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Abstract

Mortality heterogeneity is a generally well understood area of longevity risk that remains

relatively unexplored in the actuarial pricing of longevity linked products. However, with

increasing amounts of longitudinal individual level data, there exists an extraordinary

opportunity to derive more nuanced and realistic mortality risk profiles that can improve

the design and demand of annuities and other longevity linked products.

Deriving mortality risk profiles using the clustering of health trajectories and unsupervised

machine learning algorithms is seldomly investigated in the literature. The first project in

this thesis applies a three dimensional k–means clustering algorithm to joint trajectories

of self reported health and body mass index to develop mortality risk profiles. We are

able to determine distinct mortality risk profiles from the clusters that exhibit significant

differences in life expectancy and annuity prices for both males and females at varying

ages.

Disregarding health status in longevity linked products has been shown to cause adverse

selection from individuals with chronic conditions due to inaccurate pricing of mortality

and morbidity risks. However, we are unaware of work in the actuarial literature that

shows the impact of risk factors on health status. Therefore, the second project explores

the effectiveness of utilising hidden markov models with covariates to demonstrate mor-

tality heterogeneity. We find that the clusters generated by the hidden Markov models

have a better fit to empirical data than models without clustering.

It is important to address the link between multimorbidity and the pricing of health and

longevity linked products in the actuarial literature. The last project in this thesis seeks to

find the best way to incorporate multimorbidity in the pricing of long term care products.

We compare two different ways of incorporating multimorbidity in multiple state models.

We find that our proposed five state multimorbidity and functional disability model is
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able to capture the dynamics of health over time more accurately than the three state

health and functional disability model with a multimorbidity predictor. The results from

the later model weakly suggest morbidity expansion when in effect there is very strong

evidence of morbidity expansion. This inadvertently leads to the gross mispricing of life

annuities, longterm care and lifecare annuities.
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Chapter 1

Introduction

1.1 Motivation

Total pension assets for the 22 largest economies stood at US$47.861 trillion in December

2022 with an average ratio of pension assets to gross domestic product of 62% (Hall et

al., 2023). Despite the sheer scale of the pensions industry, longevity risk remains poorly

managed globally. One of the main reasons for this phenomenon is that markets for

annuities which provide regular and constant income during retirement are thin globally

except in countries where there is mandatory annuitisation (Brugiavini, 1993; Cannon &

Tonks, 2008). There are a variety of reasons that have been suggested to understand why

there is poor uptake of annuity products from both demand and supply side perspectives.

These include mental accounting, behavioural biases, environmental limitations and non–

contributory age pensions that mimic annuities (MacDonald et al., 2013; O’Meara et al.,

2015; Thaler, 1999). Of interest to this thesis is that the pricing of annuities is sub–

optimal and this negatively affects demand (J. R. Brown, 2009; Cappelletti et al., 2013;

Steinorth, 2012). This thesis extends the research on how to make annuities fairer so that

they meet the needs of most retirees instead of a select few.

To improve product design, more attention has to be given to underwritten annuities

simply because they take into account an individual’s circumstances rather than what

is deemed to be the average individual’s mortality experience from aggregate population

level dynamics. The rate for standard annuity products is mainly determined by the

mortality assumption which is an estimate of an individual’s probability of death. When
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actuaries estimate this probability, they usually use mortality tables that rely on his-

torical crude death rates that have been smoothed through various standard graduation

techniques (Booth & Tickle, 2008; Tabeau et al., 2002). At the end of the day, standard

annuities are based on “average” estimates of an individual’s probability to die in a given

year based on their gender. Combined with adverse selection from individuals perceived

to be of higher risk because of higher longevity, annuities become more expensive than

they should be and this results in an inefficient market (Meyricke & Sherris, 2013).

If we consider newer, more robust and popular extrapolative methods in mortality mod-

elling and forecasting such as Lee–Carter and Cairns-Blake–Dowd and their variants, we

are still unaware of what really happens at the individual level (Cairns et al., 2006, 2009;

Lee & Carter, 1992). For example, the original Lee & Carter (1992) forecasts mortality

rates by applying singular value decomposition to a matrix of age–specific mortality rates

that is centered by subtracting the mean logarithm at a specific age and ultimately derives

βx and κt

log(µx,t) = αx + βxκt, (1.1)

where log(µx,t) is the log force of mortality at age x and calendar year t, βx is a vector

that measures how the log change of mortality varies with time at age x and κt is the time

index in calendar year t. As reflected in Equation (1.1), this is clearly not a structural

model as there are no covariates and it ultimately does not lead to a good understanding

of the underlying factors for mortality and/or its associated rates. Resultantly, many

researchers find the continued use of extrapolative methods that do not appreciate the

laws of cause and effect troubling (Gutterman & Vanderhoof, 1998).

However, it is not without reason that extrapolative methods remain dominant in mortal-

ity modelling and forecasting. The main reason is that an explicit relationship between

mortality and its determinants is a complex relationship to model because the variables

are interconnected (Tuljapurkar & Boe, 1998). Despite the lack of complete understanding

of how mortality is connected with its determinants, explanatory methods have been used

to forecast mortality rates and have performed better than extrapolative methods in some

cases (Girosi & King, 2008; Murray & Lopez, 1997c, 1997b; Murray & Lopez, 1997a).

This success can be attributed to attempts to directly link mortality to its determinants.
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This inadvertently motivates significant literature on incorporating socio–demographic

information into mortality models and can potentially increase the demand for longevity

linked products by using the mortality heterogeneity to design better products that match

the characteristics of the different risk profiles (Alai et al., 2018; R. L. Brown & McDaid,

2003; Cairns et al., 2019; Madrigal et al., 2011; Meyricke & Sherris, 2013; Sherris & Zhou,

2014; Su & Sherris, 2012; Tuljapurkar & Boe, 1998; Wen et al., 2021; M. Xu et al., 2019).

Therefore in this thesis, we extend this literature by examining overlooked concepts such

as health trajectories and multimorbidity which are sources of mortality heterogeneity.

The health trajectories and multimorbidity status are derived from individual level data.

Identifying different risk profiles in a heterogeneous population allows us to better quan-

tify mortality or morbidity risks particularly when we integrate machine learning and

longitudinal individual–level data.

Recently, there has been huge progress in the availability of data that allow more indi-

vidualised product design and better computational capacity to analyse data and make

more informed decisions. Some of these data are available at population level through

more integrated data collection from government departments. Machine learning can be

very useful in analysing huge datasets mainly because it provides easily implementable

data driven solutions that can find patterns in data that can take decades of research

using standard statistical techniques (Goodfellow et al., 2016). There are two classes of

machine learning methods: supervised learning and unsupervised learning (Hastie et al.,

2009; James et al., 2013). The output is known in supervised learning and this guides the

learning process, whereas there is no output in unsupervised learning. The algorithms

try to find patterns in the data. Longitudinal data, that is, data with repeated measure-

ments over time provide researchers with the opportunity to analyse within–individual

change compared to between–individual changes from cross–sectional data (Diggle, 2002;

Fitzmaurice et al., 2011). Combining insights from both longitudinal data and machine

learning has great potential to produce a better understanding of the mortality of retirees

and thus should lead to better designed products for retirees.

We are unaware of the combined use of trajectories of the determinants of mortality and

clustering techniques in the literature as a means of determining mortality risk profiles.

Hence, our first objective in Chapter 3 is to consider the use of a k–means clustering

technique on longitudinal individual level data to determine mortality risk profiles. Since
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we would like to identify and characterise these risk profiles, we ask what clusters emerge

when we jointly model body mass index (BMI) and self reported health trajectories of

older adults? Once we have established these clusters, we then ask the following secondary

research questions. What is the relationship between mortality and cluster allocation?

How does cluster allocation impact mortality amongst older adults when controlling for

socio–economic variables? What are the pricing implications for annuities in each cluster?

We follow up the previous study with an inquiry on how to link health status with

trajectories of various predictors of mortality and morbidity in the actuarial pricing of

health and longevity linked products in Chapter 4. While health status has been shown to

impact mortality and the pricing of longevity linked products, there is very little evidence

of linking health status with covariates such as BMI, smoking status or income. Hidden

Markov models (HMMs) are known to be capable of modelling unobservable states using a

known output (Ghassempour et al., 2014; Rabiner & Juang, 1986). Therefore, the second

objective of this thesis is to determine the effectiveness of using Hidden Markov models

(HMMs) with covariates to demonstrate mortality heterogeneity. Our specific research

questions are as follows. To what extent do the clusters developed from the multivariate-

time series clustering of health trajectories using HMMs with covariates, provide well

developed risk profiles that exhibit mortality heterogeneity? Does clustering provide a

better fit to empirical data when estimating transition rates and life expectancy in a

multi–state model of health status and functional disability while controlling for age and

gender?

