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Abstract

Since 1903, the field of ruin theory has provided a time-dynamic point of view on the
problem of insolvency of an insurance portfolio. In his ground-breaking introduction
of the classical risk process, Fillip Lundberg used a Poisson process to model the oc-
currence times of claims. This assumption implies that the inter-claim times are i.i.d.
exponentially distributed, which is hardly supported by data.

If claims appear due to natural disasters, it is more realistic to use a counting pro-
cess driven by a Markovian shot-noise intensity. Regarding the behaviour of the ruin
probability in this model, existing results imply the existence of an upper and lower
bound, both exponentially decreasing at the same rate. Assuming a recurrent structure
of the intensity process, we use a renewal argument to show that the ruin probability
has a Lundberg-type convergence behaviour. Exploiting a specific version of the second
Borel-Cantelli lemma, we further show that the needed recurrence of the Markovian
shot-noise intensity exists as long as the shock events are light-tailed.

Moreover, we consider risk models driven by linear marked Hawkes processes. The
main feature of these processes is their self-exciting structure, a behaviour which can be
observed in the occurrence of claims due to cyber risks. Interested in improving the exist-
ing result of logarithmic convergence, we show that the corresponding ruin probabilities
are bounded from above and below by ruin probabilities of a related Cramér-Lundberg
process. Given the claim size distribution is strongly subexponential, these inequalities
imply the convergence of the ruin probabilities of the Hawkes model. To derive the exact
asymptotics in the light-tailed case, we restrict ourselves to the Markovian model, i.e. a
Hawkes model with an exponential decay function. At first, we show that the intensity
is positive Harris recurrent and that the corresponding recurrence times are light-tailed.
Then, we use similar renewal arguments as in the Markovian shot-noise model to get the
exact asymptotic behaviour of the ruin probabilities.

By its simplicity, the ruin probability gives only limited insights into the structure of
the event of ruin. To resolve this, we extend the concept of Gerber-Shiu functions to
the Markovian shot-noise model. Unfortunately, these risk functionals can hardly be ex-
pressed explicitly. Since simulation is time-consuming, we develop a numerical scheme,
which provides an efficient way to calculate the desired values. It is based on calculating
expected values of appropriate Markov chains, by solving a system of linear equations.
By showing that these Markov chains converge weakly against the piecewise determinis-
tic Markov processes specifying our model, we prove that the numerical approximations
converge to the required Gerber-Shiu functions.
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Kurzfassung

Seit 1903 liefert das Gebiet der Ruintheorie einen zeitdynamischen Blickwinkel auf das
Problem der Insolvenz von Versicherungsportfolios. In seiner bahnbrechenden Einführung
des klassischen Risikoprozesses nutzte Fillip Lundberg einen Poisson-Prozess, um das Er-
scheinen von Schadensereignissen zu modellieren. Diese Annahme impliziert, dass die
Zwischenschadenszeiten i.i.d. exponentialverteilt sind, eine Eigenschaft, die kaum durch
reale Daten gestützt wird.

Wenn Schäden durch Naturkatastrophen verursacht werden, ist es realistischer Zähl-
prozesse mit Markowscher Shot-Noise Intensität zu nutzen. Bisherige Resultate bezüglich
des asymptotischen Verhaltens der Ruinwahrscheinlichkeit in diesem Modell implizieren
die Existenz einer oberen und unteren Schranke, die beide mit der gleichen Rate exponen-
tiell abfallen. Unter der Annahme einer rekurrenten Struktur des Intensitätsprozesses
nutzen wir Erneuerungsargumente, um zu zeigen, dass die Ruinwahrscheinlichkeit ein
Lundberg-artiges Konvergenzverhalten besitzt. Durch eine spezifische Version des zweiten
Borel-Cantelli-Lemmas zeigen wir weiters, dass die benötigte Rekurrenz der Markowschen
Shot-Noise Intensität existiert, solange die momenterzeugende Funktion der Schock-
ereignisse existiert.

Weiters betrachten wir Risikoprozesse, die durch lineare Hawkes-Prozesse angetrieben
werden. Das Hauptmerkmal dieser Prozesse ist ihre selbstanregende Struktur, ein Ver-
halten, das auch bei Schäden durch Cyberrisiken beobachtet werden kann. Interessiert
daran, die bestehenden Ergebnisse der logarithmischen Konvergenz zu verbessern, zeigen
wir, dass die dazugehörigen Ruinwahrscheinlichkeiten von oben und unten durch die Ru-
inwahrscheinlichkeiten eines verwandten Cramér-Lundberg-Prozesses beschränkt werden
können. Gegeben, die Schadenshöhenverteilung ist stark subexponentiell, implizieren
diese Ungleichungen die Konvergenz der Ruinwahrscheinlichkeiten des Hawkes-Modells.
Um das exakte asymptotische Verhalten im Fall einer Schadenshöhenverteilung mit ex-
ponentiell abfallender Überlebensfunktion zu erlangen, beschränken wir uns auf das
Markowsche Modell, also ein Hawkes-Modell mit exponentieller Anregungsfunktion. Zuerst
zeigen wir, dass die Intensität Harris-rekurrent ist und die entsprechenden Rekurrenzzeiten
endliche momenterzeugende Funktion besitzen. Dann nutzen wir ähnliche Erneuerungsar-
gumente wie im Shot-Noise Fall, um das genaue asymptotische Verhalten der Ruin-
wahrscheinlichkeiten zu erhalten.

Durch ihre Einfachheit gibt die Ruinwahrscheinlichkeit nur limitierten Einblick in die
Struktur des Ruinereignisses. Um dies zu beheben, erweitern wir das Konzept der
Gerber-Shiu Funktionen auf das Markowsche Shot-Noise Modell. Unglücklicherweise
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können diese Risikofunktionale kaum explizit ausgedrückt werden. Da Simulationen
zeitaufwendig sind, entwickeln wir eine numerische Methode, die eine effiziente Berech-
nung der gewünschten Werte ermöglicht. Sie basiert auf der Bestimmung von Er-
wartungswerten geeigneter Markow-Ketten, durch Lösen eines Systems linearer Gle-
ichungen. Wir zeigen, dass diese Markow-Ketten schwach gegen stückweise determinis-
tische Markow-Prozesse konvergieren, die unser Modell beschreiben und erhalten dadurch
die Konvergenz der numerischen Approximation gegen die gefragten Gerber-Shiu Funk-
tionen.
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1 Introduction

To prevent insolvencies of insurance companies and the associated economic shocks,
the European Union enacted the Solvency II Directive 2009, which came into effect in
2016. Based on this directive and the corresponding national laws, the insurers must
hold enough capital to satisfy a certain Solvency Capital Requirement based on their
99.5% one-year Value at Risk. By the static nature of the VaR, this method might not
always be satisfactory, especially if we consider a larger time horizon. A time-dynamic
approach to the estimation of insolvency risk is provided by the field of ruin theory.
Here, stochastic processes are used to model the surplus of an insurance portfolio, which
allows us to determine the theoretical properties of corresponding risk functionals. In
this work, we extend some of the existing results of ruin theory to models driven by
specific counting processes, namely the Markovian shot-noise process and the linear
marked Hawkes process. By the cumulative structure of this thesis, it is composed of
the following four self-sufficient scientific papers:

• Chapter 2 is based on the published paper: Simon Pojer and Stefan Thonhauser
(2023a). “Ruin probabilities in a Markovian shot-noise environment”. In: Journal
of Applied Probability 60.2, pp. 542–556. doi: 10.1017/jpr.2022.63,

• Chapter 3 is based on the submitted paper: Simon Pojer (2022). “Level crossings
of the Markovian shot-noise process”. doi: 10.2139/ssrn.4285543. Submitted,

• Chapter 4 is based on the submitted paper: Zbigniew Palmowski, Simon Pojer,
and Stefan Thonhauser (2023). “Exact asymptotics of ruin probabilities with linear
Hawkes arrivals”. doi: 10.48550/arXiv.2304.03075. Submitted,

• Chapter 5 is based on the published paper: Simon Pojer and Stefan Thonhauser
(2023b). “The Markovian shot-noise risk model: a numerical method for Gerber-
Shiu functions”. In: Methodology and Computing in Applied Probability 25.1, p. 17.
doi: 10.1007/s11009-023-10001-w.

Preliminary, we give a short introduction to ruin theory to motivate our research and
contextualize our findings. A more detailed discussion of existing results can be found in
Asmussen and Albrecher (2010), Grandell (1991), Rolski et al. (1999), Schmidli (2017)
and Asmussen and Steffensen (2020).

An introduction to ruin theory

The pioneering definition of the Cramér-Lundberg process in Lundberg (1903) laid the
foundations of modern ruin theory. In this model, the stochastic process describing the
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surplus of an insurance portfolio evolves as follows: the starting value is a non-negative
initial capital u, and the value increases through premium payments, which are assumed
to be linear in time with a constant rate c > 0. At random times, governed by a Poisson
process {Nt}t≥0 with constant jump intensity ρ > 0, claims occur which have to be paid
for by the insurance company. The claim sizes {Ui}i∈N are assumed to be independent
and identically distributed (i.i.d.) and independent of the driving Poisson process. By
this, the surplus process at time t ≥ 0 can be written as

Xt = u+ ct−
Nt∑
i=1

Ui.

As a basic measure for the risk of insolvency in this model, we consider the ruin proba-
bility, i.e. the probability that the surplus process {Xt}t≥0 gets eventually negative. To
stress the dependence on the initial capital u, we write τu = { t ≥ 0 |Xt < 0 } for the
time of ruin and ψ(u) = P [τu <∞] for the corresponding ruin probability. To avoid the
trivial case ψ(u) = 1 for all u ≥ 0, we assume that the net profit condition c > ρE [U1]
holds.

Unfortunately, the ruin probability can hardly be expressed in a closed form. Therefore,
it is convenient to use approximations, which are easy to calculate and behave asymptot-
ically like the ruin probability as the initial capital tends to infinity. If the distribution of
the claim sizes is light-tailed, i.e. if there is a positive constant r such that E

[
erU1

]
<∞,

and the moment-generating function is well-behaved, then, there exists a constant C > 0
and an adjustment coefficient R > 0 such that limu→∞ ψ(u)eRu = C. Exploiting this
behaviour, we get for large initial capital u the so-called Cramér-Lundberg approxima-
tion

ψ(u) ∼ Ce−Ru.

One of the main assumptions of the classical risk model is that the claims arrive at
the jump times of a Poisson process. Consequently, the inter-claim times are i.i.d.
exponentially distributed. As an intuitive generalization of this, the Sparre Andersen
model, also called the renewal model, was introduced by Sparre Andersen (1957). In this
model, claims arrive according to a renewal process, a jump process whose inter-jump
times are i.i.d., but not necessarily exponentially distributed. Further examples of risk
models with different arrival processes are the Markov modulated model considered in
Asmussen (1989), where the jump rate depends on the state of an underlying Markov
chain, and the Björk-Grandell model defined in Björk and Grandell (1988), where the
intensity of the arrival process is an i.i.d. sequence of positive random variables. In all
of these models, there exist conditions under which the ruin probabilities have the same
asymptotic behaviour as in the classical model, i.e. there exists also an adjustment coef-
ficient R > 0 such that limu→∞ ψ(u)eRu = C and the Cramér-Lundberg approximation
is reasonable.

Over the last 30 years, the insured losses due to natural catastrophes had an aver-
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age growth rate of 5 to 7 percent per year, and reached USD 125 billion in 2022. This
increase of the loss size and the corresponding thread for the insurers is assumed to
continue, driven by several factors such as the concentration of assets in vulnerable re-
gions, the rising inflation, and climate change due to global warming, see Banerjee et al.
(2023). One way to translate these risks in a mathematical model is to use counting
processes with shot-noise intensity to describe the occurrence of claims due to natural
disasters, as it was done by Dassios and Jang (2003) and Schmidt (2014). This family of
Cox processes have the following dynamics: at random times, governed by an underlying
Poisson process, a catastrophe, like an earthquake or hurricane, occurs and increases the
corresponding intensity process by a random quantity. This shock triggers several jumps
of the counting process, which do not appear simultaneously but are delayed over time.
As in reality, the effects of a disaster decline over time, e.g. an earthquake from ten
years ago will hardly cause new claims.

Motivated by this, we aim in Chapter 2 to extend the existing convergence results to a
risk model whose arrivals are driven by a Markovian shot-noise process. In this setting,
the structure of the surplus process is the same as in the classical model, but the arrival
process has an intensity {λt}t≥0 of the following form:

λt := λ e−βt +

Nρ
t∑

i=1

Yie
−β(t−T ρ

i ).

Here, {Nρ
t }t≥0 is a Poisson process with constant rate ρ > 0 and corresponding jump

times {T ρ
i }i∈N. Further, λ > 0 is a deterministic initial value, and {Yi}i∈N an i.i.d. se-

quence of positive random variables independent of the Poisson process. The asymptotic
behaviour in a general shot-noise environment was already studied by Albrecher and As-
mussen (2006), where the authors were able to find an adjustment coefficient R > 0 and
two positive constants C and C− such that Ce−Ru ≥ ψ(u) ≥ C−e

−Ru. We enhance this
result for the Markovian model with light-tailed claims and show convergence of the cor-
responding ruin probabilities as in the classical model, i.e. there exists again a constant
C such that ψ(u)eRu → C as u → ∞. To obtain this result, we assume the existence
of a recurrent structure of the underlying intensity process, which exists if the shock
events are exponentially distributed, as showed by Orsingher and Battaglia (1982). In
Chapter 3, we refine this result and prove that the Markovian shot-noise process behaves
recurrently as long as the shock events are light-tailed.

In Chapter 4, we consider a risk model whose arrival process is a linear marked Hawkes
process {Nt}t≥0. This process has a stochastic intensity of the form

λt := a+

Nt∑
i=1

h(t− Ti, Yi),
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where h is a positive function, which decays fast enough to 0. Further, {Yi}i∈N is again
assumed to be an i.i.d. sequence of random variables and a > 0 is a constant baseline. As
before, shocks appear, which increase the intensity process at random times and trigger
claims. In contrast to the shot-noise process, the shock events do not follow an external
Poisson process. Instead, the Hawkes process increases its own intensity, a feature called
self-exciting. This property can be observed in social media, as studied, for example, by
Lukasik et al. (2016), and Rizoiu et al. (2017), the dynamics of a pandemic, see exem-
plary Chiang et al. (2022), and Garetto et al. (2021), and the occurrence of cyber risks,
as described by Bessy-Roland et al. (2021), and Hillairet et al. (2023).

Using a large deviation argument, Karabash and Zhu (2015) showed that the logarithm
of the ruin probabilities in a linear Hawkes model with light-tailed claims converge, i.e.
that there exists a constant R such that limu→∞

1
u log (ψ(u)) = −R. By similar argu-

ments as in Albrecher and Asmussen (2006), we prove that there exists a constant l1
such that

ψ̃(u) ≥ ψ(u) ≥ ψ̃(u+ cl1),

where ψ̃(u) denotes the ruin probability in a related Cramér-Lundberg model. Under the
assumption of a strongly subexponential claim size distribution, the derived inequality
is equivalent to

lim
u→∞

ψ(u)

1− F s
Ũ
(u)

=
ρ

1− ρ
,

where F s
Ũ
(u) denotes the integrated tail distribution of the claim size distribution of a

whole cluster. In the light-tailed case, the above inequality is equivalent to the existence
of positive constants C and C− such that

Ce−Ru ≥ ψ(u) ≥ C−e
−Ru.

To derive stronger results, we restrict ourselves to the Markovian setting,

λt = (λ− a)e−βt + a+

Nt∑
i=1

Yie
−β(t−Ti).

In this case, we can exploit a Harris recurrent structure of the intensity process to derive
the exact exponential asymptotic behaviour of the ruin probabilities.

As a basic measure of risk, the ruin probability gives only limited insights into the struc-
ture of the event of ruin. To resolve this, the concept of discounted penalty functions,
also called Gerber-Shiu functions, was introduced by Gerber and Shiu (1998). For this,
they chose suitable penalty functions w : R2

+ → R and a discounting factor κ and defined
the corresponding discounted penalty function for some initial capital u as

g(u) := E
[
w(Xτu−,−Xτu) e

−κτuI{ τu<∞}
]
.
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These functions allow for a more flexible and detailed description of the event of ruin,
using the surplus before ruin Xτu−, the deficit at ruin Xτu , and the time of ruin τu itself.

Since they are generalizations of the ruin probability, Gerber-Shiu functions share one
disadvantage: generally, there is no explicit way to calculate them. Since simulation
methods are time-consuming, there is an increasing effort to find efficient numerical
methods to determine suitable approximations of the desired values. Recently, Strini and
Thonhauser (2020) developed a numerical scheme to calculate approximations of certain
discounted penalty functions in the Sparre Andersen model by exploiting a Markovian
structure obtained by backward Markovization.

Based on this approach, we develop in Chapter 5 a method to numerically determine
Gerber-Shiu functions in the Markovian shot-noise model. For this, we exploit the
structure of the underlying model, which is fully specified by piecewise deterministic
Markov processes (PDMPs). We identify suitable functionals of certain Markov chains,
which can be determined by solving a system of linear equations and approximating
the desired Gerber-Shiu functions. Eventually, we show that the underlying processes
converge weakly against the original PDMPs; hence, the corresponding expectations
converge too.
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2 Ruin probabilities in a Markovian
shot-noise environment

The following chapter was published as Pojer and Thonhauser (2023a) and is adopted al-
most verbatim. Some changes have been made to ensure consistency of notation through-
out all chapters of this thesis.

2.1 Introduction

The theory of doubly stochastic Poisson processes described in Brémaud (1981), al-
lows the generalization of the well-known Cramér-Lundberg model to the broad class
of Cox models, which are discussed e.g. in Grandell (1991). Members of this family
are for example the Markov-modulated risk model, where the intensity is modelled by
a continuous-time Markov chain which can be found in Chapter VII of Asmussen and
Albrecher (2010) and Chapter 8 of Rolski et al. (1999), the Björk-Grandell model con-
sidered in Schmidli (1997) and diffusion-driven models studied in Grandell and Schmidli
(2011).
Especially, arrivals of claims caused by catastrophic events can be realistically mod-
elled using shot-noise intensity. This has been done in Albrecher and Asmussen (2006),
Dassios, Jang, and Zhao (2015) and Macci and Torrisi (2011) where the asymptotic be-
haviour of the ruin probability in general shot-noise environments was studied. In these
settings, upper and lower bounds could be derived. The idea of applying the theory of
piecewise deterministic Markov processes to a Cox model with Markovian shot-noise in-
tensity was used in Dassios and Jang (2003) and Dassios and Jang (2005) in the context
of pricing reinsurance contracts.

Interested in the behaviour of the ruin probability in this model, we follow the PDMP
approach to find suitable alternative probability measures. Further, we take advantage
of the properties of the process under these measures to obtain an exponentially de-
creasing upper bound. Exploiting a recurrent behaviour of the shot-noise process and
applying the extended renewal theory obtained in Schmidli (1997) we eventually derive
the exact asymptotic behaviour of the ruin probability.

2.2 The Markovian Shot-Noise Ruin Model

We assume for the rest of this paper the existence of a complete probability space
(Ω,F ,P) which is big enough to contain all mentioned stochastic processes and random
variables. For some stochastic process Z we denote the right continuous natural filtration
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by {FZ
t }t≥0. For the shot-noise environment, we consider the following four objects: A

Poisson process {Nρ
t }t≥0 with constant intensity ρ > 0 and jump times {T ρ

i }i∈N, a
sequence {Yi}i∈N of positive i.i.d. random variables with distribution function FY , a
non-negative function w, and a positive starting value λ. With these components we
define the multiplicative shot-noise process by

λt := λw(t) +

Nρ
t∑

i=1

Yiw(t− T ρ
i ).

Since we want to exploit the theory of PDMPs, it would be preferable if the process
{λt}t≥0 satisfies the Markov property. As shown by Schmidt (2017), this is equivalent to
the existence of some β > 0 such that w(t) = e−βt. Due to this, we define the Markovian
shot-noise process in the following way.

Definition 2.1. Let {Nρ
t }t≥0 be a Poisson process with intensity ρ > 0 and jump times

{T ρ
i }i∈N, {Yi}i∈N i.i.d. copies of a positive random variable Y with distribution function

FY and independent of the process {Nρ
t }t≥0, λ > 0 and β > 0 constant. Then, we define

the Markovian shot-noise process by

λt = λe−βt +

Nρ
t∑

i=1

Yie
−β(t−T ρ

i ).

As shown in Dassios and Jang (2005) the Markovian shot-noise process is a piecewise-
deterministic Markov process with generator

Aλf(λ) = −βλ∂f(λ)
∂λ

+ ρ

∫ ∞

0
(f(λ+ y)− f(λ)) FY (dy).

Further information about PDMPs can be found in Davis (1993) or Chapter 11 of Rolski
et al. (1999). To fully specify our model we will now define the surplus process.

Definition 2.2. Let {λt}t≥0 be a Markovian shot-noise process, {Nt}t≥0 a Cox process
with intensity {λt}t≥0 and {Ui}i∈N a sequence of i.i.d. copies of a positive random vari-
able U with continuous distribution FU , which are independent of {Nt}t≥0 and {λt}t≥0.
For some initial capital u and constant premium rate c > 0 we define the surplus process
by

Xt = u+ ct−
Nt∑
i=1

Ui.

Now define Ft := FX
t ∨ Fλ

t ; hence, {Ft}t≥0 is the combined filtration of the Markovian
shot-noise process and the surplus process. If not mentioned differently, we will from
now on consider the filtered probability space

(
Ω,F , {Ft}t≥0,P(u,λ)

)
, where we define

the measure P(u,λ) as the measure P under the conditions that the initial capital of the
surplus process is u and the starting intensity is λ. We will denote the expectation of a
random variable Z under this measure by E(u,λ) [Z] or E [Z] if Z is independent of the
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initial values.

The multivariate process {(Xt, λt, t)}t≥0 is a càdlàg PDMP without active boundary
and generator

Af(x, λ, t) = c
∂f(x, λ, t)

∂x
− βλ

∂f(x, λ, t)

∂λ
+
∂f(x, λ, t)

∂t

+ λ

∫ ∞

0
(f(x− u, λ, t)− f(x, λ, t)) FU (du)

+ ρ

∫ ∞

0
(f(x, λ+ y, t)− f(x, λ, t)) FY (dy).

Its domain consists of all functions f which are absolutely continuous and satisfy the
integrability condition

E(u,λ)

 Ñt∑
i=1

|f(XTi , λTi , Ti)− f(XTi−, λTi−, Ti−)|

 <∞

for all t ≥ 0, where {Ñt}t≥0 denotes the process counting the random jumps of the
PDMP {(Xt, λt, t)}t≥0. Similar to the Cramér-Lundberg model, we want to state a net
profit condition, which is necessary to ensure that ruin does not occur with probability
1.

Lemma 2.1. The surplus process satisfies

lim
t→∞

E(u,λ) [Xt]

t
= c− ρ

β
E [U ]E [Y ] .

Proof. The function f̄(x, λ, t) := x is in the domain of the generator. Consequently,

E(u,λ) [Xt] = u+ E(u,λ)

[∫ t

0
Af̄(Xs, λs, s) ds

]
= u+ ct− E(u,λ)

[∫ t

0
λsE [U ] ds

]
.

The process {λt}t≥0 is positive so we can use Tonelli’s theorem and interchange expec-
tation and integration, which leads to

E(u,λ) [Xt] = u+ ct− E [U ]

∫ t

0
E(u,λ) [λs] ds. (2.1)

Now we use the same procedure to obtain an equation for E(u,λ) [λs]. Defining the

function f̃(x, λ, t) := λ we get

E(u,λ) [λs] = λ− β

∫ s

0
E(u,λ) [λu] du+ ρsE [Y ] .
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Differentiating both sides with respect to s gives us that E(u,λ) [λs] is the solution to the
differential equation g′(s) = −βg(s) + ρE [Y ] , with initial value g(0) = λ. The solution
of the ODE is

E(u,λ) [λs] = λe−βs +
ρ

β
E [Y ] (1− e−βs). (2.2)

Using (2.2) in (2.1), leads to

E(u,λ) [Xt] = u+ ct− E [U ]
ρ

β
E [Y ] t

+ E [U ]

(
λ

β
− ρ

β2
E [Y ]

)(
1− e−βt

)
.

Now, let us divide by t and let it tend to infinity to obtain

lim
t→∞

E(u,λ) [Xt]

t
= c− ρ

β
E [U ]E [Y ] .

Motivated by this result we assume the following:

Assumption 2.1. From now on we assume that the net profit condition

c >
ρ

β
E [U ]E [Y ] ,

is satisfied.

2.3 Martingales and Change of Measure

To obtain the asymptotic behaviour of the ruin probability in this model, we want to
exploit the following result derived in Schmidli (1997).

Theorem 2.2. Theorem 2 of Schmidli (1997)
Assume that z(u) is directly Riemann integrable, that 0 ≤ p(u, x) ≤ 1 is continuous in u
and that

∫ u
0 p(u, y)B(dy) is directly Riemann integrable. Denote by Z(u) the solution to

Z(u) =

∫ u

0
Z(u− y)(1− p(u, y))B(dy) + z(u),

which is bounded on bounded intervals. Then, the limit

lim
u→∞

Z(u)

exists and is finite provided B(u) is not arithmetic. If B(u) is arithmetic with span γ,
then

lim
n→∞

Z(x+ nγ)

22



exists and is finite for all x fixed.

Unfortunately, we cannot apply this theorem directly to our model because of two prob-
lems. The first issue is, that the ruin probability depends on the initial intensity level
λ. To bypass this, we have to choose appropriate renewal times such that {λt}t≥0 has
always the same level, which we will do in Section 2.4. The second problem is, that
suitable choices of B are defective under the original measure P(u,λ). This is a common
issue and can be solved through change of measure techniques.

To do so we have to find martingales of the form Mt = h(Xt, λt, t). Our approach
is a function of the form

h(x, λ, t) := K exp(−θ(r)t− α(r)λ− rx).

To motivate the explicit choice of our parameters let us assume that h is in the domain
of the generator and apply A to h. This gives us

Ah(x,λ, t) = −θh(x, λ, t)− crh(x, λ, t) + βλαh(x, λ, t)

+ λh(x, λ, t)

∫ ∞

0
(eru − 1) FU (du) + ρh(x, λ, t)

∫ ∞

0

(
e−αy − 1

)
FY (dy)

!
= 0.

Since h is strictly positive, we can reformulate the equation to

βλα− cr − θ + λ(MU (r)− 1) + ρ(MY (−α)− 1) = 0.

HereMU (s) andMY (s) denote the moment-generating functions of the random variables
U and Y , which we assume to be finite. The equation above has to hold for any λ > 0;
hence, this is equivalent to

βα+MU (r)− 1 = 0,

− cr − θ + ρ(MY (−α)− 1) = 0.

Solving the above equations for some fixed r we get the unique solutions

α(r) =
1−MU (r)

β
,

and

θ(r) = −cr + ρ

(
MY

(
MU (r)− 1

β

)
− 1

)
.

Now we still have to show that for this explicit choice of the parameters, the process
{h(Xt, λt, t)}t≥0 is indeed a martingale.

Lemma 2.3. Let r be constant such that MU (r) is finite and define α(r) := 1−MU (r)
β .

Assume further that MY (−α(r)) is finite. If θ(r) := −cr + ρ (MY (−α(r))− 1) and
K = exp(ru+ α(r)λ), then h(Xt, λt, t) is integrable and has expectation 1 for all t ≥ 0.
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Proof. The expectation can be rewritten as

E(u,λ) [K exp (−rXt − α(r)λt − θ(r)t)] = exp(−rct− θ(r)t+ α(r)λ)

E(u,λ)

[
exp

(
−r

Nt∑
i=1

Ui − α(r)λt

)]
.

