking & Finance, 35(9):2388–2406.

171

https://www.eiopa.europa.eu/browse/regulation-and-policy/solvency-ii_en
https://www.eiopa.europa.eu/browse/regulation-and-policy/solvency-ii_en


El Ghoul, S., Guedhami, O., Wang, H., and Kwok, C. C. (2016). Family control and corporate

social responsibility. Journal of Banking & Finance, 73:131–146.

Elabed, G., Bellemare, M. F., Carter, M. R., and Guirkinger, C. (2013). Managing basis

risk with multiscale index insurance. Agricultural Economics, 44(4-5):419–431.

Elabed, G. and Carter, M. R. (2015). Compound-risk aversion, ambiguity and the willingness

to pay for microinsurance. Journal of Economic Behavior & Organization, 118:150–166.

Engle, R. F., Giglio, S., Kelly, B., Lee, H., and Stroebel, J. (2020). Hedging climate change

news. The Review of Financial Studies, 33(3):1184–1216.

Er Kara, M., Ghadge, A., and Bititci, U. S. (2020). Modelling the impact of climate

change risk on supply chain performance. International Journal of Production Research,

59(24):7317–7335.

Flammer, C. (2015). Does corporate social responsibility lead to superior financial perfor-

mance? A regression discontinuity approach. Management Science, 61(11):2549–2568.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P.,

Driouech, F., Emori, S., Eyring, V., et al. (2014). Evaluation of climate models. In

Climate change 2013: the physical science basis. Contribution of Working Group I to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 741–

866. Cambridge University Press.

Flavelle, C. (2022). Hurricane ian’s toll is severe. Lack of insurance will make it worse. The

New York Times.

Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S., Edwards, T.,

Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati,

I., Ruiz, L., Sallée, J.-B., Slangen, A., and Yu, Y. (2021). Ocean, Cryosphere and Sea

Level Change. In Masson-Delmotte et al. (2021), pages 1211–1362.

Fulga, C. (2016). Portfolio optimization under loss aversion. European journal of operational

research, 251(1):310–322.

Gall, M. (2023). Why insurance companies are pulling out of California and Florida, and

how to fix some of the underlying problems.

Ge, S. (2021). How do financial constraints affect product pricing? Evidence from weather

and life insurance premiums. The Journal of Finance, 77(1):449–503.

172



Ghadge, A., Wurtmann, H., and Seuring, S. (2019). Managing climate change risks in

global supply chains: A review and research agenda. International Journal of Production

Research, 58(1):44–64.

GIIF (2024). What are the different types of crop index insurance? Accessed: 2024-08-01.

Gillan, S. (2010). Firms’ environmental, social and governance (ESG) choices, performance

and managerial motivation. Unpublished Working Paper.

Gong, X., Hennessy, D. A., and Feng, H. (2023). Systemic risk, relative subsidy rates, and

area yield insurance choice. American Journal of Agricultural Economics, 105(3):888–913.

Goodwin, B. K. (1993). An empirical analysis of the demand for multiple peril crop insurance.

American Journal of Agricultural Economics, 75(2):425–434.

Goss, A. and Roberts, G. S. (2011). The impact of corporate social responsibility on the

cost of bank loans. Journal of Banking & Finance, 35(7):1794–1810.

Goswami, A., Borasi, P., and Kumar, V. (2020). Crop insurance market by coverage and

distribution channel : Global opportunity analysis and industry forecast, 2020–2027. Tech-

nical report, Allied Market Research.

Guo, Z., Leita̋o, J. P., Simões, N. E., and Moosavi, V. (2020). Data-driven flood emulation:

Speeding up urban flood predictions by deep convolutional neural networks. Journal of

Flood Risk Management, 14(1).

Hao, M., Macdonald, A. S., Tapadar, P., and Thomas, R. G. (2018). Insurance loss coverage

and demand elasticities. Insurance: Mathematics and Economics, 79(1):15–25.

Härdle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A. (1998). Wavelets, approxima-

tion, and statistical applications, volume 129 of Lecture Notes in Statistics. Springer.

Harri, A., Coble, K. H., Ker, A. P., and Goodwin, B. J. (2011a). Relaxing heteroscedas-

ticity assumptions in area-yield crop insurance rating. American Journal of Agricultural

Economics, 93(3):707–717.