Lastly, despite the fact that multimorbidity is known to have an impact on mortality

and quality of life particularly amongst people of older ages, it is usually omitted in

the actuarial pricing of health and longevity linked products. In Chapter 5 we compare

two main strategies of incorporating multimorbidity in multiple state models. The first

strategy includes modelling multimorbidity as a predictor that affects transitions amongst

states in a simple three state model of functional disability. The second approach is to

model multimorbidity as a state in a five state model of multimorbidity and functional

disability. Our research questions are as follows. What is the impact of multimorbidity

on transition rates in a three state model of health status and functional disability that

controls for age and gender? To what extent does a five state model of multimorbidity

and functional disability capture differences in mortality and functional disability risks?
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What are the pricing and life expectancy implications of using the two different methods of

capturing the effect of multimorbidity on transition rates in multiple state health models?

1.2 Thesis contributions

In this section we summarise the main contributions of this thesis using empirical data

from the United States Health and Retirement Study (HRS).

In Chapter 3 we extend the literature on body mass index trajectories of older adults by

identifying trajectories of joint BMI and self reported health status (Zajacova et al., 2015;

H. Zheng et al., 2013). We identify three clusters: normal, stable BMI and declining

very good health (A), normal, stable BMI and declining fair health (B) and high, increas-

ing BMI and declining good health (C). One–Way Anova tests show that the clusters

are unique across different socio–economic characteristics and pairwise tests demonstrate

that the differences between clusters are statistically significant even after adjusting for

multiple testing.

The estimated predicted probabilities of death are consistently highest in the normal,

stable BMI and declining fair health cluster at different ages for both males and females.

Hence, they have the shortest longevity prospects. Individuals in Cluster A have the lowest

probabilities of death at any age for males and females. We also find that education, total–

non housing wealth and total household income have no significant impact on mortality

when controlling for socio–economic variables and other risk factors in models including

and excluding cluster allocation. Our second major contribution from this project is

methodological since we demonstrate how to apply an existing objective data driven

technique of determining risk profiles to mortality modelling literature.

In Chapter 4 we extend the literature on multistate models of health and functional

disability that incorporate health status amongst older ages (Fong et al., 2015; Z. Li et

al., 2017; Sherris & Wei, 2021). We find that there is significant mortality heterogeneity

amongst people who become chronically ill during their lifetimes. Individuals in the

cluster with highest education, wealth and income tend to have longer and healthier

life expectancies than those with lesser means. These results encourage practitioners

to develop products that are more tailored to the mortality and morbidity experience
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of specific groups. Methodologically, models with clustering outperform models without

which shows that the HMMs are better at capturing mortality heterogeneity due to a

better fit to the empirical data.

One significant contribution we make in Chapter 5 extends the literature on whether

there is mortality morbidity or compression over a certain duration (Kingston et al., 2018;

Tetzlaff et al., 2017). Our results suggest that the choice of model has a great impact on

the conclusions of whether there is morbidity compression or expansion. Results from the

three state model of functional disability and health weakly suggest morbidity expansion

while results from the five state model of multimorbidity and functional disability illustrate

that gains in life expectancy are being lost to increasing multimorbidity which supports

morbidity expansion. These varying conclusions carry over to pricing and can result in

serious mispricing of life annuities, lifecare annuities and long term care products.

1.3 Thesis outline

The rest of this thesis is structured as follows. The literature review is provided in Chapter

2 and it covers the principal literature in mortality modelling, heterogeneity and appli-

cations of machine learning to mortality modelling. Chapters 3, 4 and 5 answer specific

research questions and each of these chapters has its own discussion and conclusion. In

Chapter 3 we demonstrate how to apply a three dimensional k-means clustering algorithm

to create mortality risk profiles. Chapter 4 illustrates how to use hidden Markov models

with covariates and k–medoid clustering to place individuals with varying level of mor-

tality risks into different groups. We demonstrate the results using three state models of

health and functional disability. Chapter 5 compares two methods of integrating multi-

morbidity in multiple state models. We conclude in Chapter 6 where we summarise and

discuss the overall contributions of this thesis, its limitations and suggested future work.
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Chapter 2

Literature review

2.1 Introduction

We begin by reviewing the literature in the following areas: mortality modelling, hetero-

geneity, determinants of mortality, longitudinal data, machine learning, cause of death

mortality modelling and multimorbidity. Section 2.2 provides a general overview mortal-

ity modelling approaches and discusses the importance of explanatory models given the

increase in availability of individual level longitudinal data. Sections 2.3 and 2.4 introduce

the concepts of mortality heterogeneity and determinants of mortality which are the main

areas of interest in this thesis. We also examine the machine learning literature and its

applications to mortality modelling. This literature is important as techniques from this

field are applied in Chapters 3 and 4 to investigate mortality heterogeneity. Lastly, we

analyse the literature on cause of death modelling in Section 2.6. The literature on cause

of death modelling is crucial because it introduces us to the concept of multimorbidity

which we further explore in Chapter 5.

Chapter 3 explores the use of k–means clustering to cluster single and joint trajectories

of body mass index and self–reported health from individual level data. The literature

associated with this chapter is provided in Sections 2.2, 2.3, 2.4 and 2.5. Chapter 4

investigates the use of hidden markov models with covariates and k–medoids clustering

to cluster health trajectories. The literature review sections relevant to this chapter

are Sections 2.2, 2.3, 2.4 and 2.5. Hidden markov models provide a statistically robust

way to determine meaningful distance measures between health trajectories. Chapter
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5 provides an actuarial lens on multimorbidity and long term care. The sections of

literature review associated with the chapter are Sections 2.2, 2.3, 2.4 and 2.6. We notice

that while actuaries realise the importance of cause of death data, they have overlooked

multimorbidity as the precursor to cause of death modelling and forecasting. In section 2.7

we provide a summary of our review and attend to the gaps we identify in our literature

review. These gaps lead to the works in Chapter 3, Chapter 4 and Chapter 5.

2.2 Mortality modelling

Mortality modelling methods can generally be split into three groups: expectation, extrap-

olation and explanation (Booth & Tickle, 2008; Haberman & Renshaw, 2011; Haberman

& Sibbett, 1995; Pitacco, 2004; Tabeau, 2001; Tuljapurkar & Boe, 1998; Wong-Fupuy &

Haberman, 2004). Expectation methods are usually based on the subjective opinions of

experts. Extrapolative methods use past experience to generate forecasts. Explanatory

methods rely on a structural or cause of death approach using covariates beyond age

and gender. It is not unusual for extrapolative models to have some explanatory and/or

expectation based features and vice versa.

Stochastic extrapolative models provide age specific mortality indicators over time and

their associated ranges of uncertainty instead of point forecasts (Booth & Tickle, 2008;

Wong-Fupuy & Haberman, 2004). There are a variety of extrapolative techniques such as

principal components based (Brouhns et al., 2002; De Jong & Tickle, 2006; Lee & Carter,

1992; N. Li & Lee, 2005; Renshaw & Haberman, 2003a), regression–based (Renshaw &

Haberman, 2003b; Sithole et al., 2000), Bayesian methods (Cairns et al., 2006, 2009;

Raftery et al., 2013; Wiśniowski et al., 2015), continuous time affine models (Blackburn

& Sherris, 2013; Y. Xu et al., 2019), parametric models (Heligman & Pollard, 1980; Siler,

2007) and non–parametric models (Hyndman et al., 2013; Hyndman & Ullah, 2007).

The different methods can be assessed under a variety of criteria that can be qualita-

tive (biological reasonableness, plausibility of uncertainty and robustness of forecasts) or

quantitative (parsimony, model fit, et cetera) (Cairns et al., 2009; Cairns et al., 2011;

Dowd et al., 2010a, 2010b).

While there is general consensus on the age pattern of mortality at young and adult

8



Chapter 2. Literature review

ages, there are varying views on what happens at older ages. Oeppen & Vaupel (2002)

show that life expectancy has steadily increased over the past 150 years at a rate of

0.25 years each year even though others argue that mortality gains in older ages are

slowing down amongst older ages (Horiuchi & Wilmoth, 1998). Some of the reasons for

different longevity outcomes are the choice of mortality indicator used in forecasting,

the assumptions made, and the level of expert judgement adopted (Bergeron-Boucher et

al., 2019; Stoeldraijer et al., 2013; Wong-Fupuy & Haberman, 2004). Regardless of the

extensive work on forecasting mortality rates, forecasts have improved but tend to be

inaccurate and this can have a catastrophic impact on pension funds and life insurers

(Basellini et al., 2022).