Conditioned on Fλ
t , the counting process {Nt}t≥0 is an inhomogeneous Poisson process

and as shown in Albrecher and Asmussen (2006) its integrated compensator has the form

Λt =

∫ t

0
λs ds =

1

β

λ+

Nρ
t∑

j=1

Yj − λt

 .

Using this we get

exp (−rct− θ(r)t+ α(r)λ) E(u,λ)

[
exp

(
−r

Nt∑
i=1

Ui − α(r)λt

)]
=

exp (−rct− θ(r)t+ α(r)λ) E(u,λ)

[
exp

(
(MU (r)− 1)Λt − α(r)λt

)]
=

exp (−rct− θ(r)t) E

exp
−α(r)

Nρ
t∑

j=1

Yj

 .
The process {

∑Nρ
t

j=1 Yj}t≥0 is a compound Poisson process, whose moment-generating
function is exp(ρt(MY (−α(r)) − 1). By this and the definition of θ(r) we get that
h(Xt, λt, t) has expectation 1.

This result leads immediately to the following theorem.

Theorem 2.4. Under the assumptions of Lemma 2.3, the process M r
t := h(Xt, λt, t) is

a martingale with expectation 1.

Proof. By Lemma 2.3, the process is integrable and has constant expectation 1. Conse-
quently, we just have to show that for all t > s

E(u,λ) [h(Xt, λt, t) | Fs ] = h(Xs, λs, s).

The function h is strictly positive for all values x, λ and t, hence we can simply expand
the conditional expectation above by h(Xs,λs,s)

h(Xs,λs,s)
. Consequently, we get

E(u,λ) [h(Xt, λt, t) | Fs ] = h(Xs, λs, s)E(u,λ)

[
h(Xt, λt, t)

h(Xs, λs, s)

∣∣∣∣ Fs

]
= h(Xs, λs, s)E(u,λ) [exp (−θ(r)(t− s)− r(Xt −Xs)− α(r)(λt − λs)) | Fs ]

= h(Xs, λs, s)E(Xs,λs) [h(Xt−s, λt−s, t− s)] = h(Xs, λs, s).
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Using these martingales, we can define a family of measures Q(r) such that

dQ(r)

dP(u,λ)

∣∣∣∣∣
Ft

=M r
t .

The exponential form of the change of measure allows us to exploit the results shown in
Palmowski and Rolski (2002) to derive the behaviour of the combined process under the
new measures Q(r).

Lemma 2.5. Let r be such that {M r
t }t≥0 is well defined. Then, under the measure Q(r),

the process {(Xt, λt, t)}t≥0 is again a PDMP with generator

A(r)f(x, λ, t) =c
∂f(x, λ, t)

∂x
− βλ

∂f(x, λ, t)

∂λ
+
∂f(x, λ, t)

∂t

+ λ

∫ ∞

0
(f(x− u, λ, t)− f(x, λ, t))eru FU (du)

+ ρ

∫ ∞

0
(f(x, λ+ y, t)− f(x, λ, t))e−α(r)y FY (dy),

So far, we have found a new family of measures but we have to identify a measure that
fits our needs. Motivated by the definition of the adjustment coefficient in the classical
model we consider the function θ(r) = −cr + ρ(MY (−α(r))− 1).

Lemma 2.6. The function θ(r) is convex on {r |MU (r) <∞, MY (−α(r)) <∞} and
satisfies θ(0) = 0.

Proof. To show convexity we use the fact, that moment-generating functions are log-
convex, and therefore convex. Moreover, they are twice differentiable. Consequently, θ
is twice differentiable too and its derivatives are

θ′(r) = −c+ ρ

β
M ′

Y

(
MU (r)− 1

β

)
M ′

U (r),

θ′′(r) =
ρ

β2
M ′′

Y

(
MU (r)− 1

β

)
M ′

U (r)
2 +

ρ

β
M ′

Y

(
MU (r)− 1

β

)
M ′′

U (r).

By convexity of the moment-generating functions, we know that their second derivatives
are non-negative. To ensure that θ is convex, we have to check if the first derivative of the
MGF of Y is non-negative too. Equivalently we show that the MGF of Y is monotone
increasing. Let now r > s then E

[
erY
]
= E

[
esY e(r−s)Y

]
. The random variable Y is

almost surely positive and r − s is positive too. Hence, e(r−s)Y > 1 almost surely. This
gives us

MY (r) = E
[
esY e(r−s)Y

]
> E

[
esY
]
=MY (s).
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Consequently, the first derivative of MY (r) is non-negative. Therefore, θ is convex and
since MU (0) =MY (0) = 1 we get that θ(0) = 0.

Lemma 2.7. Let r be such that the measure Q(r) is well defined and assume there is
some ε > 0 such that MU (r + ε) and MY (−α(r) + ε) are finite. Then,

lim
t→∞

EQ(r)
[Xt]

t
= −θ′(r).

Proof. To show this property, we can use the ideas of the proof of Lemma 2.1. The main
difference is, that we apply the generator A(r). Again we obtain

EQ(r)
[Xt] = u+ ct−MU (r)EQ(r)

[U ]

∫ t

0
EQ(r)

[λs] ds.

The expectation of λt under Q(r) satisfies

EQ(r)
[λt] =

ρ

β
MY (−α(r))EQ(r)

[Y ] (1− e−βt) + e−βtλ.

The expectations EQ(r)
[U ] and EQ(r)

[Y ] can easily be obtained from

MQ(r)

U (s) =
MU (s+ r)

MU (r)

and

MQ(r)

Y (s) =
MY (s− α(r))

MY (−α(r))
.

Consequently, EQ(r)
[U ] =

M ′
U (r)

MU (r) and EQ(r)
[Y ] =

M ′
Y (−α(r))

MY (−α(r)) .
Combining these results we get

lim
t→∞

EQ(r)
[Xt]

t
= c− ρ

β
M ′

Y (−α(r))M ′
U (r) = −θ′(r).

Assumption 2.2. From now on we assume that there exists a positive solution R to
the equation θ(R) = 0, that Q(R) is well defined and that for some ε > 0 both MU (R+ ε)
and MY (ε− α(R)) are finite.

This assumption ensures that the measure Q(R) is well defined and that we can express
the expectation of Y and U in terms of their original moment-generating functions. One
example where this is satisfied is the following.

Example 2.1. Let µ and κ be positive constants. If Y ∼ Exp(µ) and U ∼ Exp(κ), the
net profit condition simplifies to c > ρ

βκµ . The moment-generating functions are given

by MU (r) =
κ

κ−r and MY (−α(r)) = µ
µ+α(r) , where r < κ and −α(r) < µ. If we fix some
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r < µβκ
1+βµ we can determine the functions α(r) = − r

β(κ−r) and

θ(r) = −cr + ρ

(
r

µβ(κ− r)− r

)
.

Solving the equation θ(r) = 0 gives us the solutions r1 = 0 and

R := r2 =
µβκc− ρ

(1 + µβ)c
,

which is positive by the net profit condition. Now we want to show that there is some
ε > 0 such that R+ ε < µβ

1+µβκ and ε− α(R) < µ. The first inequality is equivalent to

ε <
ρ

(1 + µβ)c
,

which is a strictly positive upper bound. The second condition can be rewritten to

ε <
µρβ + ρ

βκc+ ρβ
,

which is positive too. Consequently, Assumption 2.2 is satisfied.

Lemma 2.8. For every u ≥ 0 and λ > 0 we have that Q(R) [τu <∞] = 1.

Proof. We already know that limt→∞
EQ(R)

[Xt]
t = −θ′(R) holds true. If we can show

that θ′(R) > 0 then ruin occurs almost surely under the new measure. The function θ
is convex and satisfies θ(0) = θ(R) = 0. Further we have that

θ′(0) = −c+ ρ

β
E [Y ]E [U ] ,

which is smaller than 0 by the net profit condition. Therefore, there exists 0 < r < R
such that θ(r) < 0. Since θ(R) > θ(r), it follows by the mean-value theorem that there
is a r̃ ∈ (r,R) such that

θ′(r̃) =
θ(R)− θ(r)

R− r
> 0.

By convexity we know that θ′ is a monotone increasing function and θ′(R) ≥ θ′(r̃) > 0.

Similar to the classical model and the Björk-Grandell model which is considered in
Schmidli (1997), we have found a new measure under which ruin occurs almost surely.
We can use this to get an upper bound for the ruin probability.

Theorem 2.9. Under our assumptions

ψ(u, λ) ≤ e−α(R)λe−Ru.
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Proof. The ruin probability can be rewritten as

ψ(u, λ) = E(u,λ)

[
I{τu<∞}

]
= EQ(R)

[
I{τu<∞}

(
MR

τu

)−1
]

= exp(−Ru− α(R)λ)EQ(R)
[exp (RXτu + α(R)λτu)] .

By definition of τu, the value Xτu is negative and since R > 0 we have that MU (R) > 1.
Consequently, α(R) < 0. By this, we get that exp(RXτu + α(R)λτu) ≤ 1 and

ψ(u, λ) ≤ exp(−Ru− α(R)λ).

2.4 The Renewal Equation

We now want to use Theorem 2.2 to get information about the asymptotic behaviour
of the ruin probability ψ(u, λ). Because of the dependence on λ, we have to choose the
renewal times {S+(i)}i∈N such that λS+(i) = λ. To exploit the renewal equation, we
have to ensure that there are infinitely many renewal times and that they are almost
surely finite. For this, we will use the ideas from Orsingher and Battaglia (1982) to get
an intensity for the number of upcrossings of the process {λt}t≥0 through some level l.

Lemma 2.10. Let {λt}t≥0 be the Markovian shot-noise process and l > 0 arbitrary. The
process counting all upcrossings of {λt}t≥0 through l has intensity

ν+l (t) = ρ

∫ l

0
(1− FY (l − z))Fλ(dz, t),

where F (z, t) = P(u,λ) [λt ≤ z] is the cumulative distribution function of λt.

Proof. Consider for some small βt > 0 the probability P(u,λ) [λt ≤ l, λt+βt > l]. The
jumps of {λt}t≥0 are governed by a Poisson process with rate ρ; hence,

P(u,λ) [λt ≤ l, λt+βt > l] = P(u,λ)

[
Nρ

t+βt −Nρ
t = 1, λt ≤ l, λt+βt > l

]
+ o(βt) =

P(u,λ)

[
Nρ

t+βt −Nρ
t = 1, λt ≤ l, λte

−ββt + Y e−β(t+βt−T ) > l
]
+ o(βt) =

P(u,λ)

[
Nρ

t+βt −Nρ
t = 1, λt ≤ l, λt + Y e−β(t−T ) > leββt

]
+ o(βt).

Here T denotes the jump time occurring between t and t+βt and Y is the corresponding
shock. The random time T − t can be represented as Θβt, where Θ is a random variable
which takes values in the interval (0, 1). Consequently, we have that Y eβΘβt ∈ (Y, Y eββt).
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Using this we can bound the above probability by

P(u,λ)

[
Nρ

t+βt −Nρ
t = 1, λt ≤ l, λt + Y eββt > leββt

]
+ o(βt) ≥

P(u,λ)

[
Nρ

t+βt −Nρ
t = 1, λt ≤ l, λt + Y e−βΘβt > leββt

]
+ o(βt) ≥

P(u,λ)

[
Nρ

t+βt −Nρ
t = 1, λt ≤ l, λt + Y > leββt

]
+ o(βt).

Let us focus on the upper bound. The term Nρ
t+βt −Nρ

t is independent of λt and Y so
we can rewrite

P(u,λ)

[
Nρ

t+βt −Nρ
t = 1, λt ≤ l, λt + Y eββt > leββt

]
+ o(βt) =

ρβtP(u,λ)

[
λt ≤ l, λt + Y eββt > leββt

]
+ o(βt) =

ρβtE(u,λ)

[
E(u,λ)

[
I{λt≤l}I{Y >l−λte−ββt} |λt

]]
+ o(βt) =

ρβt

∫ l

0
(1− FY (l − ze−ββt))Fλ(dz, t) + o(βt).

Now, let us divide by βt and consider the limit of βt→ 0. Since FY (l−ze−ββt) decreases
as βt becomes smaller, we get by the right continuity of cumulative distribution function
that this tends to

ρ

∫ l

0
(1− FY (l − z))Fλ(dz, t).

Using the same arguments we can show that the lower bound divided by βt converges
to the same value. Hence, the term 1

βtP(u,λ) [λt ≤ l, λt+βt > l] converges too.

Assumption 2.3. From now on we assume that∫ ∞

0

∫ λ

0
(1− FQ(R)

Y (λ− z))FQ(R)

λ (dz, t) dt = ∞,

where FQ(R)

λ (z, t) := Q(R) [λt ≤ z] and FQ(R)

Y (x) = Q(R) [Y ≤ x].

This assumption guarantees that there are infinitely many upcrossings of the process
through λ under the measureQ(R); hence, the intensity is Harris recurrent. The structure
of our Markovian shot-noise process gives us, that upcrossings can only happen through
shock events and downcrossings are due to the continuous drift. Consequently, there
have to be infinitely many continuous downcrossings and recurrence times {S(i)}i∈N,
such that λS(i) = λ.
One example which satisfies Assumption 2.3 is the following.

Example 2.2. Consider the same configuration as in Example 2.1. Under the new
measure Q(R), the shocks are again exponentially distributed with parameter µ+ α(R)
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and the new intensity of {λt}t≥0 is

ρ̃ = ρMY (−α(R)) =
µβκc+ µβρ

µβ + 1
.

Assume that ρ̃
β = n ∈ N. Like in Orsingher and Battaglia (1982) we can determine the

distribution of Y (t) using its characteristic function

Kt(s) = EQ(R)
[exp(isλ(t))] =

(
e−βt + (1− eβt)

µ+ α(R)

(µ+ α(R))− is

)n

.

This is the characteristic function of the random variable η =
∑Bt

i=1 Yi, where

Bt ∼ B
(
n, 1− e−βt

)
.

Consequently, λt admits a density of the form

f(z, t) =
n∑

j=1

(
n

j

)
e−βt(n−j)(1− e−βt)j(µ+ α(R))je−(µ+α(R))z zj−1

(j − 1)!
.

Using this, the intensity of the upcrossings is given by

ν+λ (t) = ρ

n∑
j=0

(
n

j

)
e−βt(n−j)(1− e−βt)j

(µ+ α(R))jλj

j!
e−(µ+α(R))λ.

Since (µ+α(R))jλj

j! has a positive lower bound c̃, we get that∫ ∞

0
ν+λ (t) dt ≥

∫ ∞

0
ρc̃e−(µ+α(R))λ dt = ∞.

Using this, we can even show that there are infinitely many recurrence times if ρ̃
β is any

real number greater than 1. For this, we consider two auxiliary shot-noise processes

λt = e−βtλ+

Nρ
t∑

i=1

e−β(t−T ρ
i )Yi,

and

λt = e−βtλ+

Nρ
t∑

i=1

e−β(t−T ρ
i )Yi,

where β and β are chosen such that

ρ̃

β
= N1 >

ρ̃

β
>
ρ̃

β
= N2,
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with N1, N2 ∈ N. By construction we have that, λt ≤ λt ≤ λt and both auxiliary
processes cross λ infinitely often. As a consequence {λt}t≥0 crosses λ infinitely often
too.

If Assumption 2.3 holds we have that under the measure Q(R), the surplus process tends
to −∞ and {λt}t≥0 returns to λ infinitely often. Hence, we can define a sequence of re-
newal times {S+(i)}i∈N0 via S+(0) = 0 and S+(i) = min

{
S(i) > S+(i− 1)

∣∣XS(i) < XS+(i−1)

}
which satisfies Q(R) [S+(i) <∞] = 1 for all i. We will use these renewal times similar to
the ladder epochs in the classical ruin model.
Define

B(x) = P(u,λ)

[
S+(1) <∞, u−XS+(1) ≤ x

]
,

and
p(u, x) = P(u,λ)

[
τu ≤ S+(1) |S+(1) <∞, XS+(1) = u− x

]
.

Then, the ruin probability satisfies:

ψ(u, λ) =

∫ u

0
ψ(u− x, λ)(1− p(u, x))B(dx) + P(u,λ) [τu ≤ S+(1), τu <∞] .

This may look like a renewal equation but the distribution B is defective. We solve this
problem by multiplying both sides with eRu, which is equivalent to a measure change
from P to Q(R), and obtain:

ψ(u, λ)eRu =

∫ u

0
ψ(u− x, λ)eR(u−x)(1− p(u, x))eRxB(dx)

+ P(u,λ) [τu ≤ S+(1), τu <∞] eRu. (2.3)

Lemma 2.11. The distribution B̃ defined by B̃(dx) = eRxB(dx) is non-defective.

Proof. Using the definition of B̃ we get∫
R
B̃(dx) =

∫
R
eRxB(dx) = E(u,λ)

[
e
R(u−XS+(1))I{S+(1)<∞}

]
.

Now focus on our martingale {MR
t }t≥0 at time S+(1) and observe that

MR
S+(1) = exp

(
α(R)λ+Ru− α(R)λS+(1) −RXS+(1)

)
= exp

(
R(u−XS+(1))

)
Using this leads to∫

R
B̃(dx) = EQ(R) [

I{S+(1)<∞}
]
= Q(R) [S+(1) <∞] = 1.

Consequently, B̃ is not defective.
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Even though we have found a renewal equation, we still have to show that all functions
appearing in (2.3) satisfy the assumptions of Theorem 2.2.

Assumption 2.4. From now on we assume that there exists an ε > 0 such that for
r := (1 + ε)R the measure Q(r) is well defined and

E(u,λ)

[
e
−r(XS+(1)−u)

I{S+(1)<∞}

]
<∞.

Since S+(1) depends on {Xt}t≥0 and {λt}t≥0, this assumption may be hard to check.
Alternatively, we can use the following lemma, which allows us to focus on the first
recurrence time S(1).

Lemma 2.12. Let ε > 0 such that for r := (1 + ε)R the measure Q(r) is well defined.
Then,

E(u,λ)

[
exp(−r(XS+(1) − u))I{S+(1)<∞}

]
<∞,

if and only if
E(u,λ)

[
exp

(
−r(XS(1) − u)

)
I{S(1)<∞}

]
<∞.

Proof. At first assume that

E(u,λ)

[
exp

(
−r(XS+(1) − u)

)
I{S+(1)<∞}

]
<∞,

holds. By definition S+(1) ≥ S(1) and θ(r) > 0. Consequently,

E(u,λ)

[
exp

(
−r(XS(1) − u)

)
I{S(1)<∞}

]
= EQ(r)

[exp (θ(r)S(1))] ≤ EQ(r)
[exp (θ(r)S+(1))]

= E(u,λ)

[
exp

(
−r(XS+(1) − u)

)
I{S+(1)<∞}

]
<∞.

Let us now assume that

E(u,λ)

[
exp

(
−r(XS(1) − u)

)
I{S(1)<∞}

]
=: C <∞,

holds true. Then,

E(u,λ)

[
exp

(
−r(XS+(1) − u)

)
I{S+(1)<∞}

]
= EQ(R) [

exp
(
−εR(XS+(1) − u)

)]
=

∞∑
i=1

EQ(R) [
exp

(
−εR(XS(i) − u)

)
I{S+(1)=S(i)}

]
.

The indicator can rewritten as

I{S+(1)=S(i)} = I{S+(1)>S(i−1)}I{XS(i)<u} =

i−1∏
j=1

I{XS(j)≥u}I{XS(i)<u}.

With S(0) = 0 we define the i.i.d. sequence of random variables

{ξj}j≥1 := {XS(j) −XS(j−1)}j≥1.
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Consequently, XS(i−1) − u =
∑i−1

j=1 ξj holds true for all i. Using this, we get

EQ(R) [
exp

(
−εR(XS(i) − u)

)
I{S+(1)=S(i)}

]
≤ EQ(R)

exp
−εR

i−1∑
j=1

ξj

 I{∑i−1
j=1 ξj>0}

EQ(R)

exp (−εRξi) I{XS(i)<u}
∣∣∣ i−1∑
j=1

ξj

 .
Let us focus on the conditional expectation. The indicator is less or equal to 1 and ξi is
independent of the condition. Hence,

EQ(R)

exp (−εRξi) I{XS(i)<u}
∣∣∣ i−1∑
j=1

ξj

 ≤ EQ(R)
[exp (−εRξi)] = C <∞.

By this, we get that

EQ(R) [
exp

(
−εR(XS(i) − u)

)
I{S+(1)=S(i)}

]
≤ C EQ(R)

exp
−εR

i−1∑
j=1

ξj

 I{∑i−1
j=1 ξj>0}

 .
Now we want to bound the remaining expectation. For this we observe that for all ε̃ > 0

EQ(R)

exp
−εR

i−1∑
j=1

ξj

 I{∑i−1
j=1 ξj>0}

 ≤ EQ(R)

exp
ε̃R i−1∑

j=1

ξj

 .
To choose ε̃ in a suitable way, we focus on the properties of θ. This function is convex
and satisfies θ(0) = θ(R) = 0 and θ′(0) < 0. Consequently, there exists a r̃ ∈ (0, R) such
that θ(r̃) < 0 Choosing ε̃ = 1− r̃

R ∈ (0, 1) we have that

EQ(R)

exp
−εR

i−1∑
j=1

ξj

 I{∑i−1
j=1 ξj>0}

 ≤ EQ(R)

exp
ε̃R i−1∑

j=1

ξj

 =

EQ(R)
[exp (ε̃Rξ1)]

i−1 = E(u,λ)

[
exp

(
(ε̃− 1)R(XS(1) − u)

)
I{S(1)<∞}

]i−1
=

E(u,λ)

[
exp

(
−r̃(XS(1) − u)

)
I{S(1)<∞}

]i−1
= EQ(r̃) [

exp (θ(r̃)S(1)) I{S(1)<∞}
]i−1

.

By construction we have that θ(r̃) < 0 and S(1) > 0; hence,

EQ(r̃) [
exp (θ(r̃)S(1)) I{S(1)<∞}

]
= p < 1.
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Finally we get

E(u,λ)

[
exp(−r(XS+(1) − u))I{S+(1)<∞}

]
≤ C

∞∑
i=1

pi−1 =
C

1− p
<∞.

Lemma 2.13. The function P(u,λ) [τu ≤ S+(1), τu <∞] eRu is directly Riemann inte-
grable in u.

Proof. Let r be as in Assumption 2.4. Observe that α(r) < 0 and θ(r) > 0 since
r > R > 0. At first, we show that P(u,λ) [τu ≤ S+(1), τu <∞] eru is uniformly bounded.
Let t > 0 be arbitrary but fixed. Then,

P(u,λ) [τu ≤ (S+(1) ∧ t)] eru = EQ(r)
[
I{τu≤(S+(1)∧t)}e

θ(r)τuerXτueα(r)λτu

]
e−α(r)λ

≤ EQ(r)
[
I{τu≤(S+(1)∧t)}e

θ(r)τu
]
e−α(r)λ

≤ EQ(r)
[
eθ(r)S+(1)

]
e−α(r)λ

= E(u,λ)

[
e
−rXS+(1)+ru−α(r)λS+(1)+α(r)λ

I{S+(1)<∞}

]
e−α(r)λ

= E(u,λ)

[
I{S+(1)<∞}e

−r(XS+(1)−u)
]
e−α(r)λ <∞.

The upper bound is independent of t, so by letting t tend to infinity we get

P(u,λ) [τu ≤ S+(1), τu <∞] eru ≤ E(u,λ)

[
I{S+(1)<∞}e

−r(XS+(1)−u)
]
e−α(r)λ.

This bound is even independent of u. To see this, we consider the process Rt =
ct−

∑Nt
i=1 Ui and define the random time T+(1) := min

{
S(i) |RS(i) < 0

}
. They are in-

dependent of u but under P(u,λ) we have almost surely Rt = Xt − u and T+(1) = S+(1).
By this, we see that XS+(1) − u = RT+(1) does not depend on u.
Using the derived boundedness we get that there is some K > 0 such that

P(u,λ) [τu ≤ S+(1), τu <∞] eRu ≤ Ke−(r−R)u,

which is a directly Riemann integrable upper bound. Consequently,

P(u,λ) [τu ≤ S+(1), τu <∞] eRu,

is directly Riemann integrable too.

Let us now focus on the properties of p(u, x).

Lemma 2.14. The function p(u, x) is continuous in u for u > 0.
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Proof. To prove continuity, we will show that

lim
ε→0

p(u+ ε, x) = lim
ε→0

p(u− ε, x) = p(u, x).

We start with the first limit. To do so we will consider a path of our surplus process
{Xt}t≥0 with initial capital u and exactly the same path of the process {Xε

t }t≥0 with
initial capital u+ ε. The premium rate c, the claim sizes Ui and the counting process N
do not depend on the initial capital; hence, Xε

t = Xt+ ε. By the same line of arguments
as in the proof of Lemma 2.13, we see that S+(1) and the condition in the definition of
p do not depend on u.
To be precise, let ω ∈ Ω be an arbitrary event and let us compare the fixed paths of
our processes. If {Xt(ω)}t≥0 gets ruined before S+(1)(ω), there is some ε̃ > 0 such
that for all ε < ε̃ the path {Xε

t (ω)}t≥0 gets ruined in the same moment. If {Xt(ω)}t≥0

stays greater or equal to 0 then {Xε
t }t≥0 stays positive for all ε > 0. Consequently, we

have that limε→0 I{τu+ε<S+(1)}(ω) = I{τu<S+(1)}(ω) and by dominated convergence also
p(u+ ε, x) → p(u, x).
If we can exclude the case, that {Xt}t≥0 hits exactly the value 0, then the same arguments
hold for X−ε

t := Xt − ε.
The infimum of the surplus process can only occur at a jump time of our counting process
{Nt}t≥0. Let T be an arbitrary claim time, then,

P(u,λ) [XT = 0] = P(u,λ) [XT− − UNT
= 0] = E(u,λ)

[
P(u,λ) [XT− − UNT

= 0 | FT− ]
]
.

The random variable UNT
is independent of FT− and its distribution is continuous.

Hence, the probability of hitting exactly the valueXT− is 0. Consequently, P(u,λ) [XT = 0] =
0. Since we have only countably many jump times, the event that the surplus process
hits 0 at any jump time has measure 0 too. Hence, p(u − ε, x) → p(u, x). Combining
these results we get that p(u, x) is continuous in u.

Lemma 2.15. Under our assumptions
∫ u
0 p(u, x)e

RxB(dx) is directly Riemann inte-
grable.

Proof. Again let r be as in Assumption 2.4. Then,∫ u

0
p(u, x)eRxB(dx) ≤ eRu

∫ u

0
p(u, x)B(dx) = eRuP(u,λ) [τu ≤ S+(1) <∞]

≤ eRuP(u,λ) [τu ≤ S+(1), τu <∞] ≤ Ke−(r−R)u.

As before we have a directly Riemann integrable upper bound, and therefore∫ u

0
p(u, x)eRxB(dx),

is directly Riemann integrable.

The continuity of the distribution of U implies that B is not arithmetic. Consequently, all
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conditions of Theorem 2.2 are satisfied. Hence, we can apply it to the renewal equation
satisfied by ψ(u)eRu and obtain our main result.

Theorem 2.16. Under our Assumptions limu→∞ ψ(u, λ)eRu exists and is finite.

Finally, we consider an example where all our assumptions are satisfied.

Example 2.3. Let Y and U be exponentially distributed with parameter 1, β = 1,
ρ = 1.5, λ = 1 and c = 15

4 . The net profit condition is satisfied since

c =
15

4
>

3

2
=
ρ

β
E [Y ]E [U ] .

Further, the moment-generating function of U is given by MU (r) = 1
1−r and α(r) =

1−MU (r) = − r
1−r .