Harri, A., Coble, K. H., Ker, A. P., and Goodwin, B. J. (2011b). Relaxing heteroscedas-

ticity assumptions in area-yield crop insurance rating. American Journal of Agricultural

Economics, 93(3):707–717.

Harris, R. D. and Mazibas, M. (2022). Portfolio optimization with behavioural preferences

and investor memory. European Journal of Operational Research, 296(1):368–387.

173



Hawkins, E. and Sutton, R. (2009). The potential to narrow uncertainty in regional climate

predictions. Bulletin of the American Meteorological Society, 90(8):1095–1108.

Hazell, P., Jaeger, A., and Hausberger, R. (2021). Innovations and emerging trends in

agricultural insurance: An update. https://www.giz.de. Accessed: 2024-06-07.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778.

Helldén, D., Andersson, C., Nilsson, M., Ebi, K. L., Friberg, P., and Alfvén, T. (2021).

Climate change and child health: a scoping review and an expanded conceptual framework.

The Lancet Planetary Health, 5(3):e164–e175.

Henderson, M. (2023). 2023 Louisiana survey shows homeowners face insurance challenges.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S.,

Kim, H., and Kanae, S. (2013). Global flood risk under climate change. Nature Climate

Change, 3(9):816–821.

Hoepner, A. G., Oikonomou, I., Sautner, Z., Starks, L. T., and Zhou, X. Y. (2023). ESG

shareholder engagement and downside risk. Review of Finance, 28(2):483–510.

Holland, G. and Bruyère, C. L. (2013). Recent intense hurricane response to global climate

change. Climate Dynamics, 42(3–4):617–627.

Hong, H., Li, F. W., and Xu, J. (2019). Climate risks and market efficiency. Journal of

Econometrics, 208(1):265–281.

Hossain, M. S., Alam, G. M., Fahad, S., Sarker, T., Moniruzzaman, M., and Rabbany, M. G.

(2022). Smallholder farmers’ willingness to pay for flood insurance as climate change

adaptation strategy in northern Bangladesh. Journal of Cleaner Production, 338:130584.

Hu, Z. (2022). Social interactions and households’ flood insurance decisions. Journal of

Financial Economics, 144(2):414–432.

Hudak, M. (2022). Floridians running out of options for home insurance.

Hwang, I., Xu, S., and In, F. (2018). Naive versus optimal diversification: Tail risk and

performance. European Journal of Operational Research, 265(1):372–388.

Ilhan, E., Krueger, P., Sautner, Z., and Starks, L. T. (2019). Institutional investors’ views

and preferences on climate risk disclosure. SSRN Electronic Journal.

174

https://www.giz.de


IPCC (2021). Summary for Policymakers. In Masson-Delmotte et al. (2021), pages 3–32.

Isidore, C. (2023). Florida’s homeowner insurance rates are four times the national average.

That’s not getting better anytime soon.

Isidore, C. and Nilsen, E. (2023). Why it’s becoming harder and more expensive to get

homeowners insurance.

Iturrioz, R. (2009). Agricultural insurance. Primer Series on Insurance. The World Bank.,

No. E20-77:1–35.

Jensen, N. D., Barrett, C. B., and Mude, A. G. (2016). Index insurance quality and basis risk:

Evidence from northern Kenya. American Journal of Agricultural Economics, 98(5):1450–

1469.

Jiao, Y. (2010). Stakeholder welfare and firm value. Journal of Banking & Finance,

34(10):2549–2561.

Jiraporn, P., Jiraporn, N., Boeprasert, A., and Chang, K. (2014). Does corporate social

responsibility (CSR) improve credit ratings? Evidence from geographic identification.

Financial Management, 43(3):505–531.

Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C., Mechler, R., Botzen, W. W.,

Bouwer, L. M., Pflug, G., Rojas, R., and Ward, P. J. (2014). Increasing stress on disaster-

risk finance due to large floods. Nature Climate Change, 4(4):264–268.

Ker, A. P., Tolhurst, T. N., and Liu, Y. (2015). Bayesian estimation of possibly similar

yield densities: Implications for rating crop insurance contracts. American Journal of

Agricultural Economics, 98(2):360–382.