The main disadvantage of extrapolative methods such as Lee–Carter(LC) is an over re-

liance on historical experience without an appreciation of advances in medicine, climate

change, antibacterial resistance, pandemics, et cetera (Gutterman & Vanderhoof, 1998).

The type of data that would make explanatory methods become the gold standard of mor-

tality forecasting is currently unavailable, but as more individual level data at population

level become available there is great potential in this area. This information needs to be

fed into mortality models not only to improve forecasts but also to understand the struc-

tural ways in which mortality and its determinants interact. Many experts argue that

there is no explicit manner to model the relationship between mortality and covariates.

In fact, the inter-relatedness of determinants of mortality makes explanatory methods

difficult to model (Edwards & Tuljapurkar, 2005; Lin & Liu, 2007; Tuljapurkar & Boe,

1998). However, this has not stopped researchers from explicitly forecasting or modelling

mortality using cause of death and socio–economic data.

For example, Girosi & King (2008) apply a Bayesian approach based on partial pooling

of expected mortality to forecast all–cause mortality using gross domestic product and

tobacco use as exogenous covariates in a linear regression setting. Other researchers

consider the global burden of disease approach, where estimates of cause specific mortality

rates for a specific age group and gender are found by regressing gross domestic product

per person, human capital, smoking intensity and time (Murray & Lopez, 1997a; Murray

& Lopez, 1997b, 1997c). This establishes 25 year mortality forecasts for 9 cause of death

disease clusters for optimistic, pessimistic and baseline scenarios. Their results show a

decrease in communicable diseases and Human Immunodeficiency Virus (HIV) related

9



Chapter 2. Literature review

deaths. Heart disease, depression and road traffic deaths are expected to account for

the highest disease burden in the future and smoking related deaths also increase. Their

results are relevant mainly because of the incorporation of socio–economic variables into

mortality modelling. This regression equation approach for global burden of diseases has

been updated annually and is now a study with 194 countries and its results are published

annually in a special issue of renowned medical journal, the Lancet. The specific impact

of a cause of death on life expectancy and the disease burden through years of life lost due

to certain injury or illness is documented for each country from 1990. The most recent

issue provides global age–specific fertility, healthy average life expectancy and mortality

forecasts with 95% uncertainty intervals (Abbafati et al., 2020).

The influence of explanatory models on public policy and growing interest in socio-

economic information to explain mortality differentials has probably motivated the in-

creasing literature on extrapolative methods integrating information on more determi-

nants of mortality into mortality models. Mortality differentials are usually shown by

differences in life expectancy for different socio–economic groups. In many of the recent

studies in actuarial literature, population mortality models use socio–economic data from

deprivation indices in the UK (Cairns et al., 2019; Villegas & Haberman, 2014; Wen et

al., 2021). Not many studies have used more granular data in the form of individual–level

data that has the potential to better explain the heterogeneity in a population (Madrigal

et al., 2011; Meyricke & Sherris, 2013; M. Xu et al., 2019).

2.3 Heterogeneity

Mortality heterogeneity is the non-uniformity of each individual’s susceptibility to death

in a population. Pitacco (2019) provides a detailed review of mortality heterogeneity for

an actuarial audience. The individual risk factors that explain mortality heterogeneity

can be split into two groups; observable and unobservable risk factors. Observable risk

factors include mortality determinants such as age, sex, income, postcode and these are

commonly used as rating factors. Unobservable risk factors are defined as “frailty”, a

term introduced by Vaupel et al. (1979).
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2.3.1 Frailty

According to Vaupel et al. (1979), frailty µ(x, t, z) for an individual aged x at time t can

be defined mathematically as follows:

µ(x, t, z) = z · µ(x, t, 1), (2.1)

where z is the level of frailty and µ(x, t, 1) is the standard force of mortality which can be

described by an appropriate law of mortality such as Gompertz or Gompertz–Makeham

(Gompertz, 1825; Makeham, 1867). Frailty is positive and lower values imply lower

chances of dying. There are a variety of probability density functions for frailty. Su

& Sherris (2012) consider Gamma and log Normal distributions of frailty and find that

the Gamma distribution has a better fit to Australian data. The Gamma distribution

is ideal for modelling frailty due to its flexibility and tractability (Vaupel et al., 1979).

A Gompertz-Gamma model of fixed frailty is the same as Perks Law of Mortality which

implies that mortality curve tends to flatten at older ages (Perks, 1932; Pitacco, 2019;

Thatcher et al., 1998).

While assuming that frailty is constant makes calculations much easier, Markov processes

can be used to model variable frailty over an individuals lifetime (Le Bras, 1976; Pitacco,

2019). Yashin et al. (1994) show that while statistical models for fixed frailty and variable

frailty are conceptually different, they produce identical mortality patterns. Liu & Lin

(2012) extend their previous work Lin & Liu (2007) on modelling ageing as a finite-state

continuous-time Markov process with a single absorbing state by adding a stochastic

Gamma time change process to capture systematic mortality risk. This enhancement

is motivated by subordinated Markov processes in finance to model stock prices (Daal

& Madan, 2005; Madan et al., 1998; Madan & Milne, 1991). One key contribution of

the model is its dual ability to model both systematic mortality risk and heterogeneity

through physiological age.
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2.3.2 Mortality models using population level data and other

covariates beyond age and gender

Due to the impact of mortality heterogeneity on life insurance, pension funds and social

security systems, most stochastic mortality models are now being adapted so that they

can capture the heterogeneity amongst populations. For extrapolative models, there are a

variety of ways to capture more socio–economic information, health status, demographic

code, et cetera. This section discusses some of the research in this area using population

level data.

In Su & Sherris (2012), the authors adapt Lin & Liu (2007) Markov ageing model to

Australian population data by adding a Gompertzian factor to the mortality rate at older

ages that is health dependent. Their model is more parsimonious than the LC model since

only 12 parameter estimates are required compared to over 100 for the latter. Specifically,

one would need 3 parameters at each age for forecasts from age 65 to 100 for the LC model.

They compare the Markov ageing model to the frailty model and find that the Markov

ageing model tends to flatten at older ages whereas mortality increases linearly with

age for the frailty model. Since it is unclear what happens to mortality rates at older

ages, practitioners have to choose a mortality model that exhibits reasonable behaviour

at older ages for that particular population. The Markov ageing model results in higher

priced annuities than the frailty model for individuals with similar health conditions

for both whole life annuities and deferred life annuities. This means that the Markov

ageing model has a more conservative mortality assumption than the frailty model. The

different rates for annuities for various physiological ages and frailty factors supports the

notion that annuities should be offered at prices that show appreciation for the mortality

heterogeneity in a population. Individuals at a higher physiological age will generally be

offered cheaper annuities.

Sherris & Zhou (2014) develop a stochastic Markov Ageing model that captures both

systematic mortality risk and heterogeneity using Australian data. This model is com-

pared with Vaupel’s fixed individual frailty model and the Le Bras’ variable individual

frailty which both measure heterogeneity but do not measure systematic mortality risk

(Le Bras, 1976; Vaupel et al., 1979). For the Markov ageing model, health status is used

to divide the Australian population into 5 distinct groups based on the severity of the
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health conditions, ranked from best to worst health. Severity is defined as the probability

of death from a specific cause of death. The authors also assume that health conditions

are independent and that for individuals who die from multiple causes, their mortality

rate is from the condition with the highest mortality overall. At age 65, the Markov ageing

model is more pessimistic about future expected life times than the frailty models. This

results in much lower premiums than the frailty models. Moreover, the Markov ageing

model has the lowest standard deviation for an annuity pool with 1, 000 individuals with

best health implying less heterogeneity than the frailty models as the individuals age.

Despite the adverse selection that comes from individuals with the best health, annuity

providers lower their risk by catering only to these individuals than exposing themselves

to larger risk from a pool of individuals with mixed health. Systematic mortality risk

increases with pool size and this risk is not diversifiable. Frailty models fail to capture

this element as they only show an increase in idiosyncratic risk that can be diversified as

pool size increases. In summary, Sherris & Zhou (2014) demonstrate that the model risk

is very significant and motivates models that fully capture both systematic mortality risk

and heterogeneity.

Olivieri & Pitacco (2016) address the lack of rigour in identifying separate risk groups for

life annuities by proposing the use of frailty models to separate different risk profiles rather

than applying adjustments to population rates with no statistical basis (Le Bras, 1976;

Vaupel et al., 1979). The authors adopt a fixed frailty model for Italian population data

where the force of mortality is Gompertzian and the distribution of the frailty is gamma

which implies that mortality decelerates at older ages (Gompertz, 1825; Perks, 1932).