Consequently, MY (−α(r)) = 1−r
1−2r is well defined for all r < 1

2 and the adjustment

coefficient is given by R = 3
10 . The measure Q(R) is well defined and the new intensity

is ρ̃(R) = 21
8 . Since this is greater than 1, we know from Example 2.2 that there are

infinitely many recurrence times {S(i)}i∈N under Q(R).
Choosing r = 1

3 > R, we see that Q(r) is well defined and ρ̃(r) = 3 ∈ N. Following the

results shown in Orsingher and Battaglia (1982), we know that under the measure Q(r),
the recurrence times {S(i)}i∈N have intensity

ν(t) =
1

2e

(
1 + 3e−t − 3e−2t − e−3t

)
≤ 2(

√
2− 1)

e
.

Therefore,

E(u,λ)

[
exp

(
r(XS(1) − u)

)
I{S(1)<∞}

]
= EQ(r)

[exp (θ(r)S(1))]

=

∫ ∞

0
exp(0.25s)ν(s) exp

(
−
∫ s

0
ν(u) du

)
ds.

For t ≥ 1 we have that ν(t) > 0.26 which gives us the existence of some constant c such
that ∫ ∞

0
exp(0.25s)ν(s) exp

(
−
∫ s

0
ν(u) du

)
ds < c

∫ ∞

0
e0.25se−0.26(s−1) ds <∞.

By this, all assumptions made are satisfied. Hence, there exists some constant C such
that

lim
u→∞

ψ(u, λ)e0.3u = C.
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3 Level crossing of the Markovian
shot-noise process

The following chapter is based on the paper Pojer (2022), which is submitted for publi-
cation.

3.1 Introduction

The main motivation for us to consider the Markovian shot-noise process and its re-
currence behaviour are the results derived by Pojer and Thonhauser (2023a). In this
work, a risk model with Markovian shot-noise intensity is considered, and it is shown
that under certain conditions, the ruin probability converges at a fixed exponential rate.
One of the main assumptions made there is the recurrent behaviour of the shot-noise
process, i.e. that it crosses a certain level infinitely often almost surely.
A first result, ensuring this assumption is satisfied, was already shown by Orsingher and
Battaglia (1982). There, an explicit formula for the intensity of the level crossings is
derived for a Markovian shot-noise process with exponentially distributed shock events.
For more general shot-noise environments and distributions, there are papers studying
the expected number of crossings, see Biermé and Desolneux (2012b), and Biermé and
Desolneux (2012a). However, the results derived therein are not strong enough to ensure
that the process crosses the level almost surely infinitely often.

3.2 Level Crossings

At first, we briefly introduce the considered Markovian shot-noise model as it is used by
Pojer and Thonhauser (2023a).

Definition 3.1. Let (Ω,F ,P) be a probability space, big enough to contain all future
stochastic objects, λ and β positive constants and {Nρ

t }t≥0 a homogeneous Poisson
process with intensity ρ and jump times {T ρ

n}n≥1. Let further {Yn}n≥1 be i.i.d. copies
of a positive random variable Y with distribution FY , which satisfies FY (y) < 1 for all
y ∈ R+ and which are independent of {Nρ

t }t≥0. Then, the process

λt := λe−βt +

Nρ
t∑

n=1

Yne
−β(t−T ρ

n),

is called Markovian shot-noise process.
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The main question considered here is if we can give conditions under which the Markovian
shot-noise process returns to some certain level b infinitely often with probability 1. To
show such results, we will use Theorem 4.3.4 of Durrett (2019).

Theorem 3.1 (Second Borel-Cantelli lemma II). Let {Fn}n≥0 be a filtration with F0 =
{∅,Ω} and {Bn}n≥1 a sequence of events with Bn ∈ Fn. Then,

{Bn i.o.} =

{ ∞∑
n=1

P [Bn |Fn−1 ] = ∞

}
.

This version of the second Borel-Cantelli lemma allows structural dependencies without
the common restriction of increasing events.

Lemma 3.2. Let {λt}t≥0 be a Markovian shot-noise process and b > 0. Then, almost
surely there are infinitely many n ∈ N such that λT ρ

n
> b.

Proof. Let n ∈ N be arbitrary. Then, we have almost surely that λT ρ
n
> Yn. Now,

consider the independent events Bn = {Yn > b}. Then

∞∑
n=1

P [Bn] =
∞∑
n=1

F̄Y (b) = ∞.

By the second Borel-Cantelli lemma, see Theorem 2.3.7. in Durrett (2019), this implies
that this happens a.s. infinitely often. Consequently, almost surely there are infinitely
many λT ρ

n
> b.

Since all shock events a strictly positive, the process {λ}t≥0 decreases only along the
continuous exponential curve. This implies that if λT ρ

n
is infinitely often above b and

λT ρ
n− infinitely often below this level, there must be infinitely many crossings of the level

b.

Theorem 3.3. Let {λt}t≥0 be a Markovian shot-noise process and b > 0. Further, let
ρ
β ≤ 1 and E [Y ] < ∞. Then, {λt}t≥0 crosses the level b infinitely often with probability
1.

Proof. As already mentioned before, we will use Borel-Cantelli II. For this, we consider
the sets Bn =

{
λT ρ

n− < b
}

and filtration Fn = σ ({λt | t ≤ T ρ
n }). The set {Bn i.o.}

has the same measure as the set of infinitely many crossings of b since there are a.s.
infinitely many λT ρ

n
above b by Lemma 3.2. The conditional probability of the event

Bn is P [Bn |Fn−1 ] = I{
λ
T
ρ
n−1

>b

}( b
λ
T
ρ
n−1

) ρ
β

+ I{
λ
T
ρ
n−1

≤b

} = min

((
b

λ
T
ρ
n−1

) ρ
β

, 1

)
. The

random variable λT ρ
n−1

is almost surely less or equal to the starting intensity plus the

sum of the shock events λ +
∑n−1

i=1 Yi, and
1

n−1

(
λ+

∑n−1
i=1 Yi

)
converges a.s. to E [Y ]

by the strong law of large numbers. Therefore, for a.e. ω ∈ Ω we have that there exists
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a K(ω) such that 1
n (λ+

∑n
i=1 Yi(ω)) < E [Y ] + b for all n ≥ K(ω). Consequently, we

have for almost every ω ∈ Ω that

∞∑
n=1

P [Bn |Fn−1 ] (ω) ≥
∞∑
n=1

min

(
1,

1

n
ρ
β

(
nb∑n

k=1 Yk(ω)

) ρ
β

)

≥
∞∑

n=K(ω)

min

(
1,

1

n
ρ
β

(
b

E [Y ] + b

) ρ
β

)

=

(
b

E [Y ] + b

) ρ
β

∞∑
n=K(ω)

1

n
ρ
β

= ∞.

This is a first result but it restricts the possible choices of the parameters. The reason,
why we cannot extend this to the case ρ > β is, that the series

∑∞
n=1

1

n
ρ
β

converges. To

bypass this, we use the equation

min

( b

λT ρ
n−1

) ρ
β

, 1

 = min

 1

n− 1

(
(n− 1)

β
ρ b

λT ρ
n−1

) ρ
β

, 1

 .

If we can show that the term
λ
T
ρ
n

n
β
ρ

converges almost surely, we can use the same ideas as

before to prove that there are infinitely many crossings of the level b.

Lemma 3.4. Assume, that the distribution FY is light-tailed, i.e. that there exists some

R > 0 such that MY (R) := E
[
eRY

]
< ∞ and that ρ

β > 1. Then,
λ
T
ρ
n

n
β
ρ

converges almost

surely to 0.

Proof. To show a.s. convergence, we consider a K > 2ρ
β and show that E

[
λK
T ρ
n

]
is finite.

Then, we use Markov’s inequality to show that for every ε > 0

∞∑
n=1

P
[
λT ρ

n
> εn

β
ρ

]
≤

∞∑
n=1

C

n2
<∞.

Having this, the first Borel-Cantelli lemma, see Theorem 2.3.1 in Durrett (2019) gives

us that a.s. only finitely many events λT ρ
n
> εn

β
ρ happen, i.e. that

λ
T
ρ
n

n
β
ρ

converges to 0

almost surely.
Let now K be as desired and r > 0 such that MY (r) < (1+ β

ρ ) and
K
re > 1. Such r exists

since MY (s) is continuous in s = 0 and well defined for some R > 0. Then we know that
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for every m ≥ 0 the following inequality holds true

E [Y m] ≤
(m
re

)m
MY (r).

Using the multinomial-theorem, we get that

E
[
λKT ρ

n

]
= E

 ∑
k0+...kn=K

(
K

k0, . . . kn

)
λk0 exp(−βk0T ρ

n)
n∏

i=1

Y ki
i exp(−βki(T ρ

n − T ρ
i ))

 .
The random variable Y kn

n is independent of the other stochastic objects, hence this is

E
[
λKT ρ

n

]
=

∑
k0+...kn=K

(
K

k0, . . . kn

)
λk0E[Y kn ]E

[
exp(−βk0T ρ

n)

n−1∏
i=1

Y ki
i exp(−βki(T ρ

n − T ρ
i ))

]
.

Now, the random variable exp(−β(K−kn)(T ρ
n−T ρ

n−1)) is independent from the remaining
random variables and has expectation

E
[
exp(−β(K − kn)(T

ρ
n − T ρ

n−1))
]
=

ρ

ρ+ β
∑n−1

j=0 kj
.

Doing this iteratively, we get that

E
[
λKT ρ

n

]
=

∑
k0+...kn=K

(
K

k0, . . . kn

)
λk0

n∏
i=1

E
[
Y ki
]
ρ

ρ+ β
∑i−1

j=0 ki
.

If we define l := min {i |ki > 0}, then we have for every i > l, that

E
[
Y ki
] ρ

ρ+ β
∑i−1

j=0 kj
≤
(
K

re

)ki ρMY (r)

ρ+ β
,

and for i = l

E
[
Y kl
] ρ

ρ+ β
∑l−1

j=0 kj
≤
(
K

re

)kl

MY (r).

40



Now we separate the sum for different values of the first non-zero index

∑
k0+...kn=K

(
K

k0, . . . kn

)
λk0

n∏
i=1

E
[
Y ki
]
ρ

ρ+ β
∑i−1

j=0 ki
=

∑
k0+···+kn=K

k0>0

(
K

k0, . . . kn

)
λk0

n∏
i=1

E
[
Y ki
]
ρ

ρ+ β
∑i−1

j=0 ki
+

n∑
l=1

∑
kl+···+kn=K

kl>0

(
K

kl, . . . kn

) n∏
i=l

E
[
Y ki
]
ρ

ρ+ β
∑i−1

j=l ki
.

Applying the inequalities derived before, we get that

∑
k0+···+kn=K

k0>0

(
K

k0, . . . kn

)
λk0

n∏
i=1

E
[
Y ki
]
ρ

ρ+ β
∑i−1

j=0 ki

≤
(
λ
K

re

)K (MY (r)ρ

ρ+ β

)n ∑
k0+···+kn=K

k0>0

(
K

k0, . . . kn

)

≤
(
λ
K

re

)K (MY (r)ρ

ρ+ β

)n

(n+ 1)K ,

and for general l

∑
kl+···+kn=K

kl>0

(
K

kl, . . . kn

) n∏
i=l

E
[
Y ki
]
ρ

ρ+ β
∑i−1

j=l ki

≤
(
K

re

)K

MY (r)

(
ρMY (r)

ρ+ β

)n−l ∑
kl+···+kn=K

kl>0

(
K

kl, . . . kn

)

≤
(
K

re

)K

MY (r)

(
ρMY (r)

ρ+ β

)n−l

(n− l + 1)K .
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Consequently, this yields

∑
k0+···+kn=K

k0>0

(
K

k0, . . . kn

)
λk0

n∏
i=1

E
[
Y ki
]
ρ

ρ+ β
∑i−1

j=0 ki
+

n∑
l=1

∑
kl+···+kn=K

kl>0

(
K

kl, . . . kn

) n∏
i=l

E
[
Y ki
]
ρ

ρ+ β
∑i−1

j=l ki

≤
(
λ
K

re

)K (MY (r)ρ

ρ+ β

)n

(n+ 1)K +
n∑

l=1

(
K

re

)K

MY (r)

(
ρMY (r)

ρ+ β

)n−l

(n− l + 1)K

≤ C
n∑

i=0

(
MY (r)ρ

ρ+ β

)i

(i+ 1)K ,

where C > 0 depends on K, but is independent of n. This series converges for n → ∞;
hence, the K-th moments of λT ρ

n
are bounded uniformly in n.

By Markov’s inequality, we get for all ε > 0

∞∑
n=1

P
[
λT ρ

n
> εn

β
ρ

]
≤

∞∑
n=1

E
[
λK
T ρ
n

]
εKn

Kβ
ρ

<∞,

where the last inequality holds by the boundedness of the K-th moment and the fact
that Kβ

ρ > 2.

Having this, we can follow the same steps as in the proof of Theorem 3.3 to show that
there are almost surely infinitely many crossings of b.

Theorem 3.5. Let b > 0 and assume that the distribution FY is light-tailed, i.e. that
there exists some R > 0 such that MY (R) := E

[
eRY

]
< ∞. Then, the Markovian

shot-noise process crosses the level b infinitely often probability 1.

Proof. Since we have already considered the case ρ
β < 1 in Theorem 3.3, we can focus on

the case, where ρ > β. Again, we will use the second Borel-Cantelli lemma II, and con-
sider for all n ∈ N the events Bn =

{
λT ρ

n− ≤ b
}
and the filtration Fn = σ ({λt | t ≤ T ρ

n }).
The equality {Bn i.o.} = {

∑∞
n=1 P [Bn |Fn−1 ] = ∞} holds still true. For fixed n ∈ N,

the conditional probability P [Bn |Fn−1 ] is

P [Bn |Fn−1 ] = I{
λ
T
ρ
n−1

≤b

} + I{
λ
T
ρ
n−1>b

}
(

b

λT ρ
n−1

) ρ
β

= min

1,

(
b

λT ρ
n−1

) ρ
β



= min

1,
1

n− 1

(
(n− 1)

β
ρ

b

λT ρ
n−1

) ρ
β

 .

Let ε > 0 be arbitrary, then there are for almost all ω ∈ Ω only finitely many k such
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that
λ
T
ρ
n

n
β
ρ

> ε, i.e. there exists a K(ω) such that for all n ≥ K(ω) it holds that
λ
T
ρ
n

n
β
ρ

< ε.

Consequently,for almost all ω we have that

∞∑
n=1

P [Bn |Fn−1 ] (ω) ≥
∞∑

n=K(ω)

min

(
1,

1

n
(bε)

ρ
β

)
= ∞.

By this, there are almost surely infinitely many n such that λT ρ
n−

< b and infinitely many

crossings of the level b.
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4 Exact asymptotics of ruin probabilities
with linear Hawkes arrivals

The following chapter is based on the paper Palmowski, Pojer, et al. (2023), which is
submitted for publication.

4.1 Introduction

The concept of a ruin probability lies in the center of risk theory since the classical
Cramér-Lundberg model was introduced by Lundberg (1903). It is defined as the prob-
ability that the surplus {Xt}t≥0 of an insurance portfolio falls below zero, i.e.

ψ(u) := Pu[τ < +∞],

where
τ := inf{t ≥ 0 : Xt < 0} (4.1)

denotes the time of ruin. Usually, it is assumed that the so-called net profit condition
holds, that is,

lim
t→+∞

Xt = +∞ a.s.. (4.2)

This requirement is necessary to ensure ψ(u) < 1.

The event of ruin is a technical term - it does not mean that the company goes bankrupt
at the time of ruin. A downward crossing of some fixed level (that could be treated
as level zero) of the surplus signals the insurance company to increase its profitability.
Further, ruin theory can be used to determine solvency capital requirements.

In this paper, we consider the ruin probability of the risk process

Xt := u+ ct−
Nt∑
i=1

Ui, (4.3)

where u denotes the positive initial capital and c the premium rate. The claim sizes
{Ui}i∈N are positive, i.i.d. random variables with cumulative distribution function FU ,
and independent of the arrival process {Nt}t≥0, which is assumed to be a marked linear
Hawkes process. We recall that this means that {Nt}t≥0 is a simple point process with
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intensity process

λt := a+
∑
Ti≤t

h(t− Ti, Yi),

where a is a constant baseline intensity and the shock sizes {Yi}i∈N are a sequence of
positive i.i.d. random variables with distribution function FY . Further, {Ti}i∈N are the
jump times of {Nt}t≥0, and h : R≥0 × R≥0 → R≥0 is a decay function satisfying

E
[∫ ∞

0
h(t, Y )dt

]
=: µ < 1 and E

[∫ ∞

0
t h(t, Y )dt

]
< +∞. (4.4)

We assume that the considered stochastic quantities are defined on a suitable filtered
probability space (Ω,F , {Ft}t≥0,P) where the filtration is assumed to be right contin-
uous but not necessarily P-complete. To stress the dependence of the distribution of
certain stochastic objects on the initial capital u, we write Pu for the measure P with
condition X0 = u, and Eu [·] for the corresponding expectation.

Incorporating Hawkes arrival processes into risk theory is important due to their self-
exciting structure, which is, for example, observable in the occurrence of claims due to
cyber risks, as described in Bessy-Roland et al. (2021). This behaviour can be described
as follows: every jump of a Hawkes process increases its own intensity; hence, the prob-
ability of further jumps rises with every event. Hawkes processes have another crucial
interpretation: they are Poisson cluster processes. Clusters of claims appear according
to a homogeneous Poisson process {Ñt}t≥0 with the baseline intensity a. These clus-
ters generate claims according to a Galton-Watson branching process with an offspring
distribution whose mean is µ < 1. In other words, one event that arrives according to
the Poisson process {Ñt}t≥0 produces a chain of further claims that are reported to the
insurance company delayed over time.

Generally, the ruin probability cannot be expressed in a closed form. To bypass this
drawback, it is essential to find appropriate bounds or approximations which behave
asymptotically like the ruin probability as the initial capital u becomes large. The main
goal of this paper is to derive such results for the aforementioned linear Hawkes model.

In the beginning, we compare our process to a version of it, modified by shifting all
claims of a cluster to its beginning. This approach leads to two statements. Under some
light-tailed assumptions, we prove in Corollary 4.5 that there exist positive constants
C−, C+ and an adjustment coefficient R > 0 such that

C−e
−Ru ≤ ψ(u) ≤ C+e

−Ru. (4.5)

We want to underline that this result implies Theorem 4.1 of Stabile and Torrisi (2010)
who derived the logarithmic asymptotic behaviour by using large deviation theory to
show that limu→+∞

1
u lnψ(u) = −R. A similar result as (4.5) was shown in Theorem

4.5 of Albrecher and Asmussen (2006) for the Cox claim arrival process with a Poisson
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shot noise intensity. Our argumentation relies on the ideas presented by these authors,
but their proof has a petite technical flaw - the according result is still correct. They
assumed that if one considers all claims of the first n clusters, the last occurring claim
always belongs to the n-th cluster. This premise is incorrect since claims which belong
to previous clusters might still appear with positive probability after the n-th cluster
has finished. We bypass this problem by considering the remaining time it takes to work
off all clusters instead.

Under the complementary assumption of strongly subexponential (hence heavy-tailed)
claim sizes, we prove in Corollary 4.7 that

lim
u→∞

ψ(u)

1− F s
U (u)

= Ch,

for an explicitly identified constant Ch, where

F s
U (u) :=

1

E [U1]

∫ u

0
(1− FU (y))dy, (4.6)

denotes the integrated tail distribution of the claim sizes. The above results generalize
the findings in Proposition 13 of Zhu (2013), where the authors considered a risk process
driven by a non-marked linear Hawkes process.

To identify the exact asymptotics of the ruin probability ψ(u) in the light-tailed case,
we additionally assume that the intensity process is Markovian, i.e.

λt := a+ (λ− a)e−βt +

Nt∑
i=1

Yie
−β(t−Ti),

for some λ > a > 0 and β > 0. Using change of measure techniques and renewal
arguments, we show that in this case

limu→ ∞ψ(u)eRu = C, (4.7)

for a positive constant C.

In the proof, we show a few other facts that are of interest on their own. For example,
we find sufficient conditions for the intensity process to be positive Harris recurrent.
Further, we prove that the corresponding recurrence times are light-tailed. We use these
recurrence epochs of the intensity process combined with ladder epochs of the risk process
to construct new time points {ϕi}i∈N that allow us to formulate a renewal-type equation
for the ruin probability multiplied by an appropriate exponential function appearing on
the right-hand side of (4.7). To prove that the limit of the solution of this renewal-type
equation exists and is finite we identify sufficient conditions for the directly Riemann in-
tegrability of some functions appearing in this equation. This is possible due to a detailed
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analysis of exponential moments of Xϕ1 . We believe that our approach and the ideas
of the proofs presented in this paper can be applied to other cluster arrival processes too.

This manuscript is organized as follows. In Section 4.2, we construct a modified version
of the risk process to show two-sided exponential bounds for the ruin probability ψ(u) in
the light-tailed case and the heavy-tailed asymptotics of ψ(u). In Section 4.3 we study
the theoretical properties of Markovian Hawkes processes and prove the aforementioned
Cramér-Lundberg asymptotics for ψ(u) using renewal arguments and the change of mea-
sure technique. We finish our paper with a detailed analysis of the with exponentially
distributed claims and shocks (see Section 4.4).

4.2 Cluster representation and a modified risk process

4.2.1 Cluster representation of the risk process

We consider a risk process driven by a linear marked Hawkes process {Nt}t≥0 satisfying
(4.4). For convenience, we will omit the properties ’linear’ and ’marked’ for the rest
of the paper and refer to this process as Hawkes process. In this section, the so-called
Poisson cluster representation or simply cluster representation is crucial. For this, we
consider the influence of a single shock event due to the baseline intensity a, called
a base event. If such a jump occurs, the counting process {Nt}t≥0 increases by 1,
and the intensity increases by h(0, y), where y is a realisation of a random variable
with distribution function FY . This increase of the intensity triggers Poi(

∫∞
0 h(t, y)dt)

further jumps, which we denote by children, where Poi(α) denotes the random variable
with Poisson distribution with a parameter a. The occurrence of a single child increases
the counting process by 1 and triggers again Poi(

∫∞
0 h(t, y′)dt) new jumps, where y′ is

a new, independent realisation with the same distribution. We collect the offspring of a
base event and call it cluster. An important question which appears naturally is if such
a cluster consists of finitely many points or may explode. As Basrak et al. (2019) showed
the number of points κ in such a generic cluster coincides with the number of points in
a subcritical Galton-Watson branching process. By this, we have that κ is finite almost
surely and has finite expectation E [κ] = 1

1−µ .

By this, we can rewrite the intensity process as

λt = a+

N̄t∑
i=1

K
(i)

t−T̄i∑
j=0

h

(
t− (T̄i +

j∑
k=1

Tik), Yij

)
,

where {N̄t}t≥0 denotes a Poisson process with constant intensity a and jump times T̄i.

For fixed i, the process {K(i)
t }t≥0 counts the offspring of the i-th base event and its jump

times are given by T̄i + Ti1, T̄i + Ti1 + Ti2, . . ., where Tij denotes the inter-jump time
between the j − 1-th and j-th jump of cluster i. The random variables Yij correspond
to the shock of the j-th event in the i-th cluster, and Yi0 is the shock due to the base
event of the i-th cluster. Since every cluster has the same distribution, we have that for
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all j ≥ 1, the sequence {
∑j

k=1 Tik}i≥1 is i.i.d. By the same procedure, we can rewrite
the surplus process as

Xt = u+ ct−
N̄t∑
i=1

K
(i)

t−T̄i∑
j=0

Uij ,

where the random variable Uij denotes the claim due to the j-th event of the i-th cluster.

Since the number of events of a single cluster is finite almost surely, we have that

K
(i)
t → K

(i)
∞ =: κi, almost surely as t→ ∞. Since all clusters have the same distribution,

we have that {κi}i∈N is an i.i.d. sequence of random variables satisfying

E [κi] =
1

1− µ
; (4.8)

see e.g. p. 203 of Daley and Vere-Jones (2003).

This representation shows us the main feature of our model. An underlying Poisson pro-
cess triggers with every jump a cluster consisting of a random number κi of claims. These
claims do not occur immediately but are delayed in time. We will use this representation
to derive pathwise bounds for the surplus process.

4.2.2 Upper and lower bounds for the surplus

To derive a lower bound for the surplus process we ignore the mentioned delay in time.
We define the clustered process {X̃t}t≥0 as

X̃t = u+ ct−
N̄t∑
i=1

κi∑
j=0

Uij =: u+ ct−
N̄t∑
i=1

Ũi, (4.9)

where

Ũi :=

κi∑
j=0

Uij , i ∈ N (4.10)

form an i.i.d. sequence independent of the counting Poisson process {N̄t}t≥0, counting

the number of clusters. Since κi ≥ K
(i)
t for all t almost surely, we have that

Xt ≥ X̃t. (4.11)

for any realisation of the arrival and claim processes. To avoid trivial cases, we assume
that the net profit condition

c > E[Ũ ]a, (4.12)

holds for the modified risk process {X̃t}t≥0. Observe that the clustered process {X̃t}t≥0

is now a Cramér-Lundberg process. Consequently, we can use standard results for this
process to obtain an upper bound for the ruin probability ψ(u) of our surplus process
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{Xt}t≥0. Let
ψ̃(u) := Pu(inf

t≥0
X̃t < 0) (4.13)

be a ruin probability of the corresponding clustered process {X̃t}t≥0.

Lemma 4.1. We have,
ψ(u) ≤ ψ̃(u).

Proof. This follows immediately by inequality (4.11).

To derive a lower bound for the ruin probability, we follow the ideas of Albrecher and
Asmussen (2006), who consider a general shot-noise model, and find a suitable constant
l1 such that ψ(u− l1) ≥ ψ̃(u). For this, we first introduce some additional notation. We
write Li for the length of cluster i, i.e.

Li = inf
{
t ≥ 0

∣∣∣K(i)
t = K(i)

∞ = κi

}
.

By the i.i.d. structure of the clusters, we have that the sequence {Li}i∈N is also i.i.d.
following some cumulative distribution function FL. Further, we observe that Li =∑κi

j=1 Tij , where {Tij}j∈{1,...κi} denotes the set of inter-jump times of the i-th cluster.

Let
τ̃ := inf{t ≥ 0 : X̃t < 0}

denote the time of ruin of the clustered process {X̃t}t≥0 and L̃ the time from τ̃ until all
clusters which appeared up to time τ̃ finished, i.e.

L̃ := sup

T̄i +
κi∑
j=1

Tij : T̄i ≤ τ̃

− τ̃ .

In other words, this is the minimal random time such that for all i with T̄i ≤ τ̃ we have

K
(i)

τ̃+L̃
= K

(i)
∞ = κi.

Then, we have whenever τ̃ and L̃ are finite that

Xτ̃+L̃ = u+ c(τ̃ + L̃)−
N̄τ̃+L̃∑
i=1

K
(i)

τ̃+L̃∑
j=0

Uij (4.14)

= u+ cτ̃ −
N̄τ̃∑
i=1

κi∑
j=0

Uij + cL̃−
N̄τ̃+L̃∑

i=N̄τ̃+1

K
(i)

τ̃+L̃∑
j=0

Uij (4.15)

≤ X̃τ̃ + cL̃. (4.16)

Consequently,
Xτ̃+L̃ − cL̃ ≤ X̃τ̃ < 0.
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Hence, if we reduce the initial capital of our process by cL̃, then ruin of the clustered
process also causes ruin of the original surplus. The main problem is that L̃ is random,
could be infinite and is not measurable with respect to the filtration of the original surplus
process {Xt}t≥0 nor with respect to the filtration of the clustered process {X̃t}t≥0. To
bypass these problems, we want to identify constants l1 and C such that ψ(u − cl1) ≥
Cψ̃(u).