Kousky, C. and Kunreuther, H. (2018). Risk management roles of the public and private

sector. Risk Management and Insurance Review, 21(1):181–204.

Kousky, C., Lingle, B., and Shabman, L. (2017). The pricing of flood insurance. Journal of

Extreme Events, 04(02):1750001.

Kousky, C. and Michel-Kerjan, E. (2017). Examining flood insurance claims in the United

States: Six key findings. Journal of Risk and Insurance, 84(3):819–850.

Kreibich, H., Van Loon, A. F., Schröter, K., Ward, P. J., Mazzoleni, M., Sairam, N., Abeshu,

G. W., Agafonova, S., AghaKouchak, A., Aksoy, H., et al. (2022). The challenge of

unprecedented floods and droughts in risk management. Nature, 608(7921):80–86.

175



Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems,

pages 1097–1105.

Krueger, P., Sautner, Z., and Starks, L. T. (2020). The importance of climate risks for

institutional investors. The Review of Financial Studies, 33(3):1067–1111.

Kumar, S., Tiwari, M. K., Chatterjee, C., and Mishra, A. (2015). Reservoir inflow forecasting

using ensemble models based on neural networks, wavelet analysis and Bootstrap Method.

Water Resources Management, 29(13):4863–4883.

Kunreuther, H. (2015). The role of insurance in reducing losses from extreme events: The

need for public–private partnerships. The Geneva Papers on Risk and Insurance - Issues

and Practice, 40(4):741–762.

Kusumaningrum, D., Anisa, R., Sutomo, V. A., and Tan, K. S. (2021). Alternative area

yield index based crop insurance policies in indonesia. In Mathematical and Statistical

Methods for Actuarial Sciences and Finance: eMAF2020, pages 285–290. Springer.

Lechowska, E. (2018). What determines flood risk perception? A review of factors of flood

risk perception and relations between its basic elements. Natural Hazards, 94(3):1341–1366.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J., Engelbrecht, F., Fischer,

E., Fyfe, J., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.

(2021). Future Global Climate: Scenario-Based Projections and Near-Term Information.

In Masson-Delmotte et al. (2021), pages 553–672.

Leefeldt, E. (2024). Why is homeowners insurance in Florida such a disaster?

Levy, B. S. and Patz, J. A. (2015). Climate change, human rights, and social justice. Annals

of Global Health, 81(3):310.

Li, L., Xu, H., Chen, X., and Simonovic, S. P. (2009). Streamflow forecast and reservoir

operation performance assessment under climate change. Water Resources Management,

24(1):83–104.

Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2022). A survey of Convolutional Neural

Networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks

176



and Learning Systems, 33(12):6999–7019.

Lin, N., Kopp, R. E., Horton, B. P., and Donnelly, J. P. (2016). Hurricane Sandy’s flood

frequency increasing from year 1800 to 2100. Proceedings of the National Academy of

Sciences, 113(43):12071–12075.

Lins, K. V., Servaes, H., and Tamayo, A. (2017). Social capital, trust, and firm performance:

The value of corporate social responsibility during the financial crisis. The Journal of

Finance, 72(4):1785–1824.

Liu, Y. and Ker, A. P. (2021). Simultaneous borrowing of information across space and time

for pricing insurance contracts: An application to rating crop insurance policies. Journal

of Risk and Insurance, 88(1):231–257.

Lowder, S. K., Skoet, J., and Raney, T. (2016). The number, size, and distribution of farms,

smallholder farms, and family farms worldwide. World development, 87:16–29.

Luo, H. A. and Balvers, R. J. (2017). Social screens and systematic investor boycott risk.

Journal of Financial and Quantitative Analysis, 52(1):365–399.

Mahul, O. (1999). Optimum area yield crop insurance. American Journal of Agricultural

Economics, 81(1):75–82.

Mahul, O. and Stutley, C. J. (2010). Government support to agricultural insurance: Chal-

lenges and options for developing countries. World Bank Publications.

Mann, M. E. and Emanuel, K. A. (2006). Atlantic hurricane trends linked to climate change.

Eos, Transactions American Geophysical Union, 87(24):233–241.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen,

Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock,

T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., editors (2021). Climate Change 2021:

The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment

Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,

Cambridge, United Kingdom and New York, NY, USA.