Risk groups are then defined by then specifying frailty levels for each group. Without

considering systematic risk, Olivieri & Pitacco (2016) show that the liabilities of larger

annuity portfolios with greater heterogeneity exhibit lower volatility than homogeneous

portfolios.

Villegas & Haberman (2014) develop a relative mortality age–period–cohort (APC) fore-

casting model that measures current levels of socio–economic mortality differentials and

forecasts trends within different socio–economic groups in England based on a multiple

deprivation index. The deprivation index is a composite score of one of 32,844 areas with

an average population of 1,500 individuals in England based the area’s income, employ-

ment, education, health, crime, living environment and barriers to housing and services.
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The relative approach model uses the national population as a reference mortality set

that is forecasted alongside subpopulations exhibiting varying socio–economic depriva-

tion. In their research, they collate the different deprivation areas into 5 quintiles ranked

from least deprived to most deprived. Their results show that the forecasted mortal-

ity rates within each quintile are coherent and consistent with the overall England and

Wales forecasts during the same forecasting period. Their results show a general increase

in the mortality differentials between the most deprived and least deprived groups with

younger age groups (50–64) experiencing up to 4 times the mortality of the least deprived

socio–economic group. Importantly, the results suggest that socio–economic factors show

greater variability of annuity rates than variability due to gender.

Cairns et al. (2019) develop an affluence index to proxy socio–economic differentials in

mortality for Danish males and females. For any individual, the affluence index in a

specific year and a certain age is the sum of one’s net wealth in the year and the product

of capitalisation factor for retirement income and taxable income in the year before.

Individuals are then allocated to 10 groups based on the values of the affluence and

allowed to make transitions until a lockdown age (in line with the retirement age) where

no changes are made to the socio–economic groups. Age specific mortality rates are then

forecast in each group using a multi-population gravity model with parameters estimated

through a Bayesian approach (Cairns et al., 2006; Plat, 2009). While the model generates

forecasts that are coherent and consistent with national mortality forecasts for Danish

males, it fails to produce similar results for females. This implies that while affluence can

be an effective proxy of socio–economic mortality differentials for males, an index that

takes into account more socio–economic variables such as the Index of Multideprivation in

the UK will generate more coherent and consistent forecasts for both males and females

as shown by Villegas & Haberman (2014) that avoid crossovers between socio–economic

groupings and maintain the hierarchy chosen initially.

Wen et al. (2021) consider 12 age–period multi–population mortality models to determine

which model provides the best fit when socio-economic data is accounted for based on the

Index of Multideprivation in England (Cairns et al., 2006; Kleinow, 2015; Lee & Carter,

1992; Plat, 2009). Across the deciles from the most deprived to the least deprived, the

Common Age Effect (CAE) model with an age effect that is shared by all the groups has

the best performance as shown by the lowest Bayesian Information Criterion (BIC) for
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both males and females (Kleinow, 2015; Wen et al., 2021). It is important to note that

second best performing model, the Plat model with a common age affect across all groups,

has significant patterns in its residuals for some groups which are removed by adding a

common cohort feature across all groups that improves its fit. This adjusted Plat model

with a cohort effect has better performance than the CAE. These results are similar to

those shown by Villegas & Haberman (2014) in which age–period–cohort models also had

the lowest BIC.

2.3.3 Mortality models using individual level data

Survival models and generalised linear models (GLMs) are the main methods of modelling

mortality using individual level data. A lot of work in the actuarial literature is focussed

on post retirement mortality because the main beneficiaries are retirees. Madrigal et al.

(2011) use GLMs based on cross–sectional data from the longevity analytics firm, Club

Vita. The baseline exposed to risk is approximately 2.9 million with 90,000 deaths from

91 pension schemes. Despite the richness of the data set, they focus on the effects of

age, gender, geo–demographic codes and measures of affluence through pension amount

and last known salary. Variables for measures of affluence and geo–demographic codes

from ACORN (a post code and household segmentation tool) are clustered using Ward’s

method and recursive partitioning (Ward, 1963). Their results show that salary at exit

and geo–demographic codes are strong predictors of male mortality. Pension amount is an

inconsistent predictor of mortality due to the fact that individuals can contribute to a va-

riety of schemes making sole reliance on this amount not ideal. However, pension amount

is a relevant predictor for females signifying the importance of an individual approach for

determining pension liabilities. Overall, the results show that there is heterogeneity in

the mortality experience of pensioners that can lead to differences in life expectancy of

up to 10 years and a reduction in annuity values of up to 60%.

Meyricke & Sherris (2013) use a generalised linear mixed model (GLMM) and individual

level data to model both underwriting factors and frailty. Their results show that com-

mon underwriting factors such as education, age, gender and health history do not fully

capture the heterogeneity within a population. Heterogeneity remains significant after

underwriting since there is not much improvement in the reduction in variance of frailty.
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Incorporating frailty in a mortality model is particularly significant for individuals from

high risk groups as seen by a higher variation in annuity values for different levels of frailty

especially when compared to low and medium risk groups. This investigation does not

explore the impact of time varying–covariates on mortality despite the use of a GLMM. As

such, a more recent work of M. Xu et al. (2019) looks at both mortality heterogeneity and

time trends using longitudinal mortality models. This work extends the work using gener-

alised linear model framework by adding the impact of time trends (Madrigal et al., 2011;

Meyricke & Sherris, 2013). Their results show that mortality improvements are mainly

from the simultaneous decline in cancer, cardio-vascular disease and hypertension (M. Xu

et al., 2019). Population level inferences are made using marginal models. An attempt to

use the LC model to model mortality trends with individual level data that is split into

different groups is unsuccessful because the differences in mortality improvements for the

different subpopulations are not statistically significant. Recently, using United Kingdom

(UK) electronic health records, Kulinskaya et al. (2021) apply landmark analysis and a

Gompertz survival model to estimate the survival probabilities and life expectancies of

648 risk profiles for males and females in each deprivation quantile.

2.4 Determinants of mortality

In this subsection, we discuss the determinants of mortality. The seminal work of R.

L. Brown & McDaid (2003) and Tuljapurkar & Boe (1998) provides a comprehensive

treatment of the determinants of mortality and applications to actuarial studies based on

the information available at the time. Thereby, this subsection mostly updates previous

results with new information from recently published articles. We consider age, gender

and socioeconomic determinants of mortality (education, income and marital status). We

also discuss health behaviours, obesity, environmental risks and race and ethnicity.

2.4.1 Age

Generally, mortality laws are used to show how the log force of mortality evolves over

time. This usually presents itself in a one factor parameterisation function which shows

high mortality rates in the early stages of childhood, an exponential increase in mortality
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during middle age and deceleration of mortality rates during older ages. Gender differences

in mortality have long been the norm with females living longer than males based on life

expectancy at birth. However, there are also differences of mortality and gender within

the patterns of age structure. In most countries the gender gap in mortality is narrowing

(Glei & Horiuchi, 2007; Trovato & Lalu, 1998). It is generally appreciated that while

mortality differentials exist before senescent mortality, this mortality differential stops

having an impact at older ages (Vaillant & Mukamal, 2001). Age interacts with many

variables in different and complicated ways and these interactions should be considered

when pricing annuities (R. L. Brown & McDaid, 2003).

2.4.2 Gender

Gender has long been used in the pricing of insurance and annuities with females living

longer than males across different times and countries. This is despite the mortality–

morbidity paradox. That is, at any point in time, women are more frail yet it is men who

have a higher probability of death. An understanding of how gender interacts with other

risk factors both biologically and behaviourally is not common knowledge (R. L. Brown

& McDaid, 2003). Internationally, the gender gap in mortality is narrowing. Recent work

shows that 86 − 89% of the gender age gap is attributed to gender specific preferences

and health behaviours on longevity using utility functions (Oksuzyan et al., 2008; Rieker

& Bird, 2005; Schünemann et al., 2017). These results are of particular relevance to

insurance companies and annuity providers that use unisex rates in pricing.

2.4.3 Education

Generally, higher educated individuals have lower mortality rates than those with lower

education levels. Using US longitudinal data, Preston & Elo (1995) find increasing edu-

cational differentials in mortality amongst white males. In contrast, white females aged

25−64 experience narrowing educational differentials in mortality, while the older females

(65 − 74) have not changed much. Their analysis is based on a comparison of the age

standardised death rate across three indices of inequality: slope index of inequality (SII),

SII/death rate and an index of dissimilarity. Educational differentials are significant for

both cause-specific mortality and all-cause mortality (Huisman et al., 2005; Kulhánová
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et al., 2014; Mackenbach et al., 2008). In a comparison of US data from 1990 and 2008,

Olshansky et al. (2012) find that differences in life expectancy at birth continue to widen.