Lemma 4.2. Let t > 0 be deterministic such that P [L1 ≤ t] > 0. Then there exists a
constant ζt ∈ (0, 1] such that ψ(u− ct) ≥ ζtψ̃(u).

Proof. At first, we set for convenience L̃(ω) = ∞ whenever τ̃(ω) = ∞. Then, we observe
that for all ω such that L̃(ω) < t we have that τ̃u(ω) < +∞ and τu−ct(ω) < +∞. Here,
τu denotes the time of ruin with initial capital u of the surplus process {Xt}t≥0 and τ̃u
the corresponding ruin time of {X̃t}t≥0 with starting point u. The implication that τ̃u
has to be finite is clear since L̃ = ∞ if τ̃ = ∞. On the other hand, we have by inequality
(4.14) that in this case

τu−ct(ω) ≤ τ̃u(ω) + L̃(ω) ≤ τ̃u(ω) + t < +∞.

Using these implications, we get for fixed t that

ψ(u− ct) ≥ P
[
τu−ct < +∞, L̃ ≤ t

]
= P

[
L̃ ≤ t

]
=

∞∑
n=1

P
[
L̃ ≤ t

∣∣ τ̃u = T̄n

]
P
[
τ̃u = T̄n

]
.

If we can now bound P
[
L̃ ≤ t

∣∣ τ̃u = T̄n

]
from below by a positive constant ζt, this

inequality would imply that

ψ(u− ct) ≥ ζt

∞∑
n=1

P
[
τ̃u = T̄n

]
= ζtψ̃(u),

since ruin for the clustered process can only happen at jump times T̄n of the Poisson
process {N̄t}t≥0.

To do this, we determine the distribution of a sequence of auxiliary variables L̃n :=
max

{
T̄i − T̄n + Li : i ≤ n

}
, i.e. the random variable L̃ conditioned on τ̃ = T̄n. Then, we

have that

P
[
L̃n ≤ t

]
= P

[
T̄1 − T̄n + L1 ≤ t, . . . , T̄n−1 − T̄n + Ln−1 ≤ t, Ln ≤ t

]
.

The random variable Ln is independent of the random variables Li for i < n and of the
Poisson process N̄t. Further, by the lack of memory of exponential law, we have that
En := T̄n − T̄n−1 is exponentially distributed with parameter a and independent of the
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information up to T̄n−1. This yields

P
[
L̃n ≤ t

]
= FL(t)P

[
T̄1 − T̄n−1 ≤ t+ En, . . . , Ln−1 ≤ t+ En

]
.

Conditional on En, we have the same structure as before and now Ln−1 is independent
of all other random variables and En−1 = T̄n−1− T̄n−2 is again exponentially distributed.
Consequently,

P
[
L̃n ≤ t

]
= FL(t)× E

[
FL(t+ En)

P
[
T̄1 − T̄n−2 ≤ t+ En + En−1, . . . , Ln−2 ≤ t+ En + En−1 |En

] ]
.

Using the fact that FL(x) ≤ 1 for all x > 0, and continuing above procedure we get that

P
[
L̃n ≤ t

]
= E

[
n−1∏
i=0

FL

(
t+ T̃i

)]
≥ E

[ ∞∏
i=0

FL

(
t+ T̃i

)]
,

where

T̃k :=
k∑

j=1

En+1−j .

This property holds for all n ∈ N, and even though the jump times T̃i depend on n, the
expectations coincide since they have the same distribution and the same dependence
structure for all n due to the stationarity of the Poisson process. Now, we still have to
show that this expectation is strictly positive.

To do so, we use that an infinite product
∏∞

n=1(1+an) converges absolutely to a nonzero
real number if the series

∑∞
n=1 |an| converges and 1+ an > 0 for all n. If we write F̄L(x)

for the tail 1− FL(x) we get for fixed ω ∈ Ω that

∞∏
i=0

FL

(
t+ T̃i(ω)

)
=

∞∏
i=0

(
1− F̄L

(
t+ T̃i(ω)

))
.

Since for all i, we have that F̄L(t + T̃i) ≤ F̄L(t) < 1, we want to show that the series∑∞
i=0 F̄L

(
t+ T̃i(ω)

)
converges for almost all ω, to get that the product

∏∞
i=0 FL

(
t+ T̃i

)
converges almost surely to a random variable C ∈ (0, 1], which would give us positiveness
of the corresponding expectation.
By the strong law of large numbers, we have that 1

n T̃n → a almost surely. Let now ω
be such that this convergence holds. Then, there exists a Nω such that T̄n ≥ na

2 for all
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n ≥ Nω. By this, and the monotone decreasing behaviour of F̄L, we get that

∞∑
i=0

F̄L

(
t+ T̃i(ω)

)
≤ Nω + 1 +

∞∑
i=≤Nω+1

F̄L

(
t+ T̃i(ω)

)
≤ Nω + 1 +

∞∑
i=Nω+1

F̄L

(
t+ n

a

2

)
.

The remaining series converges if and only if the corresponding integral∫ ∞

Nω+1
F̄L

(
t+ x

a

2

)
dx,

converges. For this, we have that∫ ∞

Nω+1
F̄L

(
t+ x

a

2

)
dx ≤

∫ ∞

Nω+1
F̄L

(
x
a

2

)
dx ≤ 2

a

∫ ∞

0
F̄L(y) dy =

2

a
E [L1] .

Here, L1 denotes the length of the first cluster. By the proof of Lemma 1 in Møller and
Rasmussen (2005), we have that

E[L1] ≤
1

1− µ
E
[∫ ∞

0
t h(t, Y ) dt

]
< +∞.

Consequently, we have that the series
∑∞

i=0 F̄L

(
t+ T̃i

)
converges a.s., which implies

that the product
∏∞

i=0 FL

(
t+ T̃i

)
∈ (0, 1] almost surely. This gives us finally that

ζt := E
[∏∞

i=0 FL

(
t+ T̃i

)]
∈ (0, 1].

From Lemmas 4.1 and 4.2 we can conclude the general case with the following theorem.

Theorem 4.3. Let l1 be deterministic such that P [L1 ≤ l1] > 0. Then, there exists a
constant ζl1 ∈ (0, 1] such that the ruin probability in the general Hawkes model satisfies

ψ̃(u) ≥ ψ(u) ≥ ζl1ψ̃(u+ l1c),

where ψ̃(u) denotes the ruin probability (4.13) of the clustered process {X̃t}t≥0, i.e. the
ruin probability of a Cramér-Lundberg process.

4.2.3 Cramér-Lundberg bounds and heavy-tailed asymptotics

Interested in the asymptotic behaviour of the ruin probability as the initial capital
tends to infinity, we will see that this behaviour depends highly on the behaviour of the
distribution of the generic claim size U of the risk process (4.3). To understand this
behaviour we recall that the generic claim size of the Cramér-Lundberg process (4.9) is
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given in (4.10), that is, Ũ =
∑κ

k=1 Uk for a generic cluster size κ. We prove the following
basic fact.

Lemma 4.4. The generic cluster size κ is light-tailed, i.e. there exists θ > 0 such that
E
[
eθκ
]
< +∞.

Proof. Observe that κ has the same law as a total progeny in a Galton–Watson branching
process with Poisson offspring distribution whose mean is µ. From Dwass (1969) it
follows that

P(κ = n) =
1

n
P(Sn = −1),

where Sn is a random walk with i.i.d. increments Xi
D
= Poi(µ) − 1 for a Poissonian

random variable Poi(µ) with the parameter µ. Hence P(κ = n) ≤ P(−Sn
n ≤ 0) and

this probability decays exponentially to zero by the Cramér-Chernoff Theorem. This
completes the proof.

We are ready to state the first corollary.

Corollary 4.5. Assume that the claim events {Ui}i∈N of the risk process (4.3) are light-
tailed and that there exists R > 0 such that

a(E
[
E
[
eRU

]κ]− 1) = cR.

Then, there exist positive constants C− and C+ such that

C−e
−Ru ≤ ψ(u) ≤ C+e

−Ru.

Proof. By Lemma 4.4 it follows that the generic Ũ defined in (4.10) is light-tailed and
that

a(E
[
eRŨ

]
− 1) = cR. (4.17)

Under our assumptions, we have by Theorem 5.4.1 on p. 170 of Rolski et al. (1999)
that there exist constants C̃−, C+ such that the ruin probability of the clustered surplus
process ψ̃(u) satisfies

C̃−e
−Ru ≤ ψ̃(u) ≤ C+e

−Ru,

for all u ≥ 0. Having this, we get that

C+e
−Ru ≥ ψ̃(u) ≥ ψ(u) ≥ ψ̃(u+ cl1) ≥ C̃−e

−Rcl1e−Ru =: C−e
−Ru.

Remark 4.1. This behaviour implies convergence of the logarithm of the ruin probabilities
in the Hawkes model, as it was already derived by Karabash and Zhu (2015).

We identify the asymptotic behaviour of the ruin probability also in the case when the
generic claim size is heavy-tailed. We introduce now the appropriate class of distributions
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that we will work with. Let FŨ be the distribution of Ũ defined in (4.10). We denote

F s
Ũ
(u) :=

1

E
[
Ũ1

] ∫ u

0
(1− FŨ (y)) dy.

We say that a distribution F on R+ with unbounded support is strongly subexponential
(writing F ∈ S∗) if

lim
u→+∞

∫ u
0 (1− F (u− y))(1− F (y))dy

2
∫∞
0 (1− F (y))dy

= 1.

It is known (see Klüppelberg (1988)) that any distribution from the class S∗ is subex-
ponential (writing F ∈ S), that is, that

lim
u→+∞

1− F ∗2(u)

2(1− F (u))
= 1.

Classical examples of distributions from the class S∗ are Pareto, log-normal and Weibull
distributions. The latter with a shape parameter from (0, 1).

Corollary 4.6. Assume that the integrated tail distribution F s
Ũ

of the generic clustered

claim size Ũ is subexponential, that is, that F s
Ũ
∈ S. Then,

lim
u→∞

ψ(u)

1− F s
Ũ
(u)

=
ρ

1− ρ
,

where

ρ :=
aE
[
Ũ1

]
c

< 1

by (4.12).

Proof. Since F s
Ũ
is subexponential, the ruin probability of the Cramér-Lundberg model

satisfies by Theorem 5.4.3 on p. 175 of Rolski et al. (1999), which gives

lim
u→∞

ψ̃(u)

1− F s
Ũ
(u)

=
ρ

1− ρ
= lim

u→∞

ψ̃(u+ cl1)

1− F s
Ũ
(u+ cl1)

.

Further, we have that limu→∞
1−F s

Ũ
(u+y)

1−F s
Ũ
(u) = 1 for all y ∈ R since any subexponential

distribution is also long-tailed (see e.g. Lemma 3.2 on p. 40 of Foss et al. (2011)).
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Consequently,

ρ

1− ρ
= lim

u→∞

ψ̃(u)

1− F s
Ũ
(u)

≥ lim sup
u→∞

ψ(u)

1− F s
Ũ
(u)

≥ lim inf
u→∞

ψ(u)

1− F s
Ũ
(u)

≥ lim
u→∞

1− F s
Ũ
(u+ cl1)

1− F s
Ũ
(u)

ψ̃(u+ cl1)

1− F s
Ũ
(u+ cl1)

=
ρ

1− ρ

which completes the proof.

It is more valuable to derive the asymptotics of the ruin probability ψ(u) in terms of
the original distribution of the claim sizes FU , under the assumption that FU is strongly
subexponential (hence heavy-tailed by Lemma 3.2 on p. 40 of Foss et al. (2011)).

Corollary 4.7. If FU ∈ S∗ then

lim
u→∞

ψ(u)

1− F s
U (u)

=
ρ

1− ρ
. (4.18)

Proof. Recall that Ũ =
∑κ

k=1 Uk for a generic cluster size κ and by Lemma 4.4 κ is
light-tailed. Now the statement follows from Theorem 1 of Denisov et al. (2010), (4.8)
and Corollary 4.6 since

lim
u→∞

1− FŨ (u)

1− FU (u)
=

1

1− µ
,

and hence

lim
u→∞

1− F s
Ũ
(u)

1− F s
U (u)

= 1.

Remark 4.2. We recover Proposition 13 of Zhu (2013). Our proof is different though not
requiring tedious checking of Assumptions 1 of Zhu (2013).

Although the results of Theorem 4.3 are similar to the findings of Albrecher and As-
mussen (2006), it faces two drawbacks. The first problem is that the asymptotic be-
haviour depends highly on the distribution of the sum of all claim sizes occurring in a
single cluster, something that might be hard to handle. The second weakness is that we
were not able to show if there are conditions under which limu→∞ eRuψ(u) converges.
To achieve this, we restrict ourselves to the Markovian version of the Hawkes process in
the following.
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4.3 Cramér-Lundberg asymptotics for Markovian Hawkes
model

4.3.1 The Markovian Hawkes model

The intensity of a Hawkes process is generally not Markovian. To resolve this, we have
to choose the specific decay function h(t, y) = e−βty, for some positive decay parameter
β. Further, for some positive constants λ > a > 0, we define the Markovian (marked)
Hawkes process {Nt}t≥0 by its intensity process

λt := a+ (λ− a)e−βt +

Nt∑
i=1

Yie
−β(t−Ti). (4.19)

Here, the random variables {Yi}i∈N are assumed to be i.i.d. copies of a positive random
variable Y with cumulative distribution function FY and finite expectation. In contrast
to the previous part, we allow for different initial values λ instead of restricting ourselves
to the case λ0 = a. This process is well-defined if∫ ∞

0
E[h(t, Y )] dt = E[Y ]

∫ ∞

0
e−βt dt =

E[Y ]

β
< 1,

which gives us the restriction that
β > E[Y ], (4.20)

whereas the integrability condition∫ ∞

0
tE[h(t, Y )] dt < +∞,

is always satisfied. This process is called Markovian, since the intensity process {λt}t≥0

is a piecewise deterministic Markov process (PDMP) with extended generator

Aλf(λ) = β(a− λ)
∂

∂λ
f(x, λ, t) + λ

∫ ∞

0
f(λ+ y)FY (dy)− λf(x, λ, t);

see Davis (1984) for more details on theory of PDMPs. We recall that for any Markov
process {Zt}t≥0 we say that A is its extended generator and D(A) is a domain of this
generator if f(Zt)− f(Z0)−

∫ t
0 g(Zs) ds is a zero mean local martingale with respect to

its natural filtration for f ∈ D(A) and some function g. We then write g = Af .
Further, the multivariate process {(Xt, λt, t)}t≥0 is also a piecewise deterministic Markov
process with full generator

Af(x, λ, t) = c
∂

∂x
f(x, λ, t) + β(a− λ)

∂

∂λ
f(x, λ, t) +

∂

∂t
f(x, λ, t)

+ λ

∫ ∞

0

∫ ∞

0
f(x− u, λ+ y, t)FU (du)FY (dy)− λf(x, λ, t). (4.21)
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Since we have now two different initial values, one for the surplus process and one for the
intensity, we write P(u,λ) for the measure P under the condition that X0 = u and λ0 = λ
for u ≥ 0 and λ > a, and E(u,λ) [·] for the corresponding expectation. If a stochastic
object Z is independent of the initial values, we will omit them and write E[Z] instead
of E(u,λ) [Z]. Having this, we have by Rolski et al. (1999, p. 449), that the domain
D(A) of this generator A consists of all functions f : R3 → R such that the mapping
t→ f(x+ ct, (λ− a)e−βt + a, s+ t) is absolutely continuous for almost all (x, λ, s) and

E(u,λ)

[
Nt∑
k=1

|f(XTk
, λTk

, Tk)− f(XTk−, λTk−, Tk)|

]
< +∞,

for all t ≥ 0.

We start by identifying a suitable net profit condition, that is, the condition under which

(4.2) holds. In fact, we will identify the limiting value limt→∞
E(u,λ)[Xt]

t and assume that
this limit is strictly positive which gives (4.2).

Lemma 4.8. The surplus process satisfies limt→∞
E(u,λ)[Xt]

t = c− aβE[U ]
β−E[Y ] .

Proof. The function f(x, λ, t) = x is in the domain of the generator and satisfiesAf(x, λ, t) =
c − λE[U ]. Therefore, we have that E(u,λ) [Xt] = u + ct − E[U ]

∫ t
0 Eλ[λs] ds. By Cui et

al. (2020), we have that Eλ[λs] = βa
β−E[Y ] +

(
λ− βa

β−E[Y ]

)
e−s(β−E[Y ]). Consequently,∫ t

0 Eλ[λs] ds =
βa

β−E[Y ] t+ o(t). Using this, we get

lim
t→∞

E(u,λ) [Xt]

t
= c− E[U ]

βa

β − E[Y ]

which completes the proof.

By this result, we propose the following net profit condition.

Assumption 4.1. From now on we assume that the net profit condition

c >
aβE[U ]

β − E[Y ]

holds. Further, we assume that there exists some positive sY such that the moment-
generating function

MY (s) := E
[
esY
]
< +∞∀s < sY , and lim

s→sY
MY (s) = +∞.

4.3.2 Steps of the proof of Cramér-Lundberg asymptotics

Our main goal of this section is to prove the so-called Cramér Lundberg asymptotics
for the ruin probability if the intensity of the arrival process is given by(4.19), i.e. that
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there exists an adjustment coefficient R solving Lundberg equation formulated in (4.28)
and constant Cλ > 0, depending on λ, such that

lim
u→∞

ψ(u, λ)eRu = Cλ;

see Theorem 4.33.
To prove this statement we split the whole proof into the following steps:

1. In the next subsection we prove in Theorem 4.17 that the intensity process {λt}t≥0

is positive Harris recurrent, and, in Theorem 4.21, that the corresponding recur-
rence times {ϕi}i∈N are light-tailed.

2. Later, in Definition 4.6, we introduce the functions α(r) and θ(r) as special solu-
tions of equations (4.25)-(4.26).

3. The adjustment coefficient R > 0 is defined as a maximal solution of the Lundberg
equation

θ(R) = 0.

4. We introduce in Definition 4.7 the new exponential measure

dQ(R)

dP

∣∣∣∣∣
Ft

=Mt := exp (Ru+ α(R)λ) exp(−RXt − α(R)λt) .

5. In Lemma 4.28 we prove that under the new measure Q(R) ruin occurs almost
surely and the intensity {λt}t≥0 remains positive Harris recurrent (see Lemma
4.3.4).

6. We introduce the distribution

B(dx) := eRxB̃(dx) for B̃(x) := eRxP(u,λ) [ϕ1 < +∞, u−Xϕ1 ≤ x]

and
p(u, x) := P(u,λ) [τ ≤ ϕ1, |ϕ1 < +∞, Xϕ1 = u− x ] ,

where τ is the time of ruin defined in (4.1) and ϕ1 the first recurrence epoch of
{λt}t≥0 to λ such that the process {Xt}t≥0 is getting below the initial starting
position u. Now, we can prove that

Z(u) = ψ(u)eRu

satisfies the following renewal equation (see (4.32))

Z(u) =

∫ u

0
Z(u− x)(1− p(u, x))B(dx) + z(u),

where
z(u) = eRuP(u,λ) [τ ≤ ϕ1, τ < +∞] .
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7. To demonstrate that limu→+∞ Z(u) exists and is finite, we use Theorem 2 of
Schmidli (1997) and prove that z(u) and

∫ u
0 p(u, x)B(dx) are directly Riemann

integrable.

We start from the analysis of the behaviour of the Markovian intensity process {λt}t≥0.

4.3.3 Harris recurrence of the intensity process

In this section, we investigate the behaviour of the intensity of the Markovian marked
Hawkes process. Our goal is to show that the intensity process is positive Harris recurrent
(see Theorem 4.17) and that the corresponding recurrence times are light-tailed (see
Theorem 4.21), both properties are needed to determine the asymptotic behaviour of
the ruin probability.
To define these properties properly, we consider a right-continuous, time-homogeneous,
strong Markov process {Zt}t≥0 on (E ,B(E)). Here, E denotes a locally compact, separa-
ble metric space and B(E) its Borel σ-algebra.

Definition 4.1. The process {Zt}t≥0 is called Harris recurrent if there exists a σ-finite
measure φ on B(E) such that φ(B) > 0 ⇒ Pz [ηB = ∞] = 1 for all initial values z and
B ∈ B(E), where

ηB :=

∫ ∞

0
I{Zt∈B}dt (4.22)

denotes the occupation measure of the process {Zt}t≥0. It is called positive Harris
recurrent if it is Harris recurrent with finite invariant measure π.

To show that our intensity process satisfies this property, we need the following defini-
tions of a continuous component and a T -process as in Section 3.2 of Meyn and Tweedie
(1993, pp. 495–496).

Definition 4.2. Let {Zt}t≥0 be our strong Markov process and σ1, σ2, . . . an i.i.d. se-
quence of positive random variables with distribution F and independent of {Zt}t≥0.
Then, we define the embedded Markov chain Yn := Zσ1+···+σn with one-step transition
probability KF (z,A) :=

∫∞
0 Pz [Zt ∈ A]F (dt) for all A ∈ B(E). A kernel T : (E ,B(E)) →

R+ is called a continuous component of KF if KF (x,A) ≥ T (x,A) for all x and A, and
for fixed A ∈ B(E), the function T (·, A) is lower semi-continuous. We say T is non-trivial
if, for all x ∈ E , we have that T (x, E) > 0.

A special case of such an embedded Markov chain is the resolvent chain, whose transition
kernel is given by Rγ(x,A) :=

∫∞
0 Px [Zt ∈ A] e−γtdt, i.e. where σ1 ∼ Exp(γ) for the

exponential random variable Exp(γ) with the parameter γ > 0.

Definition 4.3. The process {Zt}t≥0 is called T -process if there is a probability distri-
bution F such that KF admits a non-trivial continuous component T .

Definition 4.4. Recall that ηB defined in (4.22) is the occupation measure. Let φ be
a σ-finite measure. If φ(B) > 0 ⇒ Ez [ηB] > 0 for all initial values z and all B ∈ B(E),
then {Zt}t≥0 is called φ-irreducible.
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Definition 4.5. A process {Zt}t≥0 is called bounded in probability on average if for
every initial value z and ε > 0 there is a compact set K such that

lim inf
t→∞

1

t

∫ t

0
Pz [Zs ∈ K] ds ≥ 1− ε.

These three properties are related to positive Harris recurrence by Theorem 3.2 of Meyn
and Tweedie (1993), which states the following.

Theorem 4.9. Suppose that {Zt}t≥0 is a φ-irreducible T -process. Then {Zt}t≥0 is
positive Harris recurrent if and only if it is bounded in probability on average.

Now, we want to show that our process {λt}t≥0 satisfies all conditions of Theorem 4.9.
It is a time-homogeneous strong Markov process with right-continuous paths defined on
(R,B(R)). The space R is a locally compact and separable metric space. The next point
is to show that the process is a T -process.

Lemma 4.10. The intensity process {λt}t≥0 is a T -process.

Proof. For this, we show that the resolvent kernel R1(λ,A) =
∫∞
0 Pλ [λt ∈ A] e−tdt is

continuous in λ, for every fixed A ∈ B(R). For this, observe that by Tonelli’s theorem,
we can interchange expectation and integration to get that

R1(λ,A) = Eλ

[∫ ∞

0
IA(λt)e

−tdt

]
=: V (λ).

Further, by Theorem 31.9 of Davis (1993) we know that

V (λ) = Ṽ (λ) := Eλ

[∫ ∞

0
IA(λ̃t)dt

]
,

where {λ̃t}t≥0 denotes the process {λt}t≥0 but killed with constant rate 1. The function
Ṽ (λ) is bounded by 1, and the function l(x) := IA(x) is measurable and integrable.
Therefore, we have by Theorem 32.2 of Davis (1993), that Ṽ (λ) is absolutely continuous.
The kernel R1 is non-trivial since R1(λ,R+) = 1 for all λ ∈ R+. Therefore, R1 serves as
a non-trivial component.

To show that the intensity process is φ-irreducible, we have to identify a suitable σ-
finite measure φ. For this, we will show in the first step that the Markovian Hawkes
intensity converges in distribution to a stationary probability distribution ν. To do so,
we introduce the process µt = a+

∑Nt
i=1 Yie

−β(t−Ti), i.e. our Hawkes intensity with initial
condition λ0 = a. By Brémaud et al. (2002, p. 133), the distribution of µt converges
weakly against a stationary distribution as t→ ∞. If we can show that, independent of
the initial intensity λ, the process {λt − µt}t≥0 converges in probability to 0. Then, we
have by Slutsky’s theorem that λt = λt − µt + µt converges in distribution to ν too.

Lemma 4.11. Let λ > a be arbitrary but fixed. Then limt→∞ Pλ [|λt − µt| > ε] = 0 for
all ε > 0.
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Proof. To show this, we want to use Markov’s inequality. Therefore, we are interested
in the behaviour of E[|λt − µt|] as t→ ∞. For this, we take a look at the change of the
intensity by the increase of the initial value by λ−a. For fixed λ, we can decompose the
corresponding counting process {Nt}t≥0 as

Nt = Nµ
t +Mt,

where Mt counts all jumps due to the initial increase by λ − a and Nµ
t is a marked

Hawkes process with intensity µt.

In the time interval (0,∞), the initial increase by λ− a will cause

Z := Poi

(
(λ− a)

∫ ∞

0
e−βtdt

)
= Poi

(
λ− a

β

)
jumps of the marked Hawkes process. We will call these jumps ’children’. Each child

increases the intensity by a generic Ỹ , hence triggers Poi( Ỹβ ) additional jumps, i.e.
’grandchildren’. These grandchildren cause new jumps again, so we get a branch-
ing structure. We call the collection of all jumps caused by λ − a offspring. Since
E
[∫∞

0 Y e−βtdt
]
= E[Y ]

β < 1, we have that the number of jumps in such a cluster is an in-
tegrable random variable, see Basrak et al. (2019). The random variableMt corresponds
to the number of offspring due to the increase by λ − a, which appeared up to time t
and converges almost surely to the integrable random variable M∞, which corresponds
to the size of the cluster caused by the additional initial intensity.

By this, we have that

|λt − µt| = (λ− a)e−βt +

Mt∑
i=1

Ỹie
−β(t−TM

i ) ≤ (λ− a)e−βt +

M∞∑
i=1

Ỹi,

where {TM
i }i≤M∞ are the jump times of the counting process {Mt}t≥0. The upper bound

is integrable. Hence, by dominated convergence, we have that

lim sup
t→∞

Eλ [|λt − µt|] ≤ Eλ

[
lim sup
t→∞

(λ− a)e−βt +

M∞∑
i=1

Ỹie
−β(t−TM

i )

]

= Eλ

[
M∞∑
i=1

lim sup
t→∞

Ỹie
−β(t−TM

i )

]
= 0.

The statement follows from Markov’s inequality.

Theorem 4.12. The Markovian Hawkes intensity converges in distribution to the sta-
tionary distribution ν.

Proof. Let {λt}t≥0 and {µt}t≥0 be as before. By the previous lemma we have that
λt − µt → 0 in probability, and by Brémaud et al. (2002), we get that µt → ν in
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distribution. Slutsky’s theorem gives us that

λt = λt − µt + µt
D→ 0 + Z,

where Z ∼ ν.

To show that the intensity process is ν-irreducible, we still need some smoothness of the
stationary distribution ν.

Lemma 4.13. The stationary distribution ν is absolutely continuous with respect to the
Lebesgue measure.

Proof. This is due to Proposition 1.9 of Löpker and Palmowski (2013).

Let B ∈ B(R) and define νt(B) := 1
t

∫ t
0 Pλ [λs ∈ B] ds.

Lemma 4.14. The family of measures {νt}t≥0 converges weakly to the stationary mea-
sure ν as t→ ∞.