Michel-Kerjan, E. and Kunreuther, H. (2011). Redesigning flood insurance. Science,

333(6041):408–409.

Michel-Kerjan, E. O. and Kousky, C. (2010). Come rain or shine: Evidence on flood insurance

purchases in Florida. Journal of Risk and Insurance, 77(2):369–397.

177



Mintz, Y., Aswani, A., Kaminsky, P., Flowers, E., and Fukuoka, Y. (2023). Behavioral

analytics for myopic agents. European Journal of Operational Research, 310(2):793–811.

Miranda, M. J. (1991). Area-yield crop insurance reconsidered. American Journal of Agri-

cultural Economics, 73(2):233–242.

Miranda, M. J. and Glauber, J. (1997). Systemic risk, reinsurance and the failure of crop

insurance market. American Journal of Agriculture Economics, 79(1):206–215.

Morris, C. and Botros, A. (2023). 4 more insurers are leaving California after Allstate and

State Farm flee wildfire risk.

Mosavi, A., Ozturk, P., and Chau, K.-w. (2018). Flood prediction using machine learning

models: Literature review. Water, 10(11):1536.

Mukherjee, S., Mishra, A., and Trenberth, K. E. (2018). Climate change and drought: a

perspective on drought indices. Current climate change reports, 4:145–163.

Nagurney, A., Hassani, D., Nivievskyi, O., and Martyshev, P. (2024). Multicommodity

international agricultural trade network equilibrium: Competition for limited production

and transportation capacity under disaster scenarios with implications for food security.

European Journal of Operational Research, 314(3):1127–1142.

Netusil, N. R., Kousky, C., Neupane, S., Daniel, W., and Kunreuther, H. (2021). The

willingness to pay for flood insurance. Land Economics, 97(1):17–38.

NOAA (2023). NOAA ATLAS 15: Update to the National Precipitation Frequency Stan-

dard. https://www.weather.gov/media/owp/hdsc_documents/NOAA_Atlas_15_Flyer.

pdf. Accessed: 2024-01-06.

Pankratz, N. M. and Schiller, C. M. (2022). Climate change and adaptation in global supply-

chain networks. Finance and Economics Discussion Series, 2022(056).

Pástor, v., Stambaugh, R. F., and Taylor, L. A. (2021). Sustainable investing in equilibrium.

Journal of Financial Economics, 142(2):550–571.

Pedersen, L. H., Fitzgibbons, S., and Pomorski, L. (2021). Responsible investing: The

ESG-efficient frontier. Journal of Financial Economics, 142(2):572–597.

Penning-Rowsell, E. C. (2015). Flood insurance in the uk: A critical perspective. WIREs

Water, 2(6):601–608.

Pielke Jr, R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., and Musulin, R.

178

https://www.weather.gov/media/owp/hdsc_documents/NOAA_Atlas_15_Flyer.pdf
https://www.weather.gov/media/owp/hdsc_documents/NOAA_Atlas_15_Flyer.pdf


(2008). Normalized hurricane damage in the United States: 1900–2005. Natural hazards

review, 9(1):29–42.

Porth, L. and Tan, K. S. (2015). Agricultural insurance-more room to grow? The Actuary,

April/May 2015 Issue.

Porth, L., Tan, K. S., and Zhu, W. (2019). A relational data matching model for enhancing

individual loss experience: An example from crop insurance. North American Actuarial

Journal, 23(4):551–572.

Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32(1/2):122.

Quinn, N., Bates, P. D., Neal, J., Smith, A., Wing, O., Sampson, C., Smith, J., and Hef-

fernan, J. (2019). The spatial dependence of flood hazard and risk in the United States.

Water Resources Research, 55(3):1890–1911.

Rahman, K. (2023). Florida insurance crisis explained: Why multiple insurers are leaving

state.

Ramaswami, B. and Roe, T. L. (2004). Aggregation in area-yield crop insurance: The linear

additive model. American Journal of Agricultural Economics, 86(2):420–431.

Raschky, P. and Weckhannemann, H. (2007). Charity hazard—a real hazard to natural

disaster insurance? Environmental Hazards, 7(4):321–329.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified,

real-time object detection. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 779–788.