In 2008, highly educated males are expected to outlive their less educated peers by 14.2

years while for females the difference is 10.3 years.

2.4.4 Health behaviours

Males have higher mortality from major causes of death and gender differences in health

behaviours drive many causes such as heart disease, lung cancer, motor vehicle deaths,

suicide, etc (Waldron, 2012). Males smoke and drink heavily more than females and

this partially explains sex mortality ratios (Waldron, 1991). Additionally, males tend to

engage in riskier sexual behaviour making them more likely to be infected by sexually

transmitted diseases such as Human Immunodeficiency Virus (HIV) (Smith, 1991). Diets

have improved and exercise has increased for both males and females since the 1980s but it

is unclear whether there are any gender differences on mortality based on diet or exercise

(Waldron, 2012). Recently, other health behaviours such as sitting, and sleep duration

are getting more attention in how they predict all–cause mortality. In a systematic review

of prospective studies with over 590, 000 participants, Chau et al. (2013) find that sitting

for more than 10 hours each day increases the risk of death by 34% after controlling

for exercise. Long sleep durations of greater than 8 hours of sleep each day and short

durations of sleep of less than 7 hours have been found to increase mortality by 30%

and 12% respectively across countries using data from meta analysis of 16 studies with

more than 1 million participants (Akiko et al., 2004; Cappuccio et al., 2010; Gallicchio &

Kalesan, 2009).

2.4.5 Income

Higher income has been associated with lower mortality rates in multiple studies (Deaton

& Paxson, 1999; Knox & Tomlin, 1997). In an analysis of over 500, 000 records of pen-

sioner data, Madrigal et al. (2011) find that last known salary has better predictive power

for mortality than the amount of pension. In a study of 1.4 billion tax returns from the

USA covering the period between 1999 and 2014, Chetty et al. (2016) study the relation-

ship between income and mortality using race and ethnicity adjusted life expectancy at
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age 40. Chetty et al. (2016) show that the gap between the richest 1% and poorest 1%

was 14.6 years during the period under investigation. The richest men gained 2.34 years in

life expectancy whilst the poorest only gained 0.32 years from 1999 to 2014, highlighting

the stark income mortality differentials. In the bottom income quartile, the authors find

that factors such as the proportion of the immigrant population, median house values,

proportion of college educated individuals and population density in counties were posi-

tively correlated with life expectancy in contrast to economic indicators such as inequality,

levels of unemployment and access to healthcare.

2.4.6 Marital status

Married people exhibit lower mortality than unmarried individuals. However, social ties

through social networks (family, friends and the community) are also associated with lower

mortality rates (Berkman, 1984; Rogers, 1996). Income interacts with marital status in

such a manner that married individuals with higher incomes have lower odds of dying

compared to couples with lower incomes (Rogers, 1995). H. C. Wang et al. (2016) use

Taiwanese population data from 1975–2011 to show that married individuals have longer

life expectancy than single and widowed people, and the impact is stronger for males than

females. This is further evidence for using marital status as a rating factor in life insurance

and annuities. For Taiwan, discounts based on marital status for life insurance products

are higher than those from using smoking and obesity as rating factors. However, as

discussed in Rogers (1995), those who are married are more likely to have higher incomes

and higher levels of education.

2.4.7 Obesity

Body mass index (BMI) is calculated as weight in kilograms divided by height in meters

squared. Higher body mass index (BMI) is associated with higher mortality. However,

central obesity (accumulation of fat in the abdominal area) in individuals with normal

BMI is associated with an even higher risk of mortality (Cerhan et al., 2014; Coutinho

et al., 2013; Sahakyan et al., 2015). Using Cox-regression analysis for a large sample

of over 650,000 Caucasians with a median follow–up (50th percentile of time to observe

event of interest) of 9 years, Cerhan et al. (2014) find that for all BMIs, having a large
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waist circumference increases one’s risk of death. A high waist circumference is likely to

decrease life expectancy in females and males by 3 years and 5 years respectively. Having

a high waist to hip ratio doubles the risk of death after controlling for BMI (Sahakyan et

al., 2015).

2.4.8 Race and ethnicity

Race and/or ethnicity cannot be used to price annuities. However, mortality differentials

amongst different racial groups in countries across the world are known to exist and

persist. Studies investigating black–white mortality differentials in the USA indicate that

allostatic burden (repeated chronic stress that can manifest through stress hormones and

biomarkers) can partially explain why Blacks experience higher mortality than Caucasians

even after controlling for socio–economic status and health behaviours (Duru et al., 2012;

Geronimus et al., 2006). Hill et al. (2007) find that the life expectancy at birth between

Aboriginal Australians and non–indigeneous is 13.1 years for males and 12.4 years for

females. The authors argue that the results show excess mortality for Aboriginals when

compared to other indigenous people such as the Maori in New Zealand and American

Indians in the USA.

2.4.9 Environmental risks

The World Health Organisation (WHO) defines environmental risks as “all the physical,

chemical and biological factors external to a person, and all related behaviours, but ex-

cluding those natural environments that cannot reasonably be modified” (Neira & Prüss-

Ustün, 2016). Using a burden of disease approach, Neira & Prüss-Ustün (2016) find that

environmental risk factors account for 23%(95%CI : 13%−34%) for all deaths worldwide.

The authors demonstrate that the majority of deaths related to environmental effects are

in Africa, South East Asia and non–OECD countries in Europe. Children under 5 and

adults over age 50 are most susceptible to dying of diseases caused by environmental

factors. Gender differences in environmental risk factors are negligible.
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2.5 Machine learning

In this section, we provide a general overview of machine learning and how machine

learning has been applied in mortality modelling and health.

Machine learning can be split into two categories, supervised and unsupervised (Hastie et

al., 2009; James et al., 2013). With supervised learning, the output is known. Whereas

in unsupervised learning, the algorithms try to find patterns in the data and there is no

known output. Variables and outputs are known as predictors and responses respectively.

The training set is data through which algorithms predict the output. Predictors can be

quantitative or qualitative. Qualitative input or output can be categorical or discrete.

Quantitative input or output is numerical. Inspired by the developments in machine

learning, statistical learning is becoming more popular as data sets become larger and the

range of statistical techniques to analyse increases. Classification problems are instances

in which a qualitative output is predicted. Regression problems are methods for which

the output is numerical. Some of the most popular techniques used in classification and

regression problems are described in the sections that follow.

2.5.1 Machine learning and mortality modelling

Demographic and actuarial experts have generally not appreciated many machine learning

techniques due to a lack of understanding of how these techniques work. The most widely

used techniques such as the Lee–Carter (LC) and the Cairns–Blake–Dowd (CBD) models

are highly interpretable amongst these audiences and easy to implement (Cairns et al.,

2006, 2009; Lee & Carter, 1992). However, machine learning techniques have the potential

to exhibit superior predictive performance and the ability to capture non–linearities in

mortality data.

One of the first applications of machine learning to mortality modelling is through the

use of a Gaussian–Process (GP) to graduate crude rates and ascertain improvement rates

(Rasmussen, 2004; Wu, 2016). Some advantages of GPs are that they are data–driven

methods that handle uncertainty extremely well since they are based on the Bayesian

paradigm. One of the main findings by Ludkovski et al. (2018) is that mortality amongst

ages 55 − 70 has been stable and chances are that it has worsened and this is contrary to
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the opinion that all ages have been making significant gains as reported by the Society of

Actuaries (SOA) in 2015 and this makes the associated improvement factors inaccurate

(Retirement Plans Experience Committee, 2015).

There are multiple variants of the LC models and comparing the different extensions is

not trivial because each variant has its own strengths and weaknesses (Booth et al., 2002;

Lee & Miller, 2001; Wilmoth, 1993). Deprez et al. (2017) show how to use a boost-

ing regression tree machine to compare the performance of different stochastic mortality

models. In their paper, they back–test different versions of the LC model to show that

age–period–cohort model (Renshaw & Haberman, 2006) has a better fit than the age–

period model (Lee & Carter, 1992) through changing the feature space of gender, age, year

to include a cohort effect. In addition, they also test the Renshaw–Haberman model with

an identical boosting regression tree machine and find that the model captures cohort

effects better than the LC but remains susceptible to shocks such as the 1918 influenza

epidemic. Lastly, they apply a boosting Poisson regression tree to cause-of-death mor-

tality data and manage to show how the conditional probabilities of dying change over

time (Alai et al., 2015; Deprez et al., 2017). These results are significant because machine

learning techniques are used to find interactions between features that the original models

fail to consider and the evolution in mortality rates.