Proof. Since λt converges in distribution to the absolutely continuous measure ν, we
have that for all open sets U that lim inft→∞ Pλ [λt ∈ U ] ≥ ν(U). Consequently, for all
ε > 0 there is a T > 0 such that for all t ≥ T , it holds that Pλ [λt ∈ U ] ≥ ν(U) − ε.
Therefore,

lim inf
t→∞

1

t

∫ t

0
Pλ [λs ∈ B] ds

≥ lim inf
t→∞

1

t

(∫ T

0
Pλ [λs ∈ B] ds+ (t− T )(ν(U)− ε)

)
= ν(U)− ε.

If we let ε tend to 0, we see that lim inft→∞ νt(B) ≥ ν(B) for all open sets B. By
the Portmanteau theorem, this implies that {νt}t≥0 converges weakly to the stationary
measure ν.

Now we are ready to show that our process is ν-irreducible.

Lemma 4.15. The Markovian intensity process {λt}t≥0 is ν-irreducible.

Proof. Let B be measurable with ν(B) > 0 and νt as in Lemma 4.14. By the ab-
solute continuity of the measure ν, we have that B is a continuity set of ν. Hence,
limt→∞ νt(B) = ν(B) > 0. Consequently, we have that Eλ [ηb] =

∫∞
0 Pλ [λs ∈ B] ds =

∞ > 0.

Lemma 4.16. The Markovian intensity process {λt}t≥0 is bounded in probability on
average.
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Proof. Let ε > 0 be arbitrary and Kε ⊂ R+ be compact such that ν(K) ≥ 1− ε. Then
we have by Lemma 4.13 and Lemma 4.14, that

lim inf
t→∞

1

t

∫ t

0
Pλ [λs ∈ K] ds = ν(K) ≥ 1− ε.

Theorem 4.17. The Markovian intensity process {λt}t≥0 is positive Harris recurrent.

Proof. This follows directly from Theorem 4.9 and the previous lemmas.

This gives us that our intensity process visits all sets with ν(B) > 0 infinitely often, but
we still have to check that the stationary distribution has support (a,∞). First, we will
show that the support is unbounded from above.

Lemma 4.18. The support of ν is unbounded from above.

Proof. Assume there is a finite bound b > 0 such that ν((a, b)) = 1. We use that
there is a stationary version of our intensity process, and we will denote it by λ′t =

a + (λ′0 − a)e−βt +
∑N ′

t
i=1 Yie

−β(t−T ′
i ), where λ′0 ∼ ν. Choose δ > 0 arbitrary. Then, we

have

0 = ν((b,∞)) = Pν

[
λ′δ > b

]
≥ Pν

[
λ′δ > b,N ′

δ = 1
]

= Pν

[
λ′δ > b

∣∣N ′
δ = 1

]
Pν

[
N ′

δ = 1
]
≥ P

[
Y > beδβ

]
Pν

[
N ′

δ = 1
]
> 0,

which is a contradiction. Since the support of the shock events Y is unbounded, we
consequently have that the support of the stationary distribution is unbounded.

Lemma 4.19. The support of ν is an open set of the form (b,∞) for some b ≥ a.

Proof. We already know that the support is unbounded. Assume that the support of
the stationary distribution is not an open interval. Since ν is absolutely continuous with
respect to the Lebesgue measure, we have that there exists an interval (c, d) ⊂ (a,∞)
such that ν((c, d)) = 0, ν((a, c)) > 0, and ν(d,∞) > 0. Now, we assume that this
interval is maximal. In particular, we want that for all ε > 0 ν((d, d + ε)) > 0. Let

− 1
β ln

(
c−a

d−a+ε

)
> δ > − 1

β ln
(

d−a
d−a+ε

)
deterministic. Then we have that if λ′0 ∈ (d, d+ ε)

and no jump occurs between time 0 and δ, λ′δ ∈ (c, d), which is a contradiction. Writing
this down, we get that

ν((c, d)) = Pν

[
λ′δ ∈ (c, d)

]
≥ Pν

[
λ′δ ∈ (c, d), λ′0 ∈ (d, d+ ε)

]
= Pν

[
λ′δ ∈ (c, d)

∣∣λ′0 ∈ (d, d+ ε)
]
Pν

[
λ′0 ∈ (d, d+ ε)

]
≥ Pν

[
N ′

δ = 0
]
ν((d, d+ ε)) > 0.

This is a contradiction. Hence, the support of ν is an interval.
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Theorem 4.20. The support of ν is (a,∞).

Proof. This proof is similar to the proof of Lemma 4.19. Assume that the support of
ν is not (a,∞). Then there exists a ε > 0 such that the support is (a + ε,∞) and
ν((a+ ε, a+2ε)) > 0. Let δ > − 1

β ln(12). Then again, if λ′0 ∈ (a+ ε, a+2ε) and N ′
δ = 0,

which both happen with positive probability, then λ′δ < a + ε. This contradicts the
assumption that ν((a, a+ ε)) = 0.

This gives us that our intensity process visits every open interval in (a,∞) infinitely
often. Since it decays only in a continuous way via its exponentially decaying drift, we
even have that the process {λt}t≥0 visits every single point λ ∈ (a,∞) infinitely often
with probability 1.

Theorem 4.21. Let λ > a be arbitrary and Sλ
1 the first positive time point such that

λSλ
i
= λ. Then, there exists a r > 0 such that Eλ

[
erS

λ
1

]
< +∞.

Proof. The Markovian Hawkes process satisfies Scenario 1.1 of Borovkov and Last (2008)
and β(a−λ) ̸= 0 for all λ > a. Therefore, we have that, under the stationary distribution,
the number of continuous crossings of our process through λ has intensity µc(λ) :=
β(λ − a)p(λ) > 0. Here, p(λ) denotes the density of the stationary distribution ν.
Consequently, we have

Pν

[
Sλ
1 > t

]
= exp

(
−
∫ t

0
β(λ− a)p(λ) ds

)
= exp(−tβ(λ− a)p(λ)).

This implies that Eν

[
erS

λ
1

]
< +∞ for all r < β(λ− a)p(λ).

Using the fact that ν is absolutely continuous with respect to the Lebesgue measure, we
have that

Eν

[
erS

λ
1

]
=

∫ ∞

a
Ex

[
erS

λ
1

]
p(x) dx < +∞,

which gives us that Ex

[
erS

λ
1

]
< +∞ for Lebesgue almost every x > a. Let now λ < y be

arbitrary and write Sλ
1 |λ0=y for the time of the first crossing of the level λ starting in y.

Then, there exists a x > y such that E
[
erS

λ
1 |λ0=x

]
= Ex

[
erS

λ
1

]
< +∞. The downward

movement of the intensity process {λt}t≥0 is continuous. Hence, if it starts in x and
reaches the level λ it must cross y. By the strong Markov property, we can restart the
process after hitting y and therefore

Sλ
1 |λ0=x = Sy

1 |λ0=x + Sλ
1 |λ0=y ≥ Sλ

1 |λ0=y.

Thus,

Ey

[
erS

λ
1

]
≤ Ex

[
erS

λ
1

]
< +∞.

This property holds for all λ and y as long y > λ and r is chosen suitable small, depending
on the choice of λ.
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Consider now Sλ
1 |λ0=λ. Then, there exists an x < λ such that Ex

[
erS

λ
1

]
< +∞. Since

λ > x, we know there exists a positive r̃ > 0 such that Eλ

[
er̃S

x
1
]
< +∞. Now, there

are almost surely two possibilities. Either the intensity hits the level x before it returns
to λ, i.e. Sx

1 |λ0=λ ≤ Sλ
1 |λ0=λ, or it first returns to λ. If we have ω ∈ Ω such that the

path of {λt}t≥0 hits the level x before returning to λ, we can use the restart argument
as before and obtain the equality Sλ

1 |λ0=λ(ω) = Sx
1 |λ0=λ(ω) + Sλ

1 |λ0=x(ω). For almost
every other ω, we have Sλ

1 |λ0=λ(ω) < Sx
1 |λ0=λ(ω) ≤ Sx

1 |λ0=λ(ω) + Sλ
1 |λ0=x(ω). This give

us for q small enough that

Eλ

[
eqS

λ
1

]
≤ Eλ

[
eqS

x
1Ex

[
eqS

λ
1

]]
= Eλ

[
eqS

x
1
]
Ex

[
eqS

λ
1

]
< +∞.

This ends the proof.

4.3.4 Exponential change of measure

We derive now the Cramér-Lundberg asymptotics under the assumption that claims are
light-tailed. More precisely, we assume the following:

Assumption 4.2. From now on, we assume that the distribution of the claim sizes FU

is absolutely continuous with respect to the Lebesgue measure. Further, we assume that
there exists some sU ∈ (0,∞] such that the corresponding moment-generating

MU (s) := E
[
esU
]

is finite for all s < sU and lims→sU MU (s) = ∞.

We are interested in the asymptotic behaviour of the ruin probability

ψ(u) = ψ(u, λ) := P(u,λ) (τ < +∞) , (4.23)

where
τ := inf {t ≥ 0 : Xt ≤ 0 } .

The main tool to show convergence of the ruin probability is Theorem 2 of Schmidli
(1997) which gives us that the solution to the generalized renewal equation

Z(u) =

∫ u

0
Z(u− x)(1− p(u, x))B(dx) + z(u) (4.24)

converges as u→ ∞ if B(x) is a probability distribution, p(u, x) ∈ [0, 1] is continuous in
u, and both z(u) and

∫ u
0 p(u, x)B(dx) are directly Riemann integrable.

The first problem that occurs in this approach is that this equation is univariate, whereas
the probability of ruin ψ(u, λ) depends on the initial values of the surplus and the
intensity process. To resolve this, we use the results of Section 4.3.3, i.e. the intensity
is Harris positive recurrent. To be precise, we exploit that it returns infinitely often to
its initial value with probability 1. This allows us to choose renewal times so that they
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coincide with intensity recurrence times. A second problem is that under our original
measure P, suitable choices of the distribution B are generally defective. We bypass this
by identifying an alternative measure under which the ruin occurs almost surely and B
is no longer defective.

Now, our main goal is to identify a martingale {M (r)
t }t≥0 and the corresponding alter-

native measure under which ruin almost surely occurs. For this, we follow the ansatz of

Pojer and Thonhauser (2023a), that is, M
(r)
t = exp(−rXt − αλt − θt). This process is a

local martingale if the function hr(x, λ, t) = exp(−rx− αλ− θt) is in the domain of the
extended generator and satisfies

Ahr(x, λ, t) = 0.

We start from the latter requirement, which by (4.21) is equivalent to

Ahr(x, λ, t) = −crhr(x, λ, t)− αβ(a− λ)hr(x, λ, t)− θhr(x, λ, t)

+ λhr(x, λ, t)MU (r)MY (−α)− λhr(x, λ, t) = 0,

for all choices of x, λ, t. Since hr is positive, we can divide by hr and get the following
two equations

−cr − αβa− θ = 0, (4.25)

αβ +MU (r)MY (−α)− 1 = 0. (4.26)

For fixed r, we get two equations for two missing variables θ(r) and α(r). We focus on
equation (4.26) defining α(r).

Lemma 4.22. For r ≤ 0 and some r > 0, there exist two distinct solutions to the
equation (4.26).

Proof. First, we consider the case r < 0. The function

fr(α) := αβ +MU (r)MY (−α)− 1

is convex and satisfies fr(0) =MU (r)−1 < 0. Furthermore, limα→∞ fr(α) = limα→−∞ fr(α) =
∞. By continuity, there exists at least one root in (−∞, 0) and one root in (0,∞). By
convexity, the corresponding roots are unique. For r = 0, we have f0(0) = 0 and
∂
∂αf0(0) = β − E[Y ] > 0. By this, there exists some ε > 0 such that f0(−ε) < 0 and,
by the same argumentation as before, we have that there exists a unique negative root
of f0. For r > 0, we see that the function fr(α) is also continuous in r (as long as
it is well defined). Consequently, there exists some δ > 0 such that for all r < δ we
have fr(−ε) < 0. Again, by continuity and convexity in α, we get the existence of two
solutions to fr(α) = 0.

Definition 4.6. For fixed r, we define α(r) as the maximal solution to equation (4.26).
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This is well defined for all r ≤ rmax, where rmax satisfies

min
α

(αβ +MU (rmax)MY (−α)− 1) = 0.

Further, we define the function

θ(r) := −cr − α(r)βa. (4.27)

Lemma 4.23. The mapping r → α(r) is concave and differentiable on (−∞, rmax).
Furthermore, it satisfies α(0) = 0 and rα(r) < 0 for all r ̸= 0 such that α(r) is well
defined.

Proof. By the proof of Lemma 4.22, we have that f0 has a negative root and satisfies
f0(0) = 0. Thus, α(0) = 0. For r > 0, we have fr(0) =MU (r)− 1 > 0, which gives that
all roots must be negative and for r < 0 fr(0) = MU (r)− 1 < 0. Therefore there exists
a positive root, and for all r ̸= 0 for which α(r) is well defined, we have rα(r) < 0.

To show the concavity of α(r), we first show that the function f(r, α) := fr(α) is convex
as a function of (r, α) from (−∞, sU ) × (−sY ,∞) to R, where sY and sU are defined
in Assumptions 4.1 and 4.2, respectively (it is even convex and proper as function from
R2 → R ∪ {∞} if we set f(r, α) = ∞ for all (r, α) outside (−∞, sU ) × (−sY ,∞)). To
show this, we consider the Hessian

H =

[
M ′′

U (r)MY (−α) −M ′
U (r)M

′
Y (−α)

−M ′
U (r)M

′
Y (−α) M ′′

Y (−α)MU

]
,

which has only non-negative eigenvalues by the log-convexity of the moment generating
functions.

If we now take some r ≥ s and λ ∈ [0, 1] such that α(r) is well defined, we find that also
α(λr+(1−λ)s) is well defined and satisfies f(λr+(1−λ)s, α(λr+(1−λ)s)) = 0.Moreover,
since it is the maximal root, for all α > α(λr+(1−λ)s) we have f(λr+(1−λ)s, α) > 0.
By the convexity of the function f we get

f(λr + (1− λ)s, λα(r) + (1− λ)α(s)) ≤ λf(r, α(r)) + (1− λ)f(s, α(s)) = 0.

Consequently, λα(r) + (1− λ)α(s) ≤ α(λr + (1− λ)s).

We still have to show that the function r → α(r) is differentiable. By concavity, it is
differentiable almost everywhere. To be specific, everywhere except some countable set
and at every other point, the one-sided limits exist but do not coincide. Let r be such
that the derivative of α(r) exists. Then, we get that

βα′(r) +M ′
U (r)MY (−α(r))− α′(r)MU (r)M

′
Y (−α(r)) = 0,

which is, if β −MU (r)M
′
Y (−α(r)) ̸= 0, equivalent to

α′(r) = −
M ′

U (r)MY (−α(r))
β −MU (r)M ′

Y (−α(r))
.
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This is the case for all r < rmax. In the case r = rmax, the root α(rmax) also min-
imizes frmax(α). Since this function is convex and differentiable in α, we have 0 =
∂
∂αfrmax(α(rmax)) = β −MU (rmax)M

′
Y (−α(rmax)). For all r < rmax, the root α(r) is not

the minimizer; therefore, α′(r) is well defined and continuous. By the continuity of the
derivative, we find that α(r) is differentiable at every point r < rmax.

We recall that the function θ is defined in (4.27).

Lemma 4.24. The function θ(r) is convex, differentiable and satisfies θ(0) = 0 and
θ′(0) < 0.

Proof. Since θ(r) = −cr−α(r)aβ is the sum of two differentiable and convex functions,
it is differentiable and convex as well and θ(0) = 0. The derivative at the point r = 0 is

θ′(0) = −c− α′(r)aβ = −c+ βaE[U ]

β − E[Y ]
,

which is negative by the net profit condition. This completes the proof.

For further analysis, we will also need the following important assumption.

Assumption 4.3. From now on, we assume that there exists a positive solution R of

θ(r) = 0. (4.28)

for the function θ defined in (4.27). Further, we assume that there exists an ε > 0 such
that MU (R+ ε), MY (−α(R+ ε)) are finite.

Theorem 4.25. The process

M
(r)
t := exp(ru+ α(r)λ) exp(−rXt − α(r)λt − θ(r)t) (4.29)

is a non-negative local martingale for all 0 ≤ r ≤ R+ ε.

Proof. Fix r ≤ R+ ε arbitrary and define the function

hr(x, λ̃, t) := exp(−r(x− u)− α(r)(λ̃− λ)− θ(r)t).

We show that this function is in the domain of the extended generator of our PDMP and
satisfies Ahr(x, λ̃, t) = 0, which gives us that this is a local martingale. The function
hr is absolutely continuous. Hence, by Theorem (26.14) and Remark (26.16) of Davis
(1993), we only have to show that for all n ∈ N

E(u,λ)

[
n∑

i=1

|hr(XTi , λTi , Ti)− hr(XTi−, λTi−, Ti)|

]
< +∞.
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This is obviously satisfied for r ≤ 0. For the case r > 0, we observe that α(r) < 0 and
the compensator of the jump process {Nt}t≥0 is given by

Λt :=

∫ t

0
λs ds = at+

1

β
(λ0 − a)(1− e−βt) +

1

β

Nt∑
k=1

Yk(1− e−β(t−Tk))

= at+
1

β

Nt∑
k=1

Yk +
1

β
λ0 −

1

β
λt.

Consequently, we have for all i ≤ n,

− r(XTi − u)− α(r)(λTi − λ)− θ(r)Ti

= −rcTi + r
i∑

j=1

Uj − α(r)

 i∑
j=1

Yj + βaTi − βΛTi

+ crTi + aα(r)βTi

≤ r
i∑

j=1

Uj − α(r)
i∑

j=1

Yj .

Further, observe that

hr(XTi , λTi , Ti) = hr(XTi−, λTi−, Ti) exp (rUi − α(r)Yi) > hr(XTi−, λTi−, Ti).

Using this, we get that

E(u,λ)

[
n∑

i=1

|hr(XTi , λTi , Ti)− hr(XTi−, λTi−, Ti)|

]

≤ 2E(u,λ)

[
n∑

i=1

hr(XTi , λTi , Ti)

]
≤ 2

n∑
i=1

E(u,λ)

exp
r i∑

j=1

Uj − α(r)

i∑
j=1

Yj


= 2

n∑
i=1

MU (r)
iMY (−α(r))i = 2MU (r)MY (−α(r))

MU (r)
nMY (−α(r))n − 1

MU (r)MY (−α(r))− 1
< +∞.

By this, the function hr is in the domain of the extended generator and by the construc-
tion of α(r) and θ(r) it satisfies Ahr(x, λ, t) = 0. This completes the proof.

Theorem 4.26. Let r < R + ε for some ε > 0. Then, M (r) = {M (r)
t }t≥0 defined in

(4.29) is a true martingale with expectation 1.

Proof. Fix r < R+ ε and let {ϱn}n∈N be a localizing sequence of stopping times for the

local martingale {M (r)
t }t≥0. Then, by Lemma 2.2.2 of Fleming and Harrington (1991),

we have that {M (r)
t }t≥0 is a martingale if for any fixed t, the family X = {M (r)

t∧ϱn}n∈N is
uniformly integrable. By de La Vallée Poussin’s Theorem, a family of random variables
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{Yn}n∈A is uniformly integrable if there exists a monotone increasing convex function

G(t), satisfying limt→∞
G(t)
t = ∞ and supn∈A E [G(|Yn|)] < +∞.

Since r < R + ε, there exists a δ > 0 such that r(1 + δ) < R + ε and {M (r(1+δ))
t }t≥0 is

well-defined. Since every non-negative local martingale with integrable initial value is a

supermartingale, we have that for all t ≥ 0 that M
(r(1+δ))
t is integrable with expectation

less or equal M
(r(1+δ))
0 = 1.

Let now t and n be arbitrary but fixed. Then, we have that(
M

(r)
t∧ϱn

)1+δ
= exp (−r(1 + δ)(Xt∧ϱn − u)− α(r)(1 + δ)(λt∧ϱn − λ))

× exp (cr(1 + δ)t ∧ ϱn + aβα(r)(1 + δ)t ∧ ϱn)

=M
(r(1+δ))
t∧ϱn exp ((α(r(1 + δ))− α(r)(1 + δ))λt∧ϱn)

× exp ((α(r)(1 + δ)− α(r(1 + δ)))(λ+ aβt ∧ ϱ)) .

If we can show that α(r(1 + δ)) − α(r)(1 + δ) ≤ 0, then we have by the positivity of
λt∧ϱn that

exp ((α(r(1 + δ))− α(r)(1 + δ))λt∧ϱn) ≤ 1,

and, since t ∧ ϱn ≤ t, we would have that

exp (α(r)(1 + δ)− α(r(1 + δ)))(λ0 + aβt ∧ ϱ))
≤ exp ((α(r)(1 + δ)− α(r(1 + δ)))) exp ((λ0 + aβt)) ,

which is deterministic and finite.
To show this, we will use the fact that α(r) is concave, differentiable and satisfies α(0) =
0; see Lemma 4.23. By this, we get that

α(r(1 + δ))− α(r)(1 + δ) = α(r(1 + δ))− α(r)− α(r)δ ≤ α′(r)rδ − α(r)δ

= α′(r)rδ + δ(α(0)− α(r)) ≤ δα′(r)rδ + δα′(r)(−r) = 0.

This gives that

E(u,λ)

[(
M

(r)
t∧ϱn

)1+δ
]
≤ E(u,λ)

[(
M

(r(1+δ))
t∧ϱn

)]
× exp (α(r)(1 + δ)− α(r(1 + δ)))(λ0 + aβt))

≤ exp (α(r)(1 + δ)− α(r(1 + δ)))(λ0 + aβt)) .

This bound is independent of n and finite for fixed t. Hence, taking the supremum gives
us that

sup
n∈N

E(u,λ)

[(
M

(r)
t∧ϱn

)1+δ
]
< +∞.

Therefore, X is uniformly integrable and the process {M (r)
t }t≥0 is a true martingale with
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expectation M
(r)
0 = 1.

Definition 4.7. Let R + ε > r ≥ 0 for some ε > 0. Then, we define the measure Q(r)

by

Q(r) [A] = E(u,λ)

[
IAM

(r)
t

]
, ∀A ∈ Ft.

Lemma 4.27. Under the new measure Q(r), the multivariate process {(Xt, λt, t)}t≥0 is
again a PDMP with generator

A(r)f(x, λ, t) = c
∂

∂x
f(x, λ, t) + β(a− λ)

∂

∂λ
f(x, λ, t) +

∂

∂t
f(x, λ, t)

+ λ

∫ ∞

0

∫ ∞

0
erue−α(r)y (f(x− u, λ+ y, t)− f(x, λ, t)))FU (du)FY (dy).

Proof. This follows directly from Example 5.2 of Palmowski and Rolski (2002), where
exactly this kind of exponential change of measures for PDMPs is studied.

Lemma 4.28. Under the new measure Q(R), ruin occurs almost surely.

Proof. Using the same ideas as in Lemma 4.8 but with the alternative generator A(R),
it is easy to see that

lim
t→∞

E(R)
(u,λ) [Xt]

t
= −θ′(R).

By the convexity of θ proved in Lemma 4.24 and the fact that there is some r < R with
θ(r) < 0, we have that −θ′(R) < 0. Consequently, ruin occurs almost surely under the
new measure Q(R).

We will that under the new measure Q(r), {λt}t≥0 is no longer the intensity of a
Markovian marked Hawkes process {Nt}t≥0. In fact its jumps have now intensity
{λtMU (r)MY (−α(r))}t≥0 that still preserves its recurrent behaviour.

Lemma 4.29. The process {λt}t≥0 is Harris recurrent under Q(r).

Proof. At first, we show that, under the measure Q(r), the process
{MU (r)MY (−α(r))λt}t≥0 is the intensity of a Markovian marked Hawkes process {Nt}t≥0.
Indeed, from the form of the generator A(r) given in Lemma 4.27 we can conclude that
the univariate process {λt}t≥0 is a Markov process with generator

A(r),λf(λ) = β(a− λ)f ′(λ) + λMu(r)MY (−α(r))
∫ ∞

0
(f(λ+ y)− f(λ)) F̃Y (dy),

where the distribution F̃Y is given by F̃Y (dy) =
e−α(r)y

MY (−α(r))FY (dy). Hence, under Q(r),

the process {λt}t≥0 has the form

λt = e−βt(λ− a) + a+

N
(r)
t∑

i=1

Ỹie
−β(t−T

(r)
i ),
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where {N (r)
t }t≥0 has the intensity process {MU (r)MY (−α(r))λt}t≥0.

Observe that the PDMP {MU (r)MY (−α(r))λt}t≥0 can represented as follows

MU (r)MY (−α(r))λt = e−βt(MU (r)MY (−α(r))λ−MU (r)MY (−α(r))a)

+MU (r)MY (−α(r))a+
N

(r)
t∑

i=1

MU (r)MY (−α(r))Ỹie−β(t−T
(r)
t ,

that is, the process {N (r)
t }t≥0 is a Markovian Hawkes process. The parameters are given

by decay parameter β, baseline intensity aMU (r)MY (−α(r)) and shock distribution
F̃Y (z/(MU (r)MY (−α(r)))).
By Theorem 4.17 and (4.20), if we can now show that

β > MU (r)MY (−α(r))EQ(r)
[Y ] =MU (r)MY (−α(r))E

[
Ỹ
]
, (4.30)

then {MU (r)MY (−α(r))λt}t≥0 returns to every point in (aMU (r)MY (−α(r)),∞) in-
finitely often. This implies that {λt}t≥0 visits every point in (a,∞) infinitely often.

To prove (4.30), observe first that the expectation of Y under our new measure is
M ′

Y (−α(r))

MY (−α(r)) and that the mapping r → α(r) is monotone decreasing. Hence, by the

proof of Lemma 4.23 we have that − M ′
U (r)MY (−α(r))

β−MU (r)M ′
Y (−α(r))

≤ 0, which implies that

β −MU (r)MY (−α(r))E[Ỹ ] = β −MU (r)M
′
Y (−α(r)) > 0.

By this, we have that our intensity process returns almost surely to every point in
(aMU (r)MY (−α(r)),∞).

4.3.5 Cramér-Lundberg asymptotics and renewal arguments

Now, fix an initial value λ and let Sλ
1 , S

λ
2 , . . . denote the recurrence times of the intensity

process to the level λ, i.e. λSλ
i
= λ for all i. Further, we define the renewal times {ϕi}i≥1

by ϕ1 = min
{
Sλ
i : XSλ

i
< u

}
and ϕj = min

{
Sλ
i : XSλ

i
< Xϕj−1

}
for j > 1.

These times are a mixture of the recurrence times of the intensity process and ladder
times of the surplus process, i.e. ladder times of the random process {XSλ

i
}i≥1. As we can

see, these renewal times might be infinite under our original measure since Xt → +∞
P-a.s. But under our alternative measure Q(R), the surplus process {Xt}t≥0 tends to
−∞, and the intensity returns infinitely often to λ. Hence, these times are finite almost
surely. Define now

B̃(x) := P(u,λ) [ϕ1 < +∞, u−Xϕ1 ≤ x]

and
p(u, x) := P(u,λ) [τ ≤ ϕ1, |ϕ1 < +∞, Xϕ1 = u− x ] .
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Then we have, by conditioning on the distribution of the surplus at time ϕ1, that

ψ(u, λ) =

∫ u

0
ψ(u− x, λ)(1− p(u, x)) B̃(dx) + P(u,λ) [τ ≤ ϕ1, τ < +∞] .

As already mentioned, the distribution B̃ is defective. To work with a proper distribu-
tion, we multiply the equation by eRu to obtain

ψ(u, λ)eRu =

∫ u

0
ψ(u− x, λ)eR(u−x)(1− p(u, x)) B̃(dx) + eRuP(u,λ) [τ ≤ ϕ1, τ < +∞, ]

(4.31)
where

B(dx) := eRxB̃(dx).