Rocque, R. J., Beaudoin, C., Ndjaboue, R., Cameron, L., Poirier-Bergeron, L., Poulin-

Rheault, R.-A., Fallon, C., Tricco, A. C., and Witteman, H. O. (2021). Health effects of

climate change: An overview of systematic reviews. BMJ Open, 11(6).

Romanello, M., Di Napoli, C., Drummond, P., Green, C., Kennard, H., Lampard, P., Scam-

man, D., Arnell, N., Ayeb-Karlsson, S., Ford, L. B., and et al. (2022). The 2022 report of

the lancet countdown on health and climate change: Health at the mercy of fossil fuels.

The Lancet, 400(10363):1619–1654.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical image computing

and computer-assisted intervention, pages 234–241. Springer.

179



Rosch, S. (2021). Federal crop insurance: A primer. Congressional Research Service.

Rowell, D. and Connelly, L. B. (2012). A history of the term “moral hazard”. Journal of

Risk and Insurance, 79(4):1051–1075.

Saintilan, N., Khan, N., Ashe, E., Kelleway, J., Rogers, K., Woodroffe, C. D., and Hor-

ton, B. P. (2020). Thresholds of mangrove survival under rapid sea level rise. Science,

368(6495):1118–1121.

Sang, Y., Zhang, H., and Zuo, L. (2008). Least squares support vector machine classifiers

using pcnns. 2008 IEEE Conference on Cybernetics and Intelligent Systems.

Santana, R. and Phillis, M. (2022). Lack of flood insurance leaves families with broken homes

following Hurricane Ian. Public Broadcasting Service.

Schlenker, W. and Taylor, C. A. (2021). Market expectations of a warming climate. Journal

of Financial Economics, 142(2):627–640.

Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K. A., and Zimek, A. (2015). A

framework for clustering uncertain data. Proc. VLDB Endow., 8(12):1976–1979.

Seltzer, L., Starks, L. T., and Zhu, Q. (2020). Climate regulatory risks and corporate bonds.

SSRN Electronic Journal.

Seo, Y., Kim, S., Kisi, O., and Singh, V. P. (2015). Daily water level forecasting using wavelet

decomposition and artificial intelligence techniques. Journal of Hydrology, 520:224–243.

Sethanand, K., Chaiyawat, T., and Gowanit, C. (2023). Systematic process for crop insurance

development: area-yield rice insurance with machine learning technology implementation

in thailand. Agricultural Finance Review, 83(3):416–436.

Shafaei, M. and Kisi, O. (2016). Predicting river daily flow using wavelet-artificial neural

networks based on regression analyses in comparison with artificial neural networks and

support vector machine models. Neural Computing and Applications, 28(S1):15–28.

Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves,

J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., et al. (2020). An assessment

of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics,

58(4):e2019RG000678.

Shin, H.-H. and Stulz, R. M. (1998). Are internal capital markets efficient? The Quarterly

Journal of Economics, 113(2):531–552.

180



Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

Skees, J. R., Black, J. R., and Barnett, B. J. (1997). Designing and rating an area yield crop

insurance contract. American Journal of Agricultural Economics, 79(2):430–438.

Smith, V. H., Chouinard, H. H., and Baquet, A. E. (1994). Almost ideal area yield crop

insurance contracts. Agricultural and Resource Economics Review, 23(1):75–83.

Stein, J. C. (1997). Internal capital markets and the competition for corporate resources.

The Journal of Finance, 52(1):111–133.

Strauss, B. H., Orton, P. M., Bittermann, K., Buchanan, M. K., Gilford, D. M., Kopp, R. E.,

Kulp, S., Massey, C., Moel, H. d., and Vinogradov, S. (2021). Economic damages from

Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change.

Nature communications, 12(1):2720.

Surminski, S., Aerts, J. C., Botzen, W. J., Hudson, P., Mysiak, J., and Pérez-Blanco, C. D.

(2015). Reflections on the current debate on how to link flood insurance and disaster risk

reduction in the European Union. Natural Hazards, 79:1451–1479.

Swiss Re (2021). Natural catastrophes in 2020: secondary perils in the spotlight, but don’t

forget primary-peril risks. Swiss Re sigma. Accessed: 2024-08-01.