Levantesi & Pizzorusso (2019) extend the work by Deprez et al. (2017) by adding the

Plat model for comparison and using different tree based machine learning estimators

(Plat, 2009). The Plat model merges LC and the CBD models. Hainaut (2018) applies

a neural network to predict mortality rates using US, UK and French data. The use of a

neural network is motivated by non–linear principal component analysis (NLPCA) from

chemical engineering literature (Hastie & Stuetzle, 1989; Kramer, 1991). Specifically,

Hainaut (2018) summarises the term structure in the LC model using various neural

network architectures. The best performing neural network is a (3–2–3) network, that is,

3 and 2 neurons in the input/output and intermediate layers. While the author makes a

timely contribution to the application of machine learning techniques, this work has been

further improved in a number of applications which are discussed below.

The main contribution from Richman & Wüthrich (2019) is identifying the specific func-

tional form of the LC model using representation learning (Bengio et al., 2013). This

allows one to compare a variety of the numerous LC extensions in a multi–population
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context instead of just 2 or 3 models as done in Hainaut (2018). Furthermore, multi–

population models produce more coherent mortality forecasts due to shared improvements

in socio–economic conditions and overall health status (Kleinow, 2015; N. Li & Lee, 2005)

than single population mortality models. Richman & Wüthrich (2019) extend Hainaut

(2018) by considering gender differences and derive a one step process for predicting mor-

tality rates. They consider the effects of both a random walk with and without drift, with

the best performing neural network (DEEP5) still outperforming other LC models. The

DEEP5 network has 5 intermediate layers with a rectified linear unit (ReLU) activation

layer. All networks are fit via a backward–propagation algorithm. This is different from

the genetic algorithm used by (Hainaut, 2018). The input layer has age, gender, country

and year. While the results are impressive as demonstrated by the lowest mean square

error in 51 out of 76 countries, the authors did not consider ensembling, cohort effects and

adding more features. Moreover, the results are point forecasts, using probability density

forecasts would show uncertainty (Bishop, 1994)

To avoid the problematic “black box” approach of machine learning techniques, Nigri

et al. (2019) use a Long Short-Term Memory (LTSM) neural network to capture the

evolution of time trend κt in the LC model. The main advantage of this technique is that

it retains the interpretability of the LC models while improving the prediction accuracy.

Demographers and actuaries are more likely to accept this technique as it preserves the

interpretive capacity instead of the black-box methods of (Hainaut, 2018; Richman &

Wüthrich, 2019). Furthermore, the LC model is usually modelled with an Autoregressive

Integrated Moving Average (ARIMA) process which fails to capture non–linearities in the

time index due to a constant variance assumption. Using mean absolute error and and

root mean square error, the LSTM consistently outperform the best ARIMA models in

seven countries for both males and females. Lastly, the log–force mortality rates from

a LTSM neural network fits the data better than that of an ARIMA using Australian

data. The authors also argue that the forecasted mortality curve is more realistic than

that determined by the ARIMA. However, there is no general consensus on the shape of

the curve at later ages in life (Gavrilov & Gavrilova, 2019; Gompertz, 1825; Horiuchi &

Wilmoth, 1998).
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2.5.2 Predictive models in health diagnostics and biomedicine

Weng et al. (2019) compare a multivariate Cox regression and two machine learning

techniques to predict all cause mortality in 10 years and found deep learning models

had better predictive accuracy. In their study, they use longitudinal data from the UK

Biobank (over 500, 000 participants) with 60 predictor variables including age, Townsend

deprivation index, diet and medical history. This study is important because it is one

of the first to demonstrate the application of neural networks and random forests to

longitudinal data. The authors highlight that while machine learning algorithms can

identify the variables that are most important in predicting mortality, it is still unclear

how exactly these variables contribute. In addition, they fail to provide a method of

picking the most important variables since there is no consensus amongst the different

methods. Deep learning models identify smoking, age and prior diagnosis of cancer as

most important, while the Cox model ranks age, prior diagnosis of cancer and gender as

having the strongest Cox regression coefficients.

The above work is extended in Zhao et al. (2019), whereby genetic data of 204 single

nucleotide polymorphisms (SNPs) are added to socio-economic variables to improve pre-

diction accuracy. SNPs are the most common genetic variations amongst people. The

results show that age remains the most important predictor followed by two SNPS, gender

and electronic health record length. The best performing algorithms are gradient boost-

ing trees and convolutional neural networks. However, the authors failed to identify the

predictors with the greatest impact on mortality from the convolutional neural network

because of its black box approach. It is also interesting to note that longitudinal data

show how BMI changes over time is more predictive of cardiovascular mortality than one

single value from cross–sectional data.

Statistical and machine learning techniques have been used extensively to predict car-

diovascular mortality, the presence of single diseases such as diabetic retinopathy and to

identify genes that predict resistance to tuberculosis under different treatments (Arcadu

et al., 2019; Chen et al., 2019; Zhao et al., 2019). The deep convolutional neural network

that is used to predict progression of diabetic retinopathy, analyses images from a single

visit and identifies specific locations in the eye that need to be inspected in contrast to

the fovea or optic nerve in routine appointments with a doctor. Most of the data used

24



Chapter 2. Literature review

in these studies are cross–sectional data, with application of machine learning techniques

to longitudinal data appearing in the past few years in medical literature. It remains

uncertain whether genetic data can be used for pricing as it is different from health be-

haviours that people can change. Macdonald (2014) provides a review of the effects of

adverse selection on insurance, the privacy concerns and how genetic data can be used in

actuarial models. Genetic testing is becoming much cheaper, with the sequencing of the

entire human genome continuously decreasing over time. It is highly likely that genetic

data could be used as rating factors in the future (Bélisle-Pipon et al., 2019; Tiller et al.,

2019; Zhao et al., 2023).

2.6 Cause of death mortality modelling

In this section, we discuss cause of death mortality modelling. This literature is impor-

tant because it leads us to the literature on old age multimorbidity from which cause of

death modelling is derived. The specific literature on multimorbidity is more thoroughly

investigated in Chapter 5.

Mortality forecasts from the decomposition of cause of death data are difficult to imple-

ment and do not usually perform better than forecasts based on overall mortality (Booth

& Tickle, 2008; Wilmoth, 1995). Substantial expert judgement is needed to know whether

a specific cause of death has a cohort effect and consequently apply an appropriate model

with cohort effects. Even when the appropriate model is used, (say an age–period–cohort

model for a cause of death with a period effect) the results are no better than LC model

forecasts (Cesare & Murphy, 2009). Despite this, countries still use cause of death mor-

tality forecasts to aid policy development around disease elimination and to identify pop-

ulations at high risk of specific diseases. Most of the research in the actuarial literature is

focussed on how to account for interdependence amongst different causes of diseases and

modelling cohort effects (Alai et al., 2015; Arnold (-Gaille) & Sherris, 2013, 2015; H. Li

& Lu, 2019; Lyu et al., 2020; M. Zheng & Klein, 1995).

Vector Autoregression (VAR) and Vector Error Correction Models (VECMs) are used to

model cause dependence in cause of death mortality forecasts (Arnold (-Gaille) & Sherris,

2013; Hamilton, 1994; Lütkepohl, 2005). Using cause of death data for Swiss females,
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Arnold (-Gaille) & Sherris (2013) demostrate that VECMs outperform ARIMA models

and are able to capture long-term trends and stationary relationships between variables.

Lyu et al. (2020) develop a multipopulation extension of cause of death forecasting that

leverages on the multipopulation extensions of LC (N. Li & Lee, 2005). The authors

model dependence with a 2 step-beta convergence test that performs much better than

N. Li & Lee (2005) and Lee & Carter (1992) due to its ability to capture both “intercause

coherence” and “international coherence” (Barro, 1991; D’Albis et al., 2012; Lyu et al.,

2020). However, international comparisons of cause specific mortality rates in developed

countries have shown that it is not prudent to assume that different countries will have

similar mortality trajectories when they have different historical cause-of-death experience

(Arnold (-Gaille) & Sherris, 2013, 2015). While some countries have similar trends, there

are differences in long run stochastic trends in most countries (Arnold (-Gaille) & Sherris,

2015; Tuljapurkar et al., 2000) .