Lemma 4.30. The distribution B is a proper probability distribution.

Proof. By the definition of B̃, we have that∫
R
eRx B̃(dx) = E(u,λ)

[
eR(u−Xϕ1

)I{ϕ1<+∞}

]
.

Our martingale {M (R)
t }t≥0 at time ϕ1 has the form

M
(R)
ϕ1

= exp(−R(Xϕ1 − u)− α(R)(λϕ1 − λ)) = exp(R(u−Xϕ1)).

Therefore, ∫
R
B(dx) =

∫
R
eRx B̃(dx) = Q(R) [ϕ1 < +∞] = 1.

Observe that equation (4.31) is of the form of renewal equation (4.24), that is,

Z(u) =

∫ u

0
Z(u− x)(1− p(u, x))B(dx) + z(u) (4.32)

for
Z(u) := ψ(u, λ)eRu and z(u) := eRuP(u,λ) [τ ≤ ϕ1, τ < +∞] .

To show convergence of Z(u), hence Cramér-Lundberg asymptotics, we have to verify
that z(u) and

∫ u
0 p(u, x)B(dx) are directly Riemann integrable. For the direct Riemann

integrability of the above-mentioned functions, we need to introduce an additional as-
sumption.

Assumption 4.4. We assume there exists an ε > 0 such that

E(u,λ)

[
e−(1+ε)R(Xϕ1

−u)I{ϕ1<+∞}

]
< +∞.

Remark 4.3. The random time ϕ1 depends on the behaviour of the bivariate process
{(Xt, λt)}t≥0. Therefore, this assumption may be hard to check. An alternative to this
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is the condition

E(u,λ)

[
e
−(1+ε)R(X

Sλ
1
−u)

I{Sλ
1<+∞}

]
< +∞,

which is equivalent to Assumption 4.4 by Lemma 10 of Pojer and Thonhauser (2023a).
Changing measure, we see that this assumption is equivalent to

EQ(1+ε)R
[
eθ((1+ε)R)ϕ1

]
< +∞, (4.33)

which shows the main influence of this assumption. By the structure of our renewal
times, we cannot observe ruin exactly when it happens. Assumption 4.4 ensures that
these renewal times happen often enough, such that there is one of these close enough to
the time of ruin such that we do not miss the event that the surplus process is negative.

Now we will show that the functions z(u) and
∫ u
0 p(u, x)B(dx) are directly Riemann

integrable. To do so, we will use Proposition V.4.1 on p. 154 of Asmussen (1995), which
gives us that it is sufficient to prove that both considered functions are continuous and
there exists bounded directly Riemann integrable upper bounds for these functions.

Lemma 4.31. Under Assumptions 4.1-4.4, we have that

z(u) = eRuP(u,λ) [τ ≤ ϕ1, τ < +∞]

is directly Riemann integrable.

Proof. We start the proof by showing that the function z(u) is continuous. Indeed, from
(4.32) it follows that it suffices to show continuity of the ruin probability ψ(u, λ) as a
function of u > 0. For h > 0, by Markov property of {(Xt, λt, t)}t≥0, we have,

ψ(u, λ) = P(Nh = 0)ψ(u+ ch, λ) (4.34)

+
∞∑
k=1

P(Nh = k)E [ψ(u+ c(T1 + . . .+ Tk)− U1 − . . .− Uk)] .

Observe that limh→0 P(Nh = k) = 0 for k ∈ N and limh→0 P(Nh = 0) = 1; see e.g.
Hawkes (1971). Hence, by Lemma 4.1 and the dominated convergence theorem, we can
conclude that limh→0

∑∞
k=1 P(Nh = k)E [ψ(u+ c(T1 + . . .+ Tk)− U1 − . . .− Uk)] = 0

and that ψ(u, λ) is right-continuous. Plugging on the left-hand side of (4.34), u − ch
instead of u into the argument of ψ gives the left-continuity of this function.

Now, let ε > 0 such that E(u,λ)

[
e−(1+ε)R(Xϕ1

−u)I{ϕ1<+∞}

]
< +∞. Let r = (1 + ε)R.

Observe that

eruP(u,λ) [τ ≤ ϕ1, τ < +∞] = eruE(u,λ)

[
I{τ<ϕ1}I{τ<+∞}

]
= eruEQ(r) [

I{τ<ϕ1} exp (r(Xτ − u) + α(r)(λτ − λ) + θ(r)τ)
]
.

Since r > 0 and Xτ < 0, we have that exp(rXτ ) < 1 and the same holds for exp(α(r)λτ ).
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Therefore,

eruP(u,λ) [τ ≤ ϕ1, τ < +∞] ≤ e−α(r)λEQ(r) [
I{τ<ϕ1} exp (θ(r)ϕ1)

]
≤ e−α(r)λEQ(r) [

I{ϕ1<+∞} exp (θ(r)ϕ1)
]

= e−α(r)λE(u,λ)

[
e−(1+ε)R(Xϕ1

−u)I{ϕ1<+∞}

]
< +∞.

Thus, we have that there exists a positive constant K such that

eruP(u,λ) [τ ≤ ϕ1, τ < +∞] ≤ Ke−(r−R)u = Ke−εu

and the upper bound is bounded and directly Riemann integrable. This completes the
proof.

Lemma 4.32. Under Assumptions 4.1-4.4, the function which maps u to
∫ u
0 p(u, x)e

RxB(dx)
is directly Riemann integrable.

Proof. Observe that the function u →
∫ u
0 p(u, x)e

RxB(dx) is continuous. To identify a
bounded directly Riemann integrable upper bound, we choose an arbitrary but fixed u.
Then,∫ u

0
p(u, x)eRxB(dx) ≤ eRu

∫ u

0
p(u, x)B(dx) = eRuP(u,λ) [τ ≤ ϕ1, ϕ1 < +∞]

≤ eRuP(u,λ) [τ ≤ ϕ1, τ < +∞] .

By Lemma 4.31, we know that the upper bound is directly Riemann integrable and
bounded, which completes the proof.

We are now ready to prove our next main result.

Theorem 4.33. Under Assumptions 4.1-4.4, there exists a constant Cλ > 0, depending
on λ, such that

lim
u→∞

ψ(u, λ)eRu = Cλ,

where the adjustment coefficient R > 0 solves Lundberg equation (4.28).

Proof. By the absolute continuity of the claim events and the proof of Lemma 12 of
Pojer and Thonhauser (2023a), we have that p(u, x) is continuous in u. By this and
Lemmas 4.30-4.32, all assumptions of Theorem 2 of Schmidli (1997) are satisfied.

Remark 4.4. By Corollary 4.5, the adjustment coefficient R > 0 defined via (4.28) equals
to the adjustment coefficient of ’shifted’ Cramér-Lunberg risk process defined in (4.17).

Remark 4.5. Theorem 4.33 gives a stronger statement than Theorem 4.1 of Stabile and
Torrisi (2010) who derived only the logarithmic asymptotic showing that limu→+∞

1
u lnψ(u) =

R.
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4.4 Markovian Hawkes arrival process with exponentially
distributed shocks and exponential claims

Here, we introduce an example where all Assumptions 4.1-4.4 are satisfied. For this,
we consider a Markovian Hawkes process with the intensity process (4.19) and with
exponentially distributed shocks

Yi ∼ Exp(γ).

To ensure that the integrability condition E[Y ]
β < 1 given in (4.20) is satisfied, we assume

that
βγ > 1.

The stationary distribution

We start from the following fact which is of own interest.

Theorem 4.34. The stationary measure ν of the intensity process {λt}t≥0 exists and it
is shifted Gamma law, that is,

ν ∼ a+Gamma(a/β, (βγ − 1)/β). (4.35)

Proof. By Theorem 34.19 on p. 118 of Davis (1984) (see also Prop. 34.7, p. 113 and
Prop. 34.11, p. 115 of Davis (1984)) and the stationary distribution ν of the PDMP
with density p satisfies

0 =

∫ ∞

a
Af(x)ν(dx) =

∫ ∞

a
f(x)A∗p(x) dx,

for all f ∈ D(A) in the domain of the generator A, where A∗ is an adjoint operator to
A. If we can find the unique solution to the equation

A∗g(λ) = 0, (4.36)

then, by the uniqueness of the stationary distribution, this solution must be a density
of the stationary distribution.

We recall that

Af(λ) = β(a− λ)f ′(λ) + λ

∫ ∞

0
γe−γy (f(λ+ y)− f(λ)) dy

= β(a− λ)f ′(λ) + λ

∫ ∞

λ
γe−γ(y−λ)f(y) dy − λf(λ)

and the adjoint operator A∗ satisfies∫ ∞

a
(Af(λ))g(λ) dλ =

∫ ∞

a
(f(λ))A∗g(λ) dλ,
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for all functions f and g from the domain of A. Therefore, for b > a,∫ b

a
(Af(λ))g(λ) dλ =

∫ b

a
β(a− λ)f ′(λ)g(λ) dλ

+

∫ b

a
λg(λ)

∫ ∞

λ
γe−γ(y−λ)f(y) dy dλ−

∫ b

a
λf(λ)g(λ) dyλ.

Furthermore,. if we use integration by parts in the first integral, we get∫ b

a
β(a− λ)f ′(λ)g(λ) = f(b)β(a− b)g(b)−

∫ b

a
f(λ)

(
β(a− λ)g′(λ)− βg(λ)

)
dλ.

In the second term, we interchange integrals and obtain∫ b

a
λg(λ)

∫ ∞

λ
γe−γ(y−λ)f(y) dy dλ =

∫ ∞

a
f(y)

∫ min(y,b)

a
λg(λ)γe−γ(y−λ) dλdy

=

∫ b

a
f(λ)

∫ λ

a
yg(y)γe−γ(λ−y) dy dλ+

∫ ∞

b
f(λ)

∫ b

a
y g(y) γe−γ(λ−y) dy dλ.

Plugging these together, we have that∫ b

a
(Af(λ))g(λ) dλ = f(b)β(a− b)g(b) +

∫ ∞

b
f(λ)

∫ b

a
y g(y) γe−γ(λ−y) dy dλ

+

∫ b

a
f(λ)

(
β(a− λ)g′(λ)− βg(λ) +

∫ λ

a
y g(y) γe−γ(λ−y) dy − λ g(λ)

)
dλ.

If we let b tend to infinity, the first two terms vanish and we find that the adjoint operator
is given by

A∗g(λ) = β(a− λ)g′(λ)− βg(λ) +

∫ λ

a
y g(y) γe−γ(λ−y) dy − λ g(λ).

To solve equation (4.36), observe that

∂

∂λ
A∗g(λ) = β(λ− a)g′′(λ) + (2β − λ)g′(λ) + (βγ − 1)g(λ)−

∫ λ

a
γ2e−γ(λ−y) y g(y) dy

and the solution of (4.36) satisfies

0 = γA∗g(λ) +
∂

∂λ
A∗g(λ)

= β(λ− a)g′′(λ)− (λ+ β(−2 + aγ − γλ))g′(λ) + (βγ − 1)g(λ).
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This equation has solutions of the form

g(λ) = c1e
− (βγ−1)

β
λ
(λ− a)

a
β
−1

+ c2e
− (βγ−1)

β
λ
(λ− a)

a
β
−1

Γ

(
1− a

β
, (

1

β
− γ)(λ− a)

)
, (4.37)

where Γ denotes the incomplete gamma function. To get a proper distribution from the
function g we have to set c2 = 0. Hence g(λ) is the density of a gamma distribution with

parameters a
β and (βγ−1)

β and support shifted by a. This completes the proof.

Remark 4.6. This coincides with Remark 4.3 of Dassios and Zhao (2011), where they
derived the stationary distribution using the limit of the corresponding Laplace trans-
formations.

Assumptions 4.1- 4.3 and the form of adjustment coefficient R

We now consider the surplus process

Xt = u+ ct−
Nt∑
i=1

Ui.

where the claims have an exponential distribution with parameter µ > 0, that is,

Ui ∼ Exp(µ).

In this case, the net profit condition simplifies to

c >
aβγ

µ(βγ − 1)
,

and the moment generating function MU (r) = µ
µ−r is well defined for all r < µ and

satisfies limr→µMU (r) = +∞. Since Yi ∼ Exp(γ), we get MY (−α) = γ
γ+α , for α > −γ

and limα→−γ MU (α) = +∞. Hence Assumptions 4.1- 4.2 are satisfied.

To verify that Assumption 4.3 is also true, observe that the equations for θ(r) and α(r)
have the form

α2β + α(βγ − 1) +
µγ

µ− r
− γ = 0,

θ = −cr − αaβ.

We can solve the quadratic equation for α and obtain the following solutions

α1,2 =
1− γβ

2β
±
√
(−4rβγ + (−1 + βγ)2(µ− r))(µ− r)

2β(µ− r)
.

As we expect from the theory already derived, there are two distinct real solutions for
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α as long r < rmax = (βγ−1)2

(βγ+1)2
µ, there is one single solution for r = rmax and no real

solution if r > rmax.

The larger solution is

α(r) =
1− γβ

2β
+

√
(−4rβγ + (−1 + βγ)2(µ− r))(µ− r)

2β(µ− r)
.

Hence, the function θ is given by

θ(r) = −cr + a(βγ − 1)

2
−
a
√
(−4rβγ + (−1 + βγ)2(µ− r))(µ− r)

2(µ− r)
.

Solving θ(r) = 0 to obtain the adjustment coefficient R gives us three solutions. Namely,

r1 = 0,

r2 =
−a+ aβγ + cµ−

√
(a(1 + βγ))2 − 2ac(−1 + βγ)µ+ c2µ2

2c
,

r3 =
−a+ aβγ + cµ+

√
(a(1 + βγ))2 − 2ac(−1 + βγ)µ+ c2µ2

2c
.

This seems surprising since, by Lemma 4.24, we know that θ is convex; hence, we would
expect two roots. To resolve this puzzle, we take a closer look at the third root r3 and
see that

r3 =
−a+ aβγ + cµ+

√
(a(1 + βγ))2 − 2ac(−1 + βγ)µ+ c2µ2

2c
=

−a+ aβγ + cµ+
√

(a(−1 + βγ)− cµ)2 + 4a2βγ

2c

≥ −a+ aβγ + cµ+ |(a(−1 + βγ)− cµ)|
2c

≥ −a+ aβγ + cµ+ (−a(−1 + βγ) + cµ)

2c
= µ.

In the previous parts, θ was only defined in the interval (−∞, rmax). Since µ > rmax =
(βγ−1)2µ
(βγ+1)2

, we see that the third root is not in the domain under consideration.

To ensure that the second root

R = r2 =
−a+ aβγ + cµ−

√
(a(1 + βγ))2 − 2ac(−1 + βγ)µ+ c2µ2

2c

(which is our adjustment coefficient) is in the domain, we must assume the additional
condition

c <
a(βγ + 1)2

2(βγ − 1)µ
. (4.38)

This requirement (4.38) corresponds exactly to (4.5) in Karabash and Zhu (2015), which
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was needed to show the convergence of the logarithm of the probability of ruin in the
general Hawkes case. Further, there exists an ε > 0 such thatMU (R+ε),MY (−α(R+ε))
are finite, and hence Assumption 4.3 is satisfied.

Integrability condition of the recurrence times: Assumption 4.4

Finally, we have to check if Assumption 4.4 is satisfied. By the definition of the stopping
times {ϕi}∈N at the beginning of Subsection 4.3.5 and (4.33), it suffices to show that,
for fixed level λ > a, there exists some r > R such that

EQ(r)

λ

[
eθ(r)S

λ
1

]
< +∞. (4.39)

To prove (4.39), we will use the ideas of the proof of Theorem 4.21, that is, we identify
some constant q and λ̃ < λ such that

EQ(r)

λ

[
eqS

λ̃
1

]
< +∞ and EQ(r)

λ̃

[
eqS

λ
1

]
< +∞.

For this, using the proof of Theorem 4.21, we recall that, under the stationary regime,

the recurrence time Sλ
1 is light-tailed and EQ(r)

ν

[
eqS

λ
1

]
< +∞ for all q < β(λ− a)p(r)(λ),

where p(r)(λ) denotes the density of the stationary distribution under the measure Q(r).

Due to the proof of Theorem 4.21, we have that for almost all λ̃ < λ, that EQ(r)

λ

[
eqS

λ
1

]
<

+∞, where q < min
(
β(λ− a)p(r)(λ), β(λ̃− a)p(r)(λ̃)

)
. Unfortunately, we have to show

that this holds for q = θ(r), a quantity depending on r. Furthermore, we know that
the exponential moment is finite for almost all λ̃, but we do not know which λ̃ does not
satisfy this property. To bypass these problems, we aim to identify a lower bound K for
β(λ̃ − a)p(r)(λ̃) which is independent of r and holds uniformly for λ̃ ∈ I, where I is an

interval containing λ. This would give us EQ(r)

λ

[
eKSλ

1

]
< +∞, for all r, which would

allow us to choose r > R such that θ(r) < K. Consequently, the necessary integrability
condition (4.39) will be satisfied.

From the proof of Lemma 4.29 it follows that, under a measure Q(r) for some arbitrary
r < rmax, the intensity process {λt}t≥0 of a Markovian Hawkes process {Nt}t≥0 with
the baseline intensity aMU (r)MY (−α(r)), decay parameter β and shocks of the form
MU (r)MY (−α(r))Ỹ , where Ỹ has distribution

e−α(r)y

MY (−α(r))
FY (dy) =

1

γ + α(r)
e−(γ+α(r))y dy,

that is, with the shocks that are exponentially distributed with the parameter

γ(r) :=
γ + α(r)

MU (r)MY (−α(r))
=

(γ + α(r))2(µ− r)

γµ
.

Hence, we can use the already determined stationary distribution inn (4.37) for Marko-
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vian Hawkes intensities with exponentially distributed shocks to conclude that our pro-
cess {λt}t≥0 has stationary density

p(r)(λ) = (λ− a)
MU (r)MY (−α(r))a

β
−1

× exp

(
−(βγ(r) − 1)MU (r)MY (−α(r))

β
(λ− a)

)

× (MU (r)MY (−α(r)))
MU (r)MY (−α(r))a

β
−1

(
βγ(r) − 1

β

)aMU (r)MY (−α(r))

β

× Γ

(
MU (r)MY (−α(r))a

β

)−1

.

Choose now some ε > 0 such that rmax > R+ ε. Then, we see that the function p(r)(λ)
is well defined for all r ∈ [R,R+ ε], continuous as a bivariate function p(r, λ) := p(r)(λ),
and strictly positive. Consequently, we find that this function is uniformly bounded from
below on [R,R+ ε]× [λ+a

2 , λ] by some positive constant K.
Recall that the function θ(r) is continuous and the adjustment condition R satisfies
θ(R) = 0. By this, we can choose some r ∈ [R,R + ε] such that θ(r) < Kβ

(
λ−a
2

)
.

Therefore, it holds for this specific r that

EQ(r̄)

λ

[
eθ(r̄)S

λ
1

]
< +∞.

Consequently, we have that all our assumptions are satisfied and, assuming (4.38), from
Theorem 4.33 we can conclude that

lim
u→+∞

ψ(u, λ̃)eRu = C λ̃,

for a positive constant C λ̃.
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5 The Markovian shot-noise risk model: a
numerical method for Gerber-Shiu
functions

The following chapter was published as Pojer and Thonhauser (2023b) and is adopted al-
most verbatim. Some changes have been made to ensure consistency of notation through-
out all chapters of this thesis.

5.1 Introduction and overview

The introduction of the family of penalty functions by Gerber and Shiu in Gerber and
Shiu (1998) had and still has a huge impact on the field of ruin theory. This unifying
approach generalizes previously considered risk measures and allows a comprehensive
analysis of the ruin event of an insurance portfolio. Since then, Gerber-Shiu functions
were analysed in different types of risk models. For example in the renewal model in
Gerber and Shiu (2005), Li and Garrido (2005) and Willmot and Dickson (2003), the
Markov modulated model in Zhang (2008), and the Björk-Grandell model in Schmidli
(2010). The case of spectrally negative Lévy risk processes was already considered in
Garrido and Morales (2006) and resolved in a very general form by the so-called quin-
tuple law derived in Doney and Kyprianou (2006).

Initially, the main aim was to establish explicit formulas, which allow for direct cal-
culation of discounted penalty functions. This was successfully done in the classical and
renewal models if the claim sizes are exponentially or phase-type distributed. Due to
the increasing complexity of underlying models and considered penalty functions, this
is generally hardly possible nowadays. Since simulation techniques like (quasi-)Monte
Carlo methods are time-consuming and not always directly implementable, there is an
increasing effort in finding efficient numerical procedures to determine suitable approx-
imations of penalty functions for more complex models. Exemplary contributions are
Chau et al. (2015), Diko and Usábel (2011), Lee et al. (2021), and Preischl et al. (2018).
For the renewal risk model, Strini and Thonhauser (2020) introduced a numerical scheme
based on a discretization of the corresponding generator to determine discounted penalty
functions depending on a local cost functional and the deficit at ruin.

We consider Gerber-Shiu functions in the context of a Markovian shot-noise environ-
ment. The motivation for using the Markovian shot-noise model is the modelling of
disasters, like earthquakes, as it was applied in Dassios and Jang (2003) in the context
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of pricing of reinsurance of catastrophic events. A generalized version of this model was
considered by Albrecher and Asmussen (2006), who were interested in the asymptotic
behaviour of the ruin probability in a general shot-noise model and derived exponen-
tially decaying upper and lower bounds. Further extensions of this model are Stabile and
Torrisi (2010), who considered heavy-tailed claim events, and Macci and Torrisi (2011),
considering a non-constant premium rate. Recently, Pojer and Thonhauser (2023a) were
able to show the convergence behaviour of the ruin probability in the Markovian model.

In this contribution, we are able to deal with Gerber-Shiu functions in their full gener-
ality. The introduction of an additional process, allows us to include functions depend-
ing on the surplus before ruin. By the underlying structure of piecewise-deterministic
Markov processes, we can represent these discounted penalty functions as solutions to
Feynman-Kac type partial integro-differential equations. Since there is no evidently ex-
plicit solution to the resulting equations, we develop a scheme to solve these equations
numerically. First, we resolve the problem of the unboundedness of the involved in-
tensity process. In the second step, we discretize the bounded version of the partial
integro-differential equations and solve the corresponding system of linear equations.
The obtained numerical solutions correspond to Gerber-Shiu functions of approximat-
ing Markov chains with finite state space. Eventually, we use weak convergence on the
Skorokhod space of càdlàg functions to obtain a convergence result for the determined
function values.

This paper is organized in the following way. In Section 2, we define the considered
model, the concept of Gerber-Shiu functions, and their analytic properties. In Section 3,
we introduce families of auxiliary processes used to approximate the original PDMPs of
the Markovian shot-noise model and motivate the proposed numerical scheme. In Sec-
tion 4, we show convergence of the numerical approximation by exploiting convergence
in distribution of processes over the space of càdlàg functions. Finally, in Section 5, we
give examples that show the performance of the proposed numerical scheme.

5.2 Risk model and Gerber-Shiu functions

At first, we briefly introduce the considered Markovian shot-noise model as it is also used
in Pojer and Thonhauser (2023a). For this, we consider a probability space (Ω,F ,P),
which is assumed to be big enough to carry all of the subsequently defined stochastic
objects.

Definition 5.1. Let λ and β be positive constants and {Nρ
t }t≥0 a homogeneous Poisson

process with intensity ρ and jump times {T ρ
i }i≥1. Let further {Yi}i≥1 be i.i.d. copies

of a positive random variable Y with distribution FY independent of Nρ. Then, the
intensity process {λt}t≥0 given by

λt := λe−βt +

Nρ
t∑

i=1

Yie
−β(t−T ρ

i ),
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is called Markovian shot-noise process.

Using this, we can define the surplus process in the following way.

Definition 5.2. Let N be a Cox process whose stochastic intensity is a Markovian
shot-noise process {λt}t≥0 and {Ui}i≥1 an i.i.d. sequence of positive random variables,
independent of {Nt}t≥0 and {λt}t≥0, with distribution function FU . Let further c be a
positive and x a non-negative constant. Then, the surplus process {Xt}t≥0 is given by

Xt = x+ ct−
Nt∑
i=1

Ui.

The Markovian shot-noise model was used by Dassios and Jang (2003) to model catas-
trophic events like earthquakes. A single catastrophic event, e.g. the earthquake, in-
creases the intensity by a random quantity Y , called shock, and induces Poi(Y/β) many
claims, called a cluster, which do not occur immediately, but instead, they will be re-
ported over a period of time. This allows us the following interpretation of the involved
parameters and random variables. The parameter ρ is the inverse of the expected time
between two catastrophic events. Since the total number of claims due to a single catas-
trophe is Poi(Y/β), we have that the random variable Y/β determines the distribution
of the number of claims in a single cluster. The decay parameter β determines how
long it will take until all claims of the cluster are reported and paid. Despite the easy
interpretation, it might be hard to estimate these quantities, especially the distribution
of Y .
From now on, we will assume the following:

Assumption 5.1. Assume that the net profit condition c > ρ
βE [U1]E [Y1] holds.

In many cases, the ruin probability itself is not a satisfying measure of the risk in the
given model. One well-established much more general approach is to use Gerber-Shiu
functions. For the precise setup, we follow the presentation used in Schmidli (2010).
Let w(x, y) be a continuous and bounded function and κ > 0. Then, the corresponding
Gerber-Shiu function is defined by

gκ(x, λ) := E(x,λ)

[
e−κτw(Xτ−,−Xτ )I{τ<∞}

]
,

for (x, λ) ∈ [0,∞) × (0,∞). Further, gκ(x, λ) = 0 for x < 0 or λ ≤ 0. Here, the
expectation E(x,λ) is the expectation with conditions X0 = x and λ0 = λ. Even though
this representation is commonly used, it is not satisfying in our case. Since we want to
exploit weak convergence of càdlàg processes to justify our numerical scheme, we have
to extend the definition of GS-functions.

Definition 5.3 (Gerber-Shiu function). Let {λt}t≥0 denote the Markovian shot-noise
process and {Xt}t≥0 the corresponding surplus process. As a third process define {mt}t≥0

as mt := UNt , the process which remembers the size of the latest claim. Using these
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processes we define for a continuous and bounded function w, and a constant κ > 0 the
Gerber-Shiu function

gκ(x,m, λ) = E(x,m,λ)

[
w (Xτ +mτ ,−Xτ ) e

−κτI{τ<∞}
]
.

As already mentioned before, the main advantage of this representation is, that we use
the càdlàg process {mt}t≥0 instead of the làdcàg process {Xt−}t≥0. Given the actual
level of the surplus process, the distribution of mτ does not depend on the current level
m, i.e. the size of the latest claim. Therefore, we will omit m in future and write
still gκ(x, λ) for the GS-function. For the sake of completeness, we define the filtration
{Ft}t≥0 to be the natural filtration of the multivariate process {(Xt,mt, λt)}t≥0. In this
setting, the multivariate process is a strong Markov process with respect to this filtration.

To obtain a partial integro-differential equation which is satisfied by the GS-functions, we
use the Markovian structure of our model. The process {(Xt,mt, λt)}t≥0 is a piecewise-
deterministic Markov process (PDMP) with generator

Af(x,m, λ) = c
∂f(x,m, λ)

∂x
− βλ

∂f(x,m, λ)

∂λ
+ λ

∫ ∞

0
f(x− u, u, λ)FU (du)

+ ρ

∫ ∞

0
f(x,m, λ+ y)FY (dy)− (λ+ ρ)f(x,m, λ),

which is certainly well-defined for all bounded and continuously differentiable functions
f . Since our Gerber-Shiu functions are generally not continuously differentiable, we use
the general definition of the generator of a PDMP from Rolski et al. (1999). For a
function f , the path-derivative is defined by

δϕf(x,m, λ) := lim
h→0

f(x+ ch,m, λe−βh)− f(x,m, λ)

h
.