Swiss Re (2022). Natural catastrophes in 2021: the floodgates are open. https://www.

swissre.com/institute/research/sigma-research/sigma-2022-01.html. Accessed:

2023-11-03.

Swiss Re (2024). Continued high losses from natural catastrophes in 2022.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1–9.

Tack, J. B. and Ubilava, D. (2015). Climate and agricultural risk: Measuring the effect of

ENSO on U.S. crop insurance. Agricultural Economics, 46(2):245–257.

Tesselaar, M., Botzen, W. W., Robinson, P. J., Aerts, J. C., and Zhou, F. (2022). Charity

hazard and the flood insurance protection gap: An EU scale assessment under climate

change. Ecological Economics, 193:107289.

The Guardian (2023). “Cascading impacts” warning as farmers becomes latest insurer to

181

https://www.swissre.com/institute/research/sigma-research/sigma-2022-01.html
https://www.swissre.com/institute/research/sigma-research/sigma-2022-01.html


quit Florida.

Thistlethwaite, J., Henstra, D., Brown, C., and Scott, D. (2020). Barriers to insurance as

a flood risk management tool: Evidence from a survey of property owners. International

Journal of Disaster Risk Science, 11(3):263–273.

Thomas, K., Hardy, R. D., Lazrus, H., Mendez, M., Orlove, B., Rivera-Collazo, I., Roberts,

J. T., Rockman, M., Warner, B. P., and Winthrop, R. (2018). Explaining differential

vulnerability to climate change: A social science review. WIREs Climate Change, 10(2).

Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimating the number of clusters in a

data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 63(2):411–423.

Tolan, C. and Devine, C. (2022). Lack of flood insurance in hard-hit Central Florida leaves

families struggling after Hurricane Ian. CNN.

UN (2023). Goal 13: Take urgent action to combat climate change and its impacts.

Venturini, A. (2022). Climate change, risk factors and stock returns: A review of the litera-

ture. International Review of Financial Analysis, 79:101934.

Vercammen, J. A. (2000). Constrained efficient contracts for area yield crop insurance.

American Journal of Agricultural Economics, 82(4):856–864.

Wang, H. H. and Zhang, H. (2003). On the possibility of a private crop insurance market:

A spatial statistics approach. The Journal of Risk and Insurance, 70(1):111–124.

Westerling, A. L. and Bryant, B. P. (2007). Climate change and wildfire in California.

Climatic Change, 87(S1):231–249.

WHO (2023). Climate change.

Wing, O. E., Pinter, N., Bates, P. D., and Kousky, C. (2020). New insights into US flood

vulnerability revealed from flood insurance big data. Nature Communications, 11(1).

Woodard, J. D. (2016). Data science and management for large scale empirical applications

in agricultural and applied economics research. Applied Economic Perspectives and Policy,

38(3):373–388.

Woodard, J. D. and Garcia, P. (2008). Weather derivatives, spatial aggregation, and sys-

temic risk: Implications for reinsurance hedging. Journal of Agricultural and Resource

Economics, 33(1):34–51.

182



World Bank (2023). World bank country and lending groups.

https://datahelpdesk.worldbank.org/knowledgebase/articles/

906519-world-bank-country-and-lending-groups. Accessed: 2024-06-07.

World Ecnomic Forum (2023). Global risks report 2023. https://www.weforum.org/

publications/global-risks-report-2023/. Accessed: 2024-05-20.

Wu, C. L., Chau, K. W., and Li, Y. S. (2009). Predicting monthly streamflow using data-

driven models coupled with data-preprocessing techniques. Water Resources Research,

45(8).

Ye, T., Hu, W., Barnett, B. J., Wang, J., and Gao, Y. (2020). Area yield index insurance

or farm yield crop insurance? Chinese perspectives on farmers’ welfare and government

subsidy effectiveness. Journal of Agricultural Economics, 71(1):144–164.

Zhang, J., Li, Y., Xu, H., and Ding, Y. (2023). Can ESG ratings mitigate managerial

myopia? Evidence from Chinese listed companies. International Review of Financial

Analysis, 90:102878.

Zhang, J.-S. and Xiao, X.-C. (2000). Predicting chaotic time series using Recurrent Neural

Network. Chinese Physics Letters, 17(2):88–90.