Alai et al. (2018) analyse the impact on life expectancy of a hypothetical cause of death

mortality reduction by socioeconomic circumstances using a logistic multinomial regres-

sion that captured dependence among causes and different cohorts and find that different

socioeconomic groups are affected differently by different causes of death. As such, spe-

cific causes may need to be targeted to reduce socioeconomic inequalities. H. Li & Lu

(2019) extend the literature on long term trends and within-cohort dependance by using

a hierarchical Archimedan copula to model within-cohort dependance and estimate net

mortality intensities (Arnold (-Gaille) & Sherris, 2013, 2015; M. Zheng & Klein, 1995).

The LC model is then used to forecast mortality rates for each cohort and cause of disease

for US males. Their results show that the high positive dependence between cardiovas-

cular diseases (CVD) and cancer might explain why there have been improvements in

mortality from CVD but only marginal results with cancer despite a War on Cancer in

the US.

Other authors have used Compositional Data Analysis (CoDa) to forecast mortality rates

and apply this to cause of death data. For example, Bergeron-Boucher et al. (2017)

establish coherent forecasts of life expectancy at birth for 15 Western European countries

in 2050. The CoDa coherent forecasts outperform LC coherent forecasts despite having

wider prediction intervals than LC forecasts. Performance is based mean absolute error.
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2.6.1 Multiple cause of death and mortality modelling

International classification of diseases (ICD) forms from the World Health Organisation

have consistently provided multiple cause of death data. However, cause of death analysis

has been limited to the underlying cause of death.

Few investigations have considered forecasting mortality using multiple cause of death

data. The World Health Assembly has approved a new ICD–11 that provides more in-

formation on individuals at population level including detailed pharmaceutical benefits,

postal code, genotype and socioeconomic risk factors. We know that people do not nor-

mally die from one cause of death, that is, the underlying cause of death is only one part

of a bigger story. There are other intermediate causes and terminal causes that contribute

to deaths. This is particularly important amongst older people since they tend to acquire

multiple comorbidities which are usually chronic in nature and it is difficult to estab-

lish the underlying cause of death. However, the underlying cause of death is ideal for

identifying the point of public health intervention and making international comparisons.

One could argue that the data available are quite rich such that over reliance on single

causes of death might lead to an oversimplification of the causes of death because it misses

out the impact of other causes. Recent research by Moreno-Betancur et al. (2017) pro-

poses that weights are assigned to each cause of death using a Cox-regression framework

for any disease mentioned on an ICD–10 form. This technique is innovative because mor-

tality can be “conceptualised as a mixture of disease processes” (Moreno-Betancur et al.,

2017). More weight is put on the underlying cause. Their results show that the impact

of socioeconomic inequalities on diseases has been underestimated on diseases with low

exposure. However, the choice of weights is still subjective, there is no use of temporal

information and other statistical approaches such as a Bayesian approach and machine

learning can be explored to improve the methodology.

2.7 Conclusion

Deriving appropriate risk profiles is a critical aspect in the design and pricing of actuarially

fair health and longevity risk products. Since markets for annuities are thin globally except

in countries with mandatory annuitisation, it is very useful to explore mortality modelling
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methods that can increase the demand for annuities by covering a broader population.

Given access to individual level longitudinal data, actuaries can realise an opportunity to

adopt statistically robust ways of determining mortality and morbidity risk profiles.

In the actuarial literature, risk profiles have been determined using deprivation indices,

looking at single determinants of mortality such as education, or on a subjective basis such

as high and low education, good health and bad health. This thesis seeks to combine

our knowledge of the determinants of mortality heterogeneity and statistical learning

techniques to derive better defined risk profiles.

The use of health trajectories and unsupervised machine learning algorithms has not been

explored in the literature as a means of developing mortality risk profiles. Therefore, we

apply a k–means clustering algorithm for longitudinal data to joint trajectories of body

mass index and self reported health to develop mortality risk profiles in Chapter 3. This

fills this gap by demonstrating that different clusters have different longevity prospects

which directly impacts the pricing of annuities. In the scenario where health status is

included in actuarial models as a source of mortality heterogeneity, no one has explored

the notion of linking health status with covariates using hidden Markov models in pricing.

Hence, in Chapter 4 we use hidden Markov models with covariates to place individuals

into distinct risk profiles.

Multimorbidity has not been explored in the actuarial literature as a source of mortal-

ity heterogeneity. Yet, multimorbidity has a direct impact on cause of death mortality

modelling and forecasting. To the best of our knowledge, there is no link in the literature

between multimorbidity and the pricing of long term care products. In the epidemiology

literature, multistate models are used to calculate mortality rates, incidence and preva-

lence rates of multimorbidity for both men and women. However, in most of these models

they do not consider functional disability or recovery from multimorbidity which have sig-

nificant impacts on the pricing of long term care products. In Chapter 5 we demonstrate

how best to incorporate multimorbidity in actuarial pricing of annuities, long term care

and life care annuities. We do this by comparing different multistate models of functional

disability with recovery.
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Mortality heterogeneity and the

k–means clustering of body mass

index and self reported health

trajectories

Earlier versions of this chapter were presented at the following conferences and events:

• Fourth Insurance Data Science Conference, Università Cattolica del Sacro Cuore,

Milan, Italy. “Mortality Heterogeneity and Clustering using Joint Body Mass Index

and Self-Reported Health Trajectories”, 17 June 2022.

• CEPAR 29th Colloquium on Pensions and Retirement Research, University of New

South Wales, Sydney, Australia, “Mortality Heterogeneity and Clustering Using

Joint Body Mass Index and Self–Reported Health Trajectories”, 1 December 2021.

• Centre of Actuarial Studies Seminar Series, Department of Economics, University of

Melbourne, Melbourne, Australia. “Mortality Heterogeneity and Clustering Using

Joint Body Mass Index and Self–Reported Health Trajectories”, 22 October 2021.

• United as One: 24th Congress on Insurance: Mathematics and Economics, Virtual

Conference. “Clustering and Mortality Heterogeneity using Joint Body Mass Index

and Self–Reported Health Trajectories”, 9 July, 2021.
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3.1 Introduction

Due to the impact of mortality heterogeneity on life insurance, pension funds and social

security systems, there is increasing interest in capturing heterogeneity using deprivation

indices or single variables such as education or income in stochastic mortality models

(Cairns et al., 2019; Villegas & Haberman, 2014; Wen et al., 2021). However, cluster-

ing techniques have yet to be applied to longitudinal individual level data to determine

homogenous risk profiles.

As such, our main goal in this paper is to extend the literature on “actuarial precision” by

developing more objective determination of risk profiles (Kulinskaya et al., 2020, 2021).

We carry out this using k–means longitudinal clustering to create groups of individuals

with similar risk profiles based on observable risk factors. Machine learning techniques

are used to cluster the data and reduce the level of judgement used in the model. We also

determine the pricing implications on annuities for the different clusters. Therefore, we

seek to answer the following questions:

• What clusters emerge based on the joint modelling of body mass index and self

reported health trajectories?

• Is there an association between cluster membership and each risk factor?

• Is there an association between mortality and cluster allocation?

• Does cluster allocation impact mortality when controlling for socio–economic vari-

ables?

• Can the clusters impact mortality while controlling for other risk factors and the

predictors BMI and self–reported health are excluded?

• What are the pricing implications for annuities in each cluster?

We identify three clusters: normal, stable BMI and declining very good health (A), nor-

mal, stable BMI and declining fair health (B), high, increasing BMI and declining good

health (C). One–Way Anova tests show that the clusters are unique across different socio–

economic characteristics and pairwise tests show that the differences between clusters are

statistically significant even after adjusting for multiple testing. The estimated predicted
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probabilities of death are consistently highest in the normal,stable BMI and declining fair

health cluster at different ages for both males and females. Hence, they have the shortest

longevity prospects. Individuals in Cluster A have the lowest probabilities of death at any

age for males and females. We also find that in the presence of other socio–economic vari-

ables and risk factors, the role of education, total–non housing wealth and total household

income is mediated through other socio–economic variables and risk factors.

The rest of the chapter is organized as follows: Section 3.2 briefly describes the data.

Section 3.3 describes the methods used to cluster the longitudinal data and estimate

marginal models for the different clusters. Section 3.4 provides the results of clustering,

marginal models and pricing implications. Section 3.5 is a discussion of the results and

we conclude in Section 3.6.

3.2 Data

The data are extracted from the United States Health and Retirement Study (HRS) which

is a nationally representative survey that follows Americans aged 50 and older. The HRS

is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and

is conducted by the University of Michigan. It has 13 waves of data collected biennially

from 1992 to 2016. The first wave has individuals born in the period 1931 − 1941. We

are interested in this cohort since members have been observed for the longest duration.