Then, the domain of the generator of our PDMP consists of all functions f , which are
path-differentiable a.e. and satisfy that for all t ≥ 0,

E(x,λ)

[
Nt∑
i=1

|f(XTi ,mTi , λTi)− f(XTi−,mTi−, λTi−)|

+

Nρ
t∑

i=1

∣∣∣f(XT ρ
i
,mTλ

i
, λT ρ

i
)− f(XT ρ

i −,mT ρ
i −, λT

ρ
i −)
∣∣∣
 <∞.
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For such a function f , the generator is characterized by

Af(x,m, λ) = δϕf(x,m, λ) + λ

∫ ∞

0
f(x− u, u, λ)FU (du)

+ ρ

∫ ∞

0
f(x,m, λ+ y)FY (dy)− (λ+ ρ)f(x,m, λ).

Theorem 5.1. The Gerber-Shiu functions are in the domain of the generator of the
PDMP {(Xt,mt, λt)}t≥0.

Proof. To show this, we prove that the Gerber-Shiu functions are path-differentiable and
bounded.

For the path-differentiability, we follow the line of arguments as given in Strini and
Thonhauser (2020). Define for some deterministic r > 0 the bounded stopping time
ν = r ∧ T1, where T1 denotes the first jump-time of the PDMP. Doing this we get

gκ(x, λ) = E(x,λ)

[
e−κτw(Xτ +mτ ,−Xτ )I{τ<∞}

]
= E(x,λ)

[
e−κνE

[
e−κ(τ−ν)w(Xτ +mτ ,−Xτ )I{τ<∞}

∣∣∣Fν

]]
.

Now, there are two cases. Either ν = r or ν = T1. Using this, we get

gκ(x, λ) =: e−
∫ r
0(λe

−βs+ρ) dse−κrgκ(x+ cr, λe−βr) +

∫ r

0
H(s) ds,

where

H(s) = (λe−βs + ρ)e−
∫ s
0 (λe

−βu+ρ) due−κs

(
ρ

λe−βs + ρ

∫ ∞

0
gκ(x+ cs, λe−βs + y)FY (dy)+

λe−βs

λe−βs + ρ

(∫ x+cs

0
gκ(x+ cs− u, λe−βs)FU (du) +

∫ ∞

x+cs
w(x+ cs, u− x− cs)FU (du)

))
.

Adding and subtracting e−
∫ r
0(λe

−βs+ρ+κ) dsgκ(x, λ) and rearranging gives us

gκ(x+ cr, λe−βr)− gκ(x, λ)

r
=
e
∫ r
0 (λe−βs+ρ+κ) ds − 1

r
gκ(x, λ)

− e
∫ r
0 (λe−βs+ρ+κ) ds

r

∫ r

0
H(s) ds.

The integral over H is differentiable in r = 0 from the right with derivative H(0). Hence,
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for r → 0 we have

lim
r→0

gκ(x+ cr, λe−βr)− gκ(x, λ)

r
= (λ+ ρ+ κ)gκ(x, λ) +H(0)

=(λ+ ρ+ κ)gκ(x, λ)− ρ

∫ ∞

0
gκ(x, λ+ y)FY (dy)

− λ

(∫ x

0
gκ(x− u, λ)FU (du) +

∫ ∞

x
w(x, u− x)FU (du)

)
,

which gives us the differentiability of g along the paths of our PDMP. The integrability
is an immediate consequence of the boundedness of w.

If we use the derived form of the path-derivative of gκ in the definition of the generator,
we see that the GS-function solves the partial integro-differential equation

Agκ(x, λ) = κgκ(x, λ)− λ

∫ ∞

x
(w(x, u− x)− gκ(x− u, λ)) FU (du),

on (x, λ) ∈ [0,∞)× (0,∞). But, we still have to show that it is its unique solution.

Theorem 5.2. Let gκ be a GS-function with some κ > 0. Then gκ is the unique bounded
solution to the partial integro-differential equation (PIDE)

δϕf(x, λ) + ρ

∫ ∞

0
f(x, λ+ y)FY (dy)

+ λ

(∫ x

0
f(x− u, λ)FU (du) +

∫ ∞

x
w(x, u− x)FU (du)

)
− (κ+ λ+ ρ)f(x, λ) = 0,

for (x, λ) ∈ [0,∞)× (0,∞).

Proof. As already shown, the GS-function is bounded and solves the equation stated
above. Now, observe that the PIDE can be rewritten in terms of the generator of the
PDMP by

Af(x, λ)− κf(x, λ)− λ

∫ ∞

x
(f(x− u, λ)− w(x, u− x))FU (du) = 0,

for (x, λ) ∈ [0,∞) × (0,∞). Let h : R2 → R be an arbitrary bounded solution of this
equation, κ > 0, and S a bounded stopping time. Since h is path-differentiable and
bounded, it is in the domain of the generator A, which we use, to get

h(x, λ) = E(x,λ)

[
e−κSh(XS , λS)−

∫ S

0
e−κv(Ah(Xv, λv)− κh(Xv, λv))dv

]
=

E(x,λ)

[
e−κSh(XS , λS)−

∫ S

0
e−κvλv

∫ ∞

Xv

(h(Xv − u, λv)− w(Xv, u−Xv))FU (du) dv

]
.

88



Using this representation for the bounded stopping time τ ∧ t, yields

h(x, λ) =E(x,λ)

[
e−κτ∧th(Xτ∧t, λτ∧t)

]
− E(x,λ)

[∫ τ∧t

0
e−κvλv

∫ ∞

Xv

h(Xv − u, λv)FU (du) dv

]

+ E(x,λ)

[∫ τ∧t

0
e−κvλv

∫ ∞

Xv

w(Xv, u−Xv)FU (du) dv

]
.

Let us now focus on the third term. Using that {Nt}t≥0 is a counting process with
intensity {λt}t≥0, we can rewrite this to

E(x,λ)

[∫ τ∧t

0
e−κvλv

∫ ∞

Xv

w(Xv, u−Xv)FU (du) dv

]
=

E(x,λ)

[∫
(0,τ∧t]

e−κv

∫ ∞

Xv−

w(Xv−, u−Xv−)FU (du) dNv

]
=

E(x,λ)

[
Nτ∧t∑
i=1

e−κTi

∫ ∞

XTi−

w(XTi−, u−XTi−)FU (du)

]
=

E(x,λ)

[
Nτ∧t∑
i=1

e−κTiE(x,λ)

[
w(XTi−, Ui −XTi−)I{Ui>XTi−} | FTi−

]]
.

Since I{Ui>XTi−} = 0 for all Ti < τ and 1 for Ti = τ , the sum is 0 if τ > t and

e−κτE(x,λ) [w(Xτ−,−Xτ ) | Fτ− ] if τ ≤ t. Consequently,

E(x,λ)

[
Nτ∧t∑
i=1

e−κTiE(x,λ)

[
w(XTi−, Ui −XTi−)I{Ui>XTi−} | FTi−

]]
=

E(x,λ)

[
Nτ∧t∑
i=1

e−κTiE(x,λ)

[
w(XTi−, Ui −XTi−)I{Ti=τ} | FTi−

]]
=

E(x,λ)

[
e−κτw(Xτ−,−Xτ )I{τ≤t}

]
.

The same arguments yield

E(x,λ)

[∫ τ∧t

0
e−κvλv

∫ ∞

Xv

h(Xv − u, λv)FU (du) dv

]
= E(x,λ)

[
e−κτh(Xτ , λτ )I{τ≤t}

]
.
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Hence,

h(x, λ) =E(x,λ)

[
e−κτ∧th(Xτ∧t, λτ∧t)

]
− E(x,λ)

[
e−κτh(Xτ , λτ )I{τ≤t}

]
+ E(x,λ)

[
e−κτw(Xτ−,−Xτ )I{τ≤t}

]
=E(x,λ)

[
e−κth(Xt, λt)I{τ>t}

]
+ E(x,λ)

[
e−κτw(Xτ−,−Xτ )I{τ≤t}

]
.

Since h is bounded, we can find a positive constant K such that∣∣E(x,λ)

[
e−κth(Xt, λt)I{τ>t}

]∣∣ ≤ Ke−κt.

Using this, we finally get that

h(x, λ) = lim
t→∞

E(x,λ)

[
e−κth(Xt, λt)I{τ>t}

]
+ E(x,λ)

[
e−κτw(Xτ−,−Xτ )I{τ≤t}

]
= lim

t→∞
E(x,λ)

[
e−κτw(Xτ−,−Xτ )I{τ≤t}

]
= E(x,λ)

[
e−κτw(Xτ−,−Xτ )I{τ<∞}

]
.

5.3 Auxiliary processes

As already shown in the previous section, the function gκ satisfies a partial integro-
differential equation (PIDE). Generally, this equation cannot be solved explicitly. Hence,
we need some numerical scheme that allows us to calculate an approximation of the
desired value. An intuitive way to do so is to bound the state space and suitably
discretize the PIDE on the bounded domain. This results in a system of linear equations
which we can solve. Our approach is to approximate a bounded version of the PDMP
by Markov chains, determine the corresponding Gerber-Shiu functions and show that
these converge to the original ones.

5.3.1 Bounded processes

The first step of the approximation procedure is to bound some components of the
processes in a suitable way.

Definition 5.4. Let b > 0, λmax(b) > 0, Umax(b) > 0 and Ymax(b) > 0 such that
limb→∞ λmax(b) = limb→∞ Umax(b) = limb→∞ Ymax(b) = ∞. Then, we define the
bounded intensity process by

λ
(b)
t = λe−βt +

Nρ
t∑

i=1

Y
(b)
i e−β(t−T ρ

i ).

Here, the distribution of the random variable Y
(b)
j depends on the original j-th shock and
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the pre-jump location of the process {λ(b)t }t≥0 in the following way: define the random
variable Ȳj = YjI{Yj≤Ymax(b)} + Ymax(b)I{Yj>Ymax(b)}, then the bounded shocks are given
by

Y
(b)
j = ȲjI{

λ
(b)

T
ρ
j
−
+Ȳj≤λmax(b)

} + (λmax(b)− λ
(b)

T ρ
j −

)I{
λ
(b)

T
ρ
j
−
+Ȳj>λmax(b)

}.
This might seem complicated, but it ensures, that our new shocks have bounded sup-

port and the whole process {λ(b)t }t≥0 does not leave the bounded state space (0, λmax(b)].

Given this new process, we define our new counting process {N (b)
t }t≥0 using the acceptance-

rejection method, also called thinning. Let T be a jump time of the original counting
process {Nt}t≥0 and U ∼ U [0, 1]. We accept the jump time for the new jump process if
λ
(b)
T
λT

≥ U . That gives us that {N (b)
t }t≥0 is a Cox process with intensity {λ(b)t }t≥0, whose

jump times coincide with jump times of our original process. Defining the sequence of

bounded claims by U
(b)
j = UjI{Uj≤Umax(b)} +Umax(b)I{Uj>Umax(b)}, we can further define

X
(b)
t = x+ ct−

N
(b)
t∑

i=1

U
(b)
i ,

and m
(b)
t = U

(b)

N
(b)
t

.

Even though, {Y (b)
i }i∈N is no longer an i.i.d. sequence, this new triplet of processes is

again a PDMP with generator

A(b)f(x,m, λ) = δϕf(x,m, λ) + λ

∫ Umax(b)

0
f(x− u, u, λ)FU (du)

+ λf(x− Umax(b), Umax(b), λ)P [U > Umax(b)]

+ ρ

∫ Ymax(b)

0
f(x,m,min {λmax(b), λ+ y})FY (dy)

+ ρ f(x,m,min {λmax(b), λ+ Ymax(b)})P [Y > Ymax(b)]

− (λ+ ρ)f(x,m, λ),

or alternatively we write for convenience

A(b)f(x,m, λ) = δϕf(x,m, λ) + λ

∫
(0,Umax(b)]

f(x− u, u, λ)FU(b)(du)

+ ρ

∫
(0,Ymax(b)]

f(x,m, λ+ y)FY (b)(dy, λ)− (λ+ ρ)f(x,m, λ).

Having this, we can now define the GS-function of the bounded process.

Definition 5.5. Let gκ(x, λ) = E(x,λ)

[
w(Xτ +mτ ,−Xτ )e

−κτI{τ<∞}
]
be an arbitrary
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Gerber-Shiu function. Then, we define the corresponding GS-function of the bounded
process by

g(b)κ (x, λ) = E(x,λ)

[
w(X

(b)

τ (b)
+m

(b)

τ (b)
,−X(b)

τ (b)
)e−κτ (b)I{τ (b)<∞}

]
,

where τ (b) = inf
{
t ≥ 0

∣∣∣X(b)
t ≤ 0

}
.

We call these processes bounded, since the intensity process {λ(b)t }t≥0 and the random

variables {Y (b)
i }i∈N and {U (b)

i }i∈N are a.s. bounded. Despite this denomination, the mul-

tivariate process {(X(b)
t ,m

(b)
t , λ

(b)
t )}t≥0 is not bounded. The surplus process {X(b)

t }t≥0

is left unbounded since any change there would disturb the strictly monotone increasing
drift. We could resolve this problem, by using external states, which could be introduced
to change the deterministic flow. This would create an active boundary, i.e. an area
where jumps occur deterministically. Unfortunately, this causes several problems in the
proofs of weak convergence in Section 5.4.

5.3.2 Discrete state processes

Let us now fix some b, and h > 0. We set NU =
⌊
Umax(b)

h

⌋
and Nλ such that

limh→0Nλh = ∞. Then we introduce a continuous-time Markov chain with countable
state space approximating the bounded process the following way:

Definition 5.6. Define the state space

{(xi, xl, λj) | i, l ∈ Z, 1 ≤ j ≤ Nλ } ,

where xi = cih, and λj := λmax(b) exp (−β(Nλ − j)h), and the probabilities pUk =

P
[
xk−1 < U (b) ≤ xk

]
for k < NU and pUNU

= 1−
∑NU−1

k=1 pUk .
Further, we set for some fixed λj

NY (j) = # {λj+k | k ≥ 1, λj+k − λj ≤ Ymax(b)} ,

the number of points which we can reach from λj with a bounded shock event. The
corresponding probabilities are

pYk (j) = P
[
λj+k−1 − λj < Y (b) ≤ λj+k − λj

]
for k < NY (j),

and pY
NY (j)

(j) := 1−
∑NY (j)−1

k=1 pYk (j).

92



Using this, we define the Markov chain on the discrete state space via its generator

A(h,b)f(xi, xl, λj) =
f(xi+1, xl, λj−1)− f(xi, xl, λj)

h

+ λj

NU∑
k=1

f(xi − xk, xk, λj) p
U
k

+ ρ

NY (j)∑
k=1

f(xi, xl, λj+k) p
Y
k (j)− (λj + ρ)f(xi, xl, λj),

where we set λ1−1 = λ1 and λn = λmax(b) for all n ≥ Nλ.

This generator consists still of infinitely many expressions, due to the unbounded state-
space. To bypass this, we have to introduce a third family of processes with finite
state-space.

Definition 5.7. Let x̄ be a positive constant and define Nx =
⌊

x̄
ch

⌋
. Then, we define

the finite state space by

{(xi, xl, λj) | −Nx ≤ i, l ≤ Nx, 1 ≤ j ≤ Nλ } ,

where xi and λj are as in the countable case. On this grid, we define the Markov chain{
(X(x̄,h,b),m(x̄,h,b), λ(x̄,h,b))

}
by its generator. For i < Nx and j > 1 set

A(x̄,h,b)f(xi, xl, λj) =
f(xi+1, xl, λj−1)− f(xi, xl, λj)

h

+ λj

min(NU ,Nx+i)∑
k=1

f(xi−k, xk, λj) p
U
k

+ λ1f(x−Nx , λj)

1−
min(NU ,Nx+i)∑

k=1

pUk


+ ρ

NY (j)∑
k=1

f(xi, xl, λj+k) p
Y
k (j)− (λj + ρ)f(xi, xl, λj).

93



For i = Nx and j > 1 set

A(x̄,h,b)f(xNx , xl, λj) =
f(xNx , xl, λj−1)− f(xNx , xl, λj)

h

+ λj

min(NU ,2Nx)∑
k=1

f(xNx−k, xk, λj) p
U
k

+ λjf(x−Nx , λj)

1−
min(NU ,2Nx)∑

k=1

pUk


+ ρ

NY (j)∑
k=1

f(xNx , xl, λj+k) p
Y
k (j)− (λj + ρ)f(xNx , xl, λj).

For i = Nx and j = 1 set

A(x̄,h,b)f(xNx , xl, λ1) =λ1

min(NU ,2Nx)∑
k=1

f(xNx−k, xk, λ1) p
U
k

+ λ1f(x−Nx , λ1)

1−
min(NU ,2Nx)∑

k=1

pUk


+ ρ

NY (j)∑
k=1

f(xNx , xl, λ1+k) p
Y
k (1)− (λ1 + ρ)f(xNx , xl, λ1).

Here, we write again λ1−1 = λ1 and λn = λmax(b) for all n ≥ Nλ.

Now, we can introduce the corresponding GS-function of the Markov chain with finite
state space.

Lemma 5.3. Let gκ(x, λ) = E(x,λ)

[
e−κτw(Xτ +mτ ,−Xτ )I{τ<∞}

]
be an arbitrary dis-

counted penalty function of our original model. Then, we define the corresponding GS-
function of the Markov chain with finite state space by

g(x̄,h,b)κ (xi, λj) = E(xi,λj)

[
e−κτ̃w(X

(x̄,h,b)
τ̃ +m

(x̄,h,b)
τ̃ ,−X(x̄,h,b)

τ̃ )I{τ̃<∞}

]
,

where τ̃ = inf
{
t ≥ 0

∣∣∣X(x̄,h,b)
t ≤ 0

}
. This function g

(x̄,h,b)
κ (xi, λj) is the unique solution
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of the following finite system of linear equations:

f(xi+1, λj−1)− f(xi, λj)

h
− (λj + ρ+ κ)f(xi, λj) + λj

min(i−1,NU )∑
k=1

f(xi − xk, λj) p
U
k

+ λjI{i≤NU}

NU∑
k=i

w(xi, xk − xi) p
U
k + ρ

NY (j)∑
k=1

f(xi, λj+k) p
Y
k (j) = 0 for i < Nx, j > 1,

f(xNx , λj−1)− f(xNx , λj)

h
+ λj

NU∑
k=1

f(xNx − xk, λj) p
U
k

+ ρ

NY (j)∑
k=1

f(xNx , λj+k) p
Y
k (j)− (λj + ρ+ κ)f(xNx , λj) = 0 for j > 1,

f(xi+1, λ1)− f(xi, λ1)

h
+ λ1

min(i−1,NU )∑
k=1

f(xi − xk, λ1) p
U
k + λ1I{i≤NU}

NU∑
k=i

w(xi, xk − xi) p
U
k

+ ρ

NY (1)∑
k=1

f(xi, λ1+k) p
Y
k (1)− (λ1 + ρ+ κ)f(xi, λ1) = 0 for i < Nx,

and

λ1

NU∑
k=1

f(xNx − xk, λ1) p
U
k + ρ

NY (1)∑
k=1

f(xNx , λ1+k) p
Y
k (1)− (λ1 + ρ+ κ)f(xNx , λ1) = 0.

Proof. Since κ > 0, the matrix corresponding to the above system of equations is strict
diagonally dominant, hence regular. Since the GS-function solves the system, it is the
unique solution.

5.4 Convergence of Gerber-Shiu functions

In this section, we will prove that our numerical scheme converges as h→ 0 and b→ ∞.
For this, we want to exploit the convergence in distribution of processes as random vari-
ables on the Skorokhod space of càdlàg functions. This convergence implies the conver-
gence of Skorokhod-continuous and bounded functionals of the corresponding processes.
For further details on this metric space see Chapter 3 of Ethier and Kurtz (2009).
Since our processes are Markov processes, the main idea is to reduce this to the con-
vergence of the corresponding generators. For Feller processes, these properties are
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equivalent as shown in Theorem 19.25 of Kallenberg (2002). Since our processes are not
Feller, we will use Theorem 8.2 in Chapter 5 of Ethier and Kurtz (2009) to show the
same. Consequently, we have to find a suitable subdomain of our generators such that
the induced semigroup is strongly continuous on this set of functions. If this domain is
convergence determining, e.g. if it contains C∞

c , and the generators converge for all f
from this domain, then the corresponding processes converge weakly.

5.4.1 Convergence of the bounded processes

Lemma 5.4. The generator A of the original PDMP generates a strongly continuous
contraction semigroup {Tt}t≥0 on the ∥ · ∥∞-closure of the set

D = {f ∈ Cb | δϕf is path-continuous and Af ∈ Cb } ,

by Ttf(x,m, λ) := E(x,m,λ) [f(Xt,mt, λt)] .

Proof. Since A is the generator of the Markov process {(Xt,mt, λt)}t≥0, we have to show
that Tt maps this set into itself and is strongly continuous there.
By a small modification of the proof of Theorem 27.6 in Davis (1993), we can relax the
needed assumption that the intensity is bounded. This gives us that for all bounded
and continuous f , we have that Ttf ∈ Cb too. By Theorem 7.7.4 of Jacobsen (2006),
the operators map path-differentiable functions satisfying ∥Af∥∞ into itself and satisfy
ATtf = TtAf . By this, we get for all f ∈ D that ATtf = TtAf ∈ Cb.
The strong continuity is an immediate consequence of the boundedness of Af . Consider
|Ttf(x,m, λ)− f(x,m, λ)| for some fixed t. Then, it holds that

|Ttf(x,m, λ)− f(x,m, λ)| =
∣∣∣∣∫ t

0
E(x,m,λ) [Af(Xs,ms, λs)] ds

∣∣∣∣ ≤ t∥Af∥∞.

Since this upper bound is independent of (x,m, λ), we can let t tend to 0, which gives
us that the contraction semigroup Tt is strongly continuous in t = 0.

Theorem 5.5. Let f ∈ D be arbitrary and g = Af . Then, for all k ≥ 0, 0 ≤ t1 < t2 <
· · · < tk ≤ t < t+ s and h1, · · · , hk ∈ Cb we have that

lim
b→∞

E(x,m,λ)

[(
f(X

(b)
t+s,m

(b)
t+s, λ

(b)
t+s) − f(X

(b)
t ,m

(b)
t , λ

(b)
t )−

∫ t+s

t
g(X(b)

v ,m(b)
v , λ(b)v ) dv

)
×

k∏
i=1

hi(X
(b)
ti
,m

(b)
ti
, λ

(b)
ti
)

]
= 0.

Proof. For convenience, we will write Zt := (Xt,mt, λt), Z
(b)
t := (X

(b)
t ,m

(b)
t , λ

(b)
t ) and

z = (x,m, λ). At first, we will cover the case k = 0. Let f ∈ D arbitrary and g = Af . It
is easy to see, that for every b > 0, f is in the domain of the generator A(b) too. Writing
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g(b) for A(b)f we have that

Ez

[
f(Z

(b)
t+s)− f(Z

(b)
t )−

∫ t+s

t
g(Z(b)

v ) dv

]
=Ez

[
f(Z

(b)
t+s)− f(Z

(b)
t )−

∫ t+s

t
g(b)(Z(b)

v ) dv

]

+ Ez

[∫ t+s

t
g(b)(Z(b)

v )− g(Z(b)
v ) dv

]
.

The first term is the expectation of a zero mean martingale, hence 0. For the second
term, we take a closer look at the difference of the generators A and A(b) applied to the
same function f in the same point (x,m, λ):

Af(x,m, λ) =δϕf(x,m, λ) + λ

∫ ∞

0
f(x− u, u, λ)FU (du)

+ ρ

∫ ∞

0
f(x,m, λ+ y)FY (dy)− (λ+ ρ)f(x,m, λ)

and

A(b)f(x,m, λ) =δϕf(x,m, λ) + λ

∫ Umax(b)

0
f(x− u, u, λ)FU (du)

+ ρ

∫ Ymax(b)

0
f(x,m,min {λmax(b), λ+ y})FY (dy)

+ λP [U > Umax(b)] f(x− Umax(b), Umax(b), λ)

+ ρP [Y > Ymax(b)] f(x,m,min {λmax(b), λ+ Ymax(b)})

− (λ+ ρ)f(x,m, λ)

The derivatives coincide and so do the integrals from 0 to Umax(b) and 0 to
min {λmax(b)− λ, Ymax(b)} respectively. The absolute value of the remaining parts can
be bounded by∣∣∣∣∣λ

∫ ∞

Umax(b)
f(x− u, u, λ)FU (du)− λP [U > Umax(b)] f(x− Umax(b), Umax(b), λ)

∣∣∣∣∣+∣∣∣∣∣ρ
∫ ∞

min
{
λ
(b)
max−λ,Ymax(b)

} f(x,m, λ+ y)− ρP
[
Y > min

{
λ(b)max − λ, Ymax(b)

}]
f(x,m, λ(b)max)

∣∣∣∣∣ ≤
2λ∥f∥∞P [U > Umax(b)] + 2ρ∥f∥∞ P

[
Y > min

{
λ(b)max − λ, Ymax(b)

}]
.

This upper bound tends to 0 as b → ∞ since Umax(b), λmax(b) and Ymax(b) tend to
infinity but not uniformly in λ.
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If we now get back to our expectation we see that∣∣∣Ez

[
f(Z

(b)
t+s)− f(Z

(b)
t )−

∫ t+s

t
g(Z(b)

v ) dv

]∣∣∣∣ ≤ Ez

[∫ t+s

t

∣∣∣g(b)(Z(b)
v )− g(Z(b)

v )
∣∣∣ dv]

≤ 2∥f∥∞ρ
∫ t+s

t
Pλ

[
Y > min

{
λmax(b)− λ(b)v , Ymax(b)

}]
dv

+ 2∥f∥∞
∫ t+s

t
Eλ

[
λ(b)v

]
P [U > Umax(b)] dv

≤ 2∥f∥∞ρ
∫ t+s

t
Pλ

[
Y > min

{
λmax(b)− λ(b)v , Ymax(b)

}]
dv

+ 2∥f∥∞
∫ t+s

t
Eλ [λv]P [U > Umax(b)] dv

≤ 2∥f∥∞ρ
∫ t+s

t
Pλ [Y > min {λmax(b)− λv, Ymax(b)}] dv

+ 2∥f∥∞
(
λ+

ρ

β
E [Y ]

)
P [U > Umax(b)] .

The second part tends to 0 as b → ∞ but the first part still needs some work since it
depends on λv. For this, we remember that, given λ0 = λ, λv − λ with v ≤ s+ t can be

bounded from above by the compound Poisson distributed random variable
∑Nρ

t+s

i=1 Yi.
By this we get that

Pλ [Y > min {λmax(b)− λv, Ymax(b)}] ≤ P

λ+ Y +

Nρ
t+s∑

i=1

Yi > min {λmax(b), Ymax(b)}

 ,
which is independent of v and tends to 0 as b tends to infinity. By this, we have that

lim
b→∞

∣∣∣∣Ez

[∫ t+s

t
g(b)(Z(b)

v )− g(Z(b)
v ) dv

]∣∣∣∣ ≤ lim
b→∞

2∥f∥∞
(
λ+

ρ

β
E [Y ]

)
P [U > Umax(b)]

+ lim
b→∞

sρP

λ+ Y +

Nρ
t+s∑

i=1

Yi > min {λmax(b), Ymax(b)}

 = 0.