Zhu, W., Tan, K. S., and Porth, L. (2019). Agricultural insurance ratemaking: Development

of a new premium principle. North American Actuarial Journal, 23(4):512–534.

Zhu, W., Tan, K. S., Porth, L., and Wang, C.-W. (2018). Spatial dependence and aggregation

in weather risk hedging: A Lévy subordinated hierarchical Archimedean copulas (LSHAC)

approach. ASTIN Bulletin: The Journal of the IAA, 48(2):779–815.

183

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://www.weforum.org/publications/global-risks-report-2023/
https://www.weforum.org/publications/global-risks-report-2023/


Glossary

Adverse selection A situation in which an insurer is unable to differentiate between high-

risk and low-risk individuals, leading to a disproportionate number of high-risk policy-

holders and resulting in higher-than-expected losses 6

Basis risk The risk that the payout from an index insurance policy does not match the

actual loss experienced by the policyholder 8

Capacity In the context of insurance, the maximum amount of risk an insurance company

can underwrite, determined by the insurer’s financial strength, regulatory require-

ments, risk appetite, capital and surplus, reinsurance, regulatory limits, risk appetite,

and exposure management first 89

Cost of capital The cost of funds used for financing a business, representing the return

expected by investors for providing capital to the company 121

Credit risk The risk of loss resulting from a borrower’s failure to repay a loan or meet

contractual obligations 121

Downside risk The potential for loss in value of an investment or portfolio, representing

the risk of the actual return being lower than the expected return 121

Expected shortfall A risk measure that takes into account the size of losses exceeding the

Value-at-Risk (VaR). The formula for ES at confidence level α is:

ESα(X) = E[X | X ≥ VaRα(X)]

184



where X is the loss random variable 27

Expected utility maximizer An individual or entity that makes decisions to maximize

their expected utility, a concept in economics and game theory where choices are made

based on the expected outcomes 92

Indemnity insurance A type of insurance in which the insurer compensates the insured

for the actual loss suffered, up to the limit of the insurance policy 6

Index insurance A type of insurance in which payouts are based on a predetermined index

(such as rainfall level or temperature) rather than the actual loss incurred by the

insured 6, 184

Mean squared error A measure of the average of the squares of the errors or deviations,

i.e., the difference between the estimator and what is estimated. The formula is given

by:

MSE = 1
n

n∑
i=1

(yi − ŷi)2

where yi is the actual value and ŷi is the estimated value 26

Moral hazard The tendency of an insured party to take on more risk because they do not

bear the full consequences of that risk 6

Non-pecuniary utility The satisfaction or benefit derived from goods, services, or activ-

ities that are not measured in monetary terms, such as enjoyment, convenience, or

personal fulfillment 123

Premium loading factor The additional amount included in an insurance premium to

cover expenses, contingencies, and profit margins 107

Price taker An individual or company that must accept prevailing prices in a market,

lacking the power to influence market prices 92

Required rate of return The minimum return an investor expects to achieve by investing

in a particular asset, considering its risk level 97
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Risk averse A term used to describe an investor or individual who prefers lower returns

with known risks rather than higher returns with unknown risks 92

Risk neutral A term used to describe an investor or individual who is indifferent to risk

when making an investment decision, focusing solely on potential returns 92

Risk prudent A term used to describe an individual or entity that takes careful and cal-

culated risks, often incorporating a margin of safety in their decisions 107

Risk-free asset An asset that is assumed to have no risk of financial loss, typically exem-

plified by government bonds or treasury bills, which are considered to have the lowest

default risk 96

Risk-free rate of return The theoretical return on an investment with zero risk, often

represented by the yield on government bonds 96

Tail risk The risk of rare events that have a significant impact on an asset. It refers to the

extreme changes in asset prices or outcomes that occur at the tails of the probability

distribution of returns 9

Underwriting loss The financial loss an insurance company experiences when the claims

and expenses exceed the premiums collected from policyholders 6

Value-at-Risk A measure of the risk of loss for investments. It estimates how much the

value of an asset will loss at the worst α probability. The formula for VaR at confidence

level α is:

VaRα(X) = inf{x ∈ R : P (X ≤ x) ≥ α}

where X is the loss random variable 26, 184
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