Actuarial studies in the literature that use longitudinal data have relied on this data

set (Meyricke & Sherris, 2013; M. Xu et al., 2019). Additionally, incorporating many

cohorts would make direct comparisons to literature that uses the initial cohort difficult.

Moreover, we are more likely to get variable trajectories of reasonable length when we

use the oldest cohort unlike younger cohorts. However, we will consider different cohorts

in future work as we did not test this assumption. As is standard survey practice, the

HRS omits individuals in institutions such as prisons or aged care facilities. However,

if a member transitions from a regular household to an institution, they continue to be

interviewed despite their new residency status. This means that transitions to institutions

and subsequent transitions are adequately captured in the data.

The HRS data provides information on a variety of variables covering demographics, fam-
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ily structure, health, education, financial information, employment history, social security

and pensions. Some of the data have restricted access such as genetic data, social security

and geocodes. In this study, we focus on known determinants of mortality that can be

used as rating factors that are available from the RAND1 file and are not restricted. The

RAND file provides cleaned and processed variables. Where a variable has missing infor-

mation, the RAND file provides the reasons for missingness. Therefore, for each individual

there is a record of person identifier, mortality status, interview date, age at interview,

gender, marital status, education, doctor diagnosed health conditions, self reported body

mass index, drinking behaviour, smoking status, self reported health, value of primary

residence, total non–housing wealth and total household income.

3.3 Methodology

3.3.1 K–means clustering for longitudinal data

In this chapter we use k–means clustering for longitudinal data, a non–parametric data

driven partitioning method technique (Genolini et al., 2013; Genolini et al., 2015). With

this method one can model the evolution of variable trajectories over time singularly or

jointly and thereby cluster individuals with similar trajectories. For an individual i at

time j, a single variable p trajectory is defined as

y1.p = yijp, yi2p, . . . , yinp, (3.1)

where i = 1, ..., N and j = 1, ..., n.

In the case of joint trajectories, the matrix that defines the joint trajectory for an indi-

vidual i is

yi =



yi1a yi2a . . . yina

yi1b yi2b . . . yinb

... ... . . . ...

yi1p yi2p yi3p yinp


, (3.2)

1Publicly available HRS dataset: https://hrs.isr.umich.edu/data-products
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where a, b and p are single trajectories of different variables.

The sequence

yij =



yija

yijb

. . .

yijp


(3.3)

represents the ith individual’s state at occasion j. The distance d(y1, y2) between two joint

trajectories y1 and y2 is given by calculating the distance between the fixed columns j

d(y1, y2) = ∥(d1.(y11., y21.), d2.(y12., y22.), . . . , dj.(y1j., y2j.))∥. (3.4)

We use the Euclidean distance,

d(y1, y2) = p

√√√√ n∑
j=1

(dj.(y1j, y2j))p. (3.5)

Data are normalised so that all variables are on a comparable scale. The number of clusters

chosen is based on concordance of multiple criteria and expert judgement (Caliñski &

Harabasz, 1974; Kryszczuk & Hurley, 2010; Ray & Turi, 1999).

While there are multiple variables available to cluster the data, the most meaningful

results from our exploratory analysis were from body mass index (a continuous variable)

and self reported health (an ordinal variable). Therefore, in this thesis we focus on the

clustering results from these two variables. Binary variables such as doctor diagnosed

conditions and health behaviour are not amenable k–means clustering. Nominal variables

such as marital status do not provide meaningful distances between categories. The

clustering of wealth and income variables did not provide well separated risk groups.

Hence, we use single and joint trajectories for body mass index and self-reported health

to cluster the data. Furthermore, single variable trajectories of BMI and self reported

health trajectories are used in the epidemiology literature to create different mortality

and morbidity risk profiles using a variety of techniques that exclude k–means clustering

(Cheng et al., 2021; Zajacova et al., 2015; H. Zheng et al., 2013). Our work also extends
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this literature.

3.3.2 Marginal models

3.3.2.1 Model specification

Marginal models are an extension of generalised linear models (Nelder & Wedderburn,

1972) to longitudinal data. Marginal models allow one to make inferences about popula-

tion means over time but do not account for random effects. Similar to standard linear

regression models, the systematic component of a generalised linear model ηi linearly

combines the covariates Xi and unknown regression coefficients βi. This implies that the

mean response can be expressed as a simple weighted sum of the regression parameter, β

ηi = β1Xi1 + β2Xi1 + . . .+ βpXip.

The mean of each response µij = E(Yij|Xi1, . . . , Xini
) = E(Yij|Xij) = Pr(Yij = 1|Xij)

is assumed to depend on the covariates through a known link function where Yij =

(Y ′
i1, Y

′
i1, . . . , Y

′
ini

). The prime symbol denotes the transpose of the matrix. The link

function applies a suitable transformation of the mean response and then links the covari-

ates to the transformed mean of the distribution of responses. The transformed mean of

the distribution of responses g(µij) is defined as follows:

g(µij) = ηij = X ′
ijβ,

where the prime symbol denotes the transpose of the matrix. While we can use either

the logit link function or the probit link function, we have chosen the logit link since it

has been shown to have a better fit in an earlier study using the HRS data (M. Xu et al.,

2019). The link function ensures that the predicted probabilities are within the range 0

to 1 for a binary response. Therefore we have the following log logit equation

log
(

µij

1 − µij

)
= ηij = X ′

ijβ.

The conditional variance of each Yij, given the covariates, is assumed to depend on the
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mean according to

V ar(Yij|Xij) = ϕυ(µij),

where ϕυ(µij) is a known “variance function” (that is, a known function of the mean, υij)

and ϕ is a scale parameter that may be known or may need to be estimated. Since the

response variable is a Bernoulii distribution, we set υ(µij) = µij(1 − µij) and ϕ = 1.

For balanced longitudinal designs, a separate scale parameter ϕ could be estimated at

each occasion; alternatively, the scale parameter could depend on times of measurement,

with ϕ(tij), being some parametric function of tij.

The within-subject association among the vector of repeated responses, given the covari-

ates, is assumed to be a function of an additional set of parameters αjk, whereby, αjk is

assumed to have an unstructured log odds ratio pattern

αjk = Corr(Yij, Yik).

3.3.2.2 Model estimation

We use the generalised estimating equations (GEE) approach to estimate β (Zeger &

Liang, 1986). This arises from minimising the function

N∑
i=1

(yi − µi(β))′V −1
i (yi − µi(β)) (3.6)

with respect to β and Vi. The corresponding covariance matrix is constructed as the

product of standard deviations and correlations

Vi = A
1
2
i Corr(Yi)A

1
2
i , (3.7)

where Ai is a diagonal matrix with V ar(Yij|Xij) = ϕυ(µij)) along the diagonal and A
1
2
i is

a diagonal matrix with the standard deviations,
√
ϕυµij.

Note that
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µij = µij(β) = g−1(X ′
ijβ). (3.8)

If the minimum exists, then it must solve the following generalised estimations equations

N∑
i=1

D′
iV

−1
i (yi − µi) = 0, (3.9)

where the derivative matrix Di = ∂µi

∂β
. The pairwise within-subject association is esti-

mated by

α̂jk = 1
N

∑
eijeik. (3.10)

We consider the following three models:

• Model 1: All variables excluding cluster allocation

• Model 2: All variables including cluster allocation

• Model 3: All variables including cluster allocation excluding BMI and self reported

health.

3.3.3 Implications for annuity pricing

The conditional probability that individual i dies in period j given that the individual is

alive at the start of the period is

p(tij) = Pr[tij = t|tij ⩾ t,Xij].

The log-odds for a logit link are

log p(tij)
1 − p(tij)

= E(Yij|Xij) = (X ′
ijβ).

Therefore,

p(tij) = 1
1 + exp −(X ′

ijβ̂)
.
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Since each time interval j is 2 years, the probability of death in the preceding 2 years is

2qx−2 = qx−2 + (1 − qx−2)qx−1 ≈ qx−2 + qx−1. (3.11)

This means that

qx+n =2 qx+n−1 − qx+n−1. (3.12)

If qx+1 = cqx and qx+2 = cqx+1 then

2qx ≈ (1 + c)qx (3.13)

and

2qx+1 ≈ c(1 + c)qx. (3.14)

Therefore, the estimated annual probability of death at age x is

qx ≈ 2qx

1 + 2qx+1
2qx

. (3.15)

We project annual probabilities of death after ages 65, 70, 75, 80 and 85 using the topping

out technique by Haberman & Renshaw (2009) which is an adaptation of the Coale &

Kisker (1990) method that assumes that the force of mortality µx+j,t+j increases with age.

Therefore,

uj = log(µx+j,t+j) = a