For k > 0, we observe that the chosen time points t1, . . . , tk are prior to time t, hence
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hi(Z
(b)
ti

) is FZ(b)

t measurable. By this we have that

Ez

[(
f(Z

(b)
t+s)− f(Z

(b)
t )−

∫ t+s

t
g(b)(Z(b)

v ) dv

) k∏
i=1

hi(Z
(b)
ti

)

]
=

Ez

[
Ez

[(
f(Z

(b)
t+s)− f(Z

(b)
t )−

∫ t+s

t
g(b)(Z(b)

v ) dv

) ∣∣∣FZ(b)

t

] k∏
i=1

hi(Z
(b)
ti

)

]
= 0.

Therefore, similar to the case k = 0 we can rewrite the difference as

Ez

[(∫ t+s

t
g(b)(Z(b)

v )− g(Z(b)
v ) dv

) k∏
i=1

hi(Z
(b)
ti

)

]
.

The functions hi are in Cb, hence we can bound the absolute value of the product
uniformly by some constant c̃ and get

lim
b→∞

∣∣∣∣∣Ez

[(∫ t+s

t
g(b)(Z(b)

v )− g(Z(b)
v ) dv

) k∏
i=1

hi(Z
(b)
ti

)

]∣∣∣∣∣
≤ lim

b→∞
c̃

∫ t+s

t
Ez

[∣∣∣g(b)(Z(b)
v )− g(Z(b)

v )
∣∣∣] dv = 0.

Corollary 5.6. The process {(X(b)
t ,m

(b)
t , λ

(b)
t )}t≥0 converges weakly against the original

PDMP as b→ ∞.

Proof. This is a direct consequence of Theorem 5.5 and Theorem 8.2 in Ethier and Kurtz
(2009).

5.4.2 Convergence of the discrete processes

Now we will use the same ideas as before, but on the set

D(b) :=
{
f ∈ D

∣∣∣ f and δϕf are Lipschitz and A(b)f ∈ Cb

}
.

Again we define a contraction semigroup T
(b)
t f(x,m, λ) := E(x,m,λ)

[
f(X

(b)
t ,m

(b)
t , λ

(b)
t )
]

and want to show that this semigroup is strongly continuous at 0 over the set D(b).

Lemma 5.7. Let f be in D(b) . Then, T
(b)
t f and δϕT

(b)
t f are Lipschitz continuous.
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Proof. Let f ∈ D(b) be arbitrary and consider for x ̸= y∣∣∣T (b)
t f(x,m, λ)− T

(b)
t f(y,m, λ)

∣∣∣
=
∣∣∣E(x,m,λ)

[
f(X

(b)
t ,m

(b)
t , λ

(b)
t )
]
− E(y,m,λ)

[
f(X

(b)
t ,m

(b)
t , λ

(b)
t )
]∣∣∣ .

The altered initial condition in the first variable only affects the surplus process. Let

{X̃(b)
t }t≥0 be the reserve process with initial capital y and {X(b)

t }t≥0 the corresponding
process with starting value x. By the linear structure of the surplus process, we see that

X̃
(b)
t (ω) = (y − x) +X

(b)
t (ω) for all t ≥ 0 and all ω ∈ Ω. By this we get that∣∣∣E(x,m,λ)

[
f(X

(b)
t ,m

(b)
t , λ

(b)
t )
]
− E(y,m,λ)

[
f(X

(b)
t ,m

(b)
t , λ

(b)
t )
]∣∣∣

=
∣∣∣E(x,m,λ)

[
f(X

(b)
t ,m

(b)
t , λ

(b)
t )− f((y − x) +X

(b)
t ,m

(b)
t , λ

(b)
t )
]∣∣∣

≤ E(x,m,λ)

[ ∣∣∣f(X(b)
t ,m

(b)
t , λ

(b)
t )− f((y − x) +X

(b)
t ,m

(b)
t , λ

(b)
t )
∣∣∣ ] ≤ L |y − x| ,

where L denotes the Lipschitz constant of f with respect to ∥.∥1. The same idea leads
to a preserved Lipschitz-continuity in the second variable.
Now we want to show that this holds for the third variable too. Here, things get a
little more complicated, since small changes in the intensity process influence all three

processes. Let us now consider {λ(b)t }t≥0, the intensity process with initial condition

λ
(b)
0 = λ, and for some h > 0 the altered intensity process {λ̃(b)t }t≥0 with starting value
λ+h and take a look at the difference of those processes. If no shock event appeared until

time t, or shocks happened but {λ̃(b)s }0≤s≤t did not hit λmax(b), the relation between

those processes is λ̃
(b)
t = λ

(b)
t + he−βt. Otherwise, the difference decreases and may even

become 0 if both, {λ(b)t }t≥0 and {λ̃(b)}t≥0 hit λmax(b).
As already mentioned, the difference in the starting intensity leads to a change in the

surplus process too. To be precise, we again consider two realizations, {X̃(b)
t }t≥0 with

starting intensity λ + h and {X(b)
t }t≥0 corresponding to λ

(b)
0 = λ. They are related by

X̃
(b)
t = X

(b)
t −

∑Ñt
i=1 Ũi, where {Ñt}t≥0 is a counting process with intensity λ̃

(b)
t − λ

(b)
t ≤

he−βt and additional i.i.d. claims Ũi ∼ U independent of all Ui.

Finally, the corresponding realizations m
(b)
t and m

(b)
t may relate in three different ways.

The first case is that N
(b)
t > 0 and the last jump before time t is due to {Ñt}t≥0. In

this case m
(b)
t and m̃

(b)
t are not equal but i.i.d. random variables. In the second case,

N
(b)
t = 0 but Ñt is not. In this case m

(b)
t = m and m̃

(b)
t ∼ Ũ . In the remaining case we

have that m̃
(b)
t = m

(b)
t .
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Having this in mind we now consider the following:∣∣∣T (b)
t f(x,m, λ+ h)− T

(b)
t f(x,m, λ)

∣∣∣ = ∣∣∣E(x,m,λ)

[
f(X̃

(b)
t , m̃

(b)
t , λ̃

(b)
t )− f(X

(b)
t ,m

(b)
t , λ

(b)
t )
]∣∣∣

≤ E(x,m,λ)

[∣∣∣f(X̃(b)
t , m̃

(b)
t , λ̃

(b)
t )− f(X

(b)
t , m̃

(b)
t , λ̃

(b)
t )
∣∣∣]

+
∣∣∣E(x,m,λ)

[
f(X

(b)
t , m̃

(b)
t , λ̃

(b)
t )− f(X

(b)
t ,m

(b)
t , λ̃

(b)
t )
]∣∣∣

+ E(x,m,λ)

[∣∣∣f(X(b)
t ,m

(b)
t , λ̃

(b)
t )− f(X

(b)
t ,m

(b)
t , λ

(b)
t )
∣∣∣] .

Since f is Lipschitz, the third term can be bounded by

E(x,m,λ)

[∣∣∣f(X(b)
t ,m

(b)
t , λ̃

(b)
t )− f(X

(b)
t ,m

(b)
t , λ

(b)
t )
∣∣∣] ≤ LE(x,m,λ)

[∣∣∣λ̃(b)t − λ
(b)
t

∣∣∣] ≤ Lhe−βt.

By the same arguments, we can bound the first term by

E(x,m,λ)

[∣∣∣f(X̃(b)
t , m̃

(b)
t , λ̃

(b)
t )− f(X

(b)
t , m̃

(b)
t , λ̃

(b)
t )
∣∣∣] ≤ LE(x,m,λ)

∣∣∣∣∣∣
Ñt∑
i=1

Ũi

∣∣∣∣∣∣
 ≤ L

β
E [U ]h.

The second term can be reduced to∣∣∣E(x,m,λ)

[
f(X

(b)
t , m̃

(b)
t , λ̃

(b)
t )− f(X

(b)
t ,m

(b)
t , λ̃

(b)
t )
]∣∣∣ =∣∣∣∣E(x,m,λ)

[(
f(X

(b)
t , Ũ , λ̃

(b)
t )− f(X

(b)
t ,m, λ̃

(b)
t )
)
I{

N
(b)
t =0

}I{Ñt>0}

]∣∣∣∣
≤ 2∥f∥∞Pλ

[
Ñt > 0

]
≤ 2∥f∥∞h

1− exp
(
−1−e−βt

β h
)

h
≤ 2∥f∥∞h

1− e−βt

β
.

Using these results, we get that there exists a constant K such that∣∣∣T (b)
t f(x,m, λ+ h)− T

(b)
t f(x,m, λ)

∣∣∣ ≤ Kh,

for all positive λ and h. Consequently, T
(b)
t f is Lipschitz for all f ∈ D(b).

To show the Lipschitz continuity of the path-derivative δϕT
(b)
t f , we use the following
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representation derived in the proof of Theorem 7.7.4 in Jacobsen (2006):

δϕT
(b)
t f(x,m, λ) =T

(b)
t

(
A(b)f

)
(x,m, λ)

+ λ

∫
(0,Umax(b)]

T
(b)
t f(x,m, λ)− T

(b)
t f(x− u, u, λ)FU(b)(du)

+ ρ

∫
(0,Ymax(b)]

T
(b)
t f(x,m, λ)− T

(b)
t f(x,m, λ+ y)FY (b)(dy).

Since T
(b)
t preserves Lipschitz continuity, we know that the integral terms are indeed

Lipschitz. Now we just have to show that for every f ∈ D(b), the function A(b)f is
Lipschitz too. Let z1 := (x1,m1, λ1) and z2 := (x2,m2, λ2) two suitable points and
consider∣∣∣A(b)f(z1)−A(b)f(z2)

∣∣∣ = ∣∣∣∣∣δϕf(z1)− δϕf(z2) + λ1

∫
(0,Umax(b)]

f(x1 − u, u, λ1)FU(b)(du)

− λ2

∫
(0,Umax(b)]

f(x2 − u, u, λ2)FU(b)(du)

− ρ(f(z1)− f(z2))− λ1f(z1) + λ2f(z2)

+ρ

∫
(0,Ymax(b)]

f(x1,m1, λ1 + y)− f(x2,m2, λ2 + y)FY (b)(dy)

∣∣∣∣∣
Using the triangle inequality and the Lipschitz continuity of δϕf and f we get that there
is a constant K such that the above is less or equal to

K∥z1 − z2∥1 + λ1

∣∣∣∣∫ ∞

0
f(x1 − u, u, λ1)− f(x2 − u, u, λ2)FU(b)(du)

∣∣∣∣
+

∣∣∣∣(λ1 − λ2)

∫ ∞

0
f(x2 − u, u, λ2)FU(b)(du)

∣∣∣∣+ λ1 |f(z1)− f(z2)|+ |(λ1 − λ2)f(z2)| .

For all u, the Lipschitz continuity of f gives us the existence of positive constants L and
L̃ such that

|f(x1 − u, u, λ1)− f(x2 − u, u, λ2)| ≤ Lmax {|x1 − x2| , |λ1 − λ2|} ≤ L∥z1 − z2∥∞
≤ L̃∥z1 − z2∥1,

where the last inequality is given by the equivalence of norms in finite dimensional spaces.
Further, we get that there is a constant c̃ with

|(λ1 − λ2)f(z2)| ≤ ∥f∥∞∥z1 − z2∥∞ ≤ c̃∥z1 − z2∥1.
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Using these inequalities and the boundedness of λ(b) by λmax(b) we get that∣∣∣A(b)f(z1)−A(b)f(z2)
∣∣∣ ≤ K∥z1 − z2∥1 + 2L̃∥z1 − z2∥1 + 2c̃∥z1 − z2∥1.

By this, the function A(b)f is Lipschitz continuous and further, the same holds for

δϕT
(b)
t f .

Lemma 5.8. The family {T (b)
t }t≥0 is a strongly continuous contraction semigroup on

D(b).

Proof. By the results shown in Lemma 5.7 and the ideas of the proof of Lemma 5.4, we

get that T
(b)
t maps D(b) into itself and by the boundedness of A(b)f we get the strong

continuity property.

Lemma 5.9. Let f ∈ D(b) be arbitrary. Then, there exists a positive constant K̃ such
that for every point (xi, xl, λj) in the state space of the bounded and discrete process∣∣∣A(h,b)f(xi, xl, λj)−Af(xi, xl, λj)

∣∣∣ ≤ K̃h.

Proof. Let f ∈ D(b) be arbitrary and (xi, xl, λj) a point in the state space of our bounded
and discrete process. If we consider the difference between the two generators we get by
the triangle inequality that∣∣∣A(h,b)f(xi, xl, λj) − A(b)f(xi, xl, λj)

∣∣∣
≤
∣∣∣∣f(xi + ch, xl, λje

−βh)− f(xi, xl, λj)

h
− δϕf(xi, xl, λj)

∣∣∣∣
+ λj

∣∣∣∣∣
NU∑
k=1

f(xi − xk, xk, λj)p
U
k −

∫
(0,Umax(b)]

f(xi − u, u, λj)FU(b)(du)

∣∣∣∣∣
+ ρ

∣∣∣∣∣∣
NY (j)∑
k=1

f(xi, xl, λj+k)p
Y
k (j)−

∫
(0,Ymax(b)]

f(xi,m, λj + y)FY (b)(dy)

∣∣∣∣∣∣ .
Let us first consider the second term. We can rewrite the difference as

λj

∣∣∣∣∣
NU∑
k=1

f(xi − xk, xk, λj)p
U
k −

∫
(0,Umax(b)]

f(xi − u, u, λj)FU(b)(du)

∣∣∣∣∣
= λj

∣∣∣∣∣
NU∑
k=1

∫
(xk−1,xk]

f(xi − xk, xk, λj)− f(xi − u, u, λj)FU(b)(dy)

∣∣∣∣∣ .
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By the Lipschitz continuity of f and the boundedness of λj , we get that this is less or
equal to 2Lλmax(b)ch, where L denotes a Lipschitz constant of f . By the same idea, we
can bound the third term by

Lρλmax(b)(1− e−βh) ≤ Lρλmax(b)βh.

For the second term we define the function g : [0,∞) → R by

g(t) = f(xi + ct, xl, λje
−βt).

This is a Lipschitz continuous function in one real variable. Hence, it is differentiable
almost everywhere and at every u, where g is differentiable the equality g′(u) = δϕf(x+
cu, xl, λe

−βu) holds. By this we get that∣∣∣∣f(xi + ch, xl, λje
−βh)− f(xi, xl, λj)

h
− δϕf(xi, xl, λ)

∣∣∣∣ = 1

h

∣∣∣∣∫ h

0
g′(u)− δϕf(xi, xl, λj) du

∣∣∣∣
=

1

h

∣∣∣∣∫ h

0
δϕf(xi + cu, xl, λje

−δu)− δϕf(xi, xl, λj) du

∣∣∣∣
≤ L̃(ch+ λmax(b)(1− e−βh)) ≤ L̃(c+ λmax(b)β)h,

where L̃ is a Lipschitz constant of δϕf . By this we get that∣∣∣A(h,b)f(xi, xl, λj)−A(b)f(xi, xl, λj)
∣∣∣ ≤ (L̃(c+βλmax(b))+2Lλmax(b)c+Lρλmax(b)β)h.

Equivalently to Theorem 5.5, we prove the following lemma.

Lemma 5.10. Let f ∈ D(b) be arbitrary but fixed. Then, for all t, s > 0, k ≥ 0,
h1, . . . , hk ∈ Cb and t1 < t2 < . . . < tk ≤ t we have that

E(xi,m,λj)

[(∫ t+s

t

(
A(h,b)f(X(h,b)

v ,m(h,b)
v , λ(h,b)v )−A(b)f(X(h,b)

v ,m(h,b)
v , λ(h,b)v )

)
dv

)
×

k∏
l=1

hl

(
X

(h,b)
tl

,m
(h,b)
tl

, λ
(h,b)
tl

)]
→ 0,

as h→ 0.
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Proof. The functions hl are bounded, hence there is a constant L such that∣∣∣∣(∫ t+s

t

(
A(h,b)f(X(h,b)

v ,m(h,b)
v , λ(h,b)v )−A(b)f(X(h,b)

v ,m(h,b)
v , λ(h,b)v )

)
dv

)
·

k∏
l=1

hl

(
X

(h,b)
tl

,m
(h,b)
tl

, λ
(h,b)
tl

)∣∣∣∣∣
≤ L

∫ t+s

t

∣∣∣A(h,b)f(X(h,b)
v ,m(h,b)

v , λ(h,b)v )−A(b)f(X(h,b)
v ,m(h,b)

v , λ(h,b)v )
∣∣∣ dv.

By the boundedness derived in Lemma 5.9, we get that there is a constant K̃ such that

E(xi,m,λj)

[∫ t+s

t

∣∣∣A(h,b)f(X(h,b)
v ,m(h,b)

v , λ(h,b)v )−A(b)f(X(h,b)
v ,m(h,b)

v , λ(h,b)v )
∣∣∣ dv] ≤ K̃hs,

which tends to 0 as h→ 0.

Theorem 5.11. The process {(X(h,b)
t ,m

(h,b)
t , λ

(h,b)
t )}t≥0 converges in distribution to the

bounded process {(X(b)
t ,m

(b)
t , λ

(b)
t )}t≥0 as h→ 0.

Proof. We obtain this by the result of Lemma 5.10 and Theorem 8.2 of Ethier and Kurtz
(2009).

Theorem 5.12. The Markov chain
{
(X(x̄,h,b),m(x̄,h,b), λ(x̄,h,b))

}
converges weakly against

the discrete process {(X(h,b)
t ,m

(h,b)
t , λ

(h,b)
t )}t≥0 as x̄→ ∞.

Proof. This can be proven as the weak convergence of the other processes using the
convergence of the generators on the set

D(h,b) =
{
f ∈ Cb

∣∣∣A(h,b)f ∈ Cb, lim
x→∞

f(x,m, λ) = 0 uniformly in m and λ
}
,

where A(h,b) generates a strongly continuous contraction semigroup.

5.4.3 Convergence of the Gerber-Shiu functions

Theorem 5.13. Let gκ be an arbitrary Gerber-Shiu function and g
(x̄,h,b)
κ the corre-

sponding GS-function of the Markov chain with finite state space. For (x, λ) let j =

Nλ −
⌊
ln(λmax)−ln(λ)

hβ

⌋
, and i =

⌊
x
hc

⌋
. Then, we have

lim
b→∞

lim
h→0

lim
x̄→∞

∣∣∣g(x̄,h,b)κ (xi, λj)− gκ(x, λ)
∣∣∣ = 0.

Proof. By the proof of Lemma 5.14 in Kritzer et al. (2019), we have that our GS-function
is a Skorokhod-continuous function of the process. By the weak convergence of the
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underlying processes, we know that the penalty functions converge too. Consequently,

lim
b→∞

lim
h→0

lim
x̄→∞

∣∣∣g(x̄,h,b)κ (xi, λj)− gκ(x, λ)
∣∣∣ = 0.

5.5 Examples

In this section, we give some explicit examples of Gerber-Shiu functions and correspond-
ing numerical approximations in a Markovian shot-noise model with the following specific
parameters. We choose decay parameter β = 1, intensity of the underlying Poisson pro-
cess ρ = 1.5 and premium rate c = 15

4 . Further, we assume that the shock events Yi and
the claim events Ui are exponentially distributed with mean 1. All computations and
simulations are made on a standard notebook with an Intel Core i5.10210U processor at
1.60 GHz and 16 GB of RAM.

5.5.1 Laplace-transform function of the time of ruin

The first example is the GS-function g
(1)
κ := E(x,λ)

[
e−κτI{τ<∞}

]
, i.e. the Laplace trans-

form of τ , with κ = 0.1, and for fixed λ = 2.3. In Figure 5.1, the function in black is a
Monte Carlo simulation using 10000 sample paths and the red area is the corresponding
95-percent confidence interval. For the numerical approximations, we choose x̄ = 50,
λmax = 4.5, Umax = 10, Ymax = 4.5 and h = 1

cm for m ∈ {5, 10, 12}.

1 2 3 4 5
x

0.1

0.2

0.3

0.4

0.5

gκ(x, 2.3)

Simulation

m=5

m=10

m=12

Figure 5.1: Laplace transform of the time of ruin and the corresponding numerical ap-
proximations.

As we can see in Table 5.1, the main advantage of the numerical method is the speed
of computation. The scheme with h ≈ 0.02 needed about 38 minutes whereas the
computation of the corresponding simulation needed approximately 27 hours.
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m Minutes Value Abs. error Rel. error

5 0.46 0.174 0.045 0.347

10 17 0.138 0.009 0.068

12 38 0.133 0.003 0.026

Sim. 1619 0.129 - -

Table 5.1: Computation time of the surface and errors of the approximations at the point
x = 3 and λ = 2.3.

5.5.2 Discounted surplus before ruin

Here, we consider the same setting as in the previous example, but now with penalty

function g
(2)
κ (x, λ) = E(x,λ)

[
e−κτXτ−I{τ<∞}

]
. Again, the black function in Figure 5.2

is a MC simulation from 10000 paths, which we will use as a reference solution. This
time, the plot shows the behaviour of the GS-function in x for fixed λ = 3.9. As be-
fore, the numerical approximations are calculated with parameter x̄ = 50, λmax = 4.5,
Umax = 10, Ymax = 4.5 and h = 1

cm for m ∈ {5, 10, 12}. The function w(x, y) = x is

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.4

0.5

0.6

0.7

gκ(x, 3.9)

Simulation

m=5

m=10

m=12

Figure 5.2: Discounted surplus before ruin and numerical approximations.

continuous but not bounded. We bypass this problem by considering penalty func-
tions of the form w̃(x, y) = min(x, n) for n ∈ N. These functions are continuous
and bounded; hence, the theory derived before is applicable. Further, the sequence
{e−κτ min (Xτ−, n) I{τ<∞}}n∈N is monotone increasing. Consequently, the approxima-
tions converge for n → ∞ by monotone convergence. As we can see in Table 5.2, the
behaviour in terms of computing time and relative error is similar to the corresponding
values in the example of the Laplace transform.
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m Minutes Value Abs. error Rel. error

5 0.45 0.65 0.11 0.203

10 15 0.57 0.03 0.052

12 38 0.55 0.01 0.027

Sim. 1622 0.54 - -

Table 5.2: Computation time of the surface, and errors of the approximations at the
point x = 2.5 and λ = 3.9.

5.5.3 Ruin probability

As a third example, we consider the ruin probability g
(3)
κ (x, λ) = E(x,λ)

[
I{τ<∞}

]
. The

reference solution is again obtained by MC-simulation, and the bounds x̄, λmax, Umax,
and Ymax are chosen as in the previous examples. An illustration of the simulation and
the numerical approximations for fixed λ = 2.3 can be seen in Figure 5.3.

1 2 3 4 5
x

0.1

0.2

0.3

0.4

0.5

0.6

gκ(x, 2.3)

Simulation

m=5

m=10

m=12

Figure 5.3: Ruin probability and numerical approximations.

In Table 5.3, we see that the run time and the relative error are very similar to the
first two examples. Again, even in the finest step size considered, the numerical scheme
beats the simulation by a factor of ≈ 40 in terms of computation time, which is the main
advantage of our approach.

5.5.4 Empirical convergence order

Another topic of interest is the convergence order of numerical schemes. This has been
studied for example by Chau et al. (2015), who considered GS-functions in a Lévy
subordinator model. Numerical methods to solve integro-differential equations related
to ours are also derived in Brunner (1988), who proposed spline collocation methods for
ordinary Volterra integro-differential equations. He was able to achieve a convergence
order up to order 2m, given that the coefficients of the Volterra equation are 2m times

108



m Minutes Value Abs. error Rel. error

5 0.46 0.240 0.059 0.327

10 15 0.192 0.011 0.063

12 38 0.185 0.004 0.023

Sim. 1614 0.181 - -

Table 5.3: Computation time of the surface and errors of the approximations at the point
x = 2.5 and λ = 2.3.

continuously differentiable.
Since we consider partial integro-differential equations, we cannot use his results to
obtain a theoretical convergence order. Alternatively, we compute the empirical order of
convergence of our numerical scheme in the examples given before. For this, we consider
two different approaches. The first is the estimated order of convergence (EOC) as
defined in Steinbach (2008). For a sequence {xn}n≥0 with limit x, we define the sequence
of absolute errors by en := |x− xn|. Assuming that en ≈ Cn−ρ for some fixed constant,
i.e. that the sequence converges with order ρ, we divide by en−1 and get en

en−1
≈ ( n

n−1)
−ρ.

Applying the logarithm and dividing by ln( n
n−1) gives us the EOC

ρ̂n =
ln
(

en
en−1

)
ln
(
n−1
n

) .
The second procedure uses the same assumption en ≈ Cn−ρ, or equivalently ln(en) ≈
ln(C)−ρ ln(n). Having this form, we use a linear regression approach to get an estimator
ρ̃ for the parameter ρ, as it is used by Chau et al. (2015).

We are interested in the convergence behaviour of the sequence of our numerical ap-
proximations at some fixed points (xi, λj) as the fineness of the discretization tends to
0. To determine the error terms en correctly, we have to know the limit of this sequence,
which is not the GS-function of our original process, but the GS-function of the bounded
process, which we obtain by simulation.

In the following examples, we fix the bounds x̄ = 50, Ymax = 4.5, Umax = 10 and

λmax = 4.5 and the GS-functions g
(1)
κ , g

(2)
κ , and g

(3)
κ as before. Then, we consider

the sequence of numerical approximations with step size h = 1
cm for m ∈ {1, . . . , 12}

and compute the EOC and the regression estimate ρ̃ at the points (0.4, 2.3), (1.4, 2.3),
and (2.5, 2.3). As we can see in Table 5.4, it seems plausible that we observe a linear
convergence behaviour.

In Figure 5.4 we see the linear function obtained by regression of the approach − ln(en) =
ln(C) + ρ ln(n) for the ruin probability in the point (0.4, 2.3) and the corresponding
observed values in red. The coefficient of determination R2 = 0.9996 indicates that
there is indeed a linear relationship between ln(en) and ln(n), i.e. that the assumption
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Laplace transform Surplus before ruin Ruin probability

m x = 0.4 x = 1.4 x = 2.5 x = 0.4 x = 1.4 x = 2.5 x = 0.4 x = 1.4 x = 2.5

2 0.739 0.924 1.093 1.159 0.955 1.130 0.801 1.014 1.208

3 0.895 1.047 1.186 0.872 1.034 1.166 0.965 1.125 1.263

4 0.929 1.056 1.172 0.821 1.038 1.142 1.013 1.139 1.240

5 0.932 1.049 1.149 0.823 1.029 1.124 1.035 1.143 1.218

6 0.924 1.036 1.131 0.861 1.028 1.107 1.046 1.145 1.206

7 0.915 1.026 1.115 0.835 1.016 1.097 1.057 1.151 1.197

8 0.904 1.015 1.104 0.837 1.010 1.086 1.064 1.157 1.195

9 0.892 1.005 1.094 0.827 1.003 1.080 1.073 1.165 1.194

10 0.881 0.997 1.087 0.810 0.996 1.073 1.081 1.175 1.197

11 0.869 0.988 1.080 0.814 0.993 1.070 1.087 1.185 1.201

12 0.858 0.981 1.075 0.793 0.985 1.065 1.096 1.197 1.207

ρ̃ 0.911 1.032 1.136 0.836 1.022 1.114 1.037 1.148 1.218

Table 5.4: Table of EOC and estimates done by regression approach.

en ≈ Cn−ρ is reasonable, and that ρ̃ ≈ 1.037 is a good estimation of the true convergence
order in this example.

0.5 1.0 1.5 2.0 2.5
log(m)

1.0

1.5

2.0

2.5

3.0

log(em)

Figure 5.4: Linear regression line with slope ρ̃ = 1.037 and observed errors.
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Li, Shuanming and José Garrido (2005). “On a general class of renewal risk process:
analysis of the Gerber-Shiu function”. In: Advances in Applied Probability 37.3,
pp. 836–856. doi: 10.1239/aap/1127483750.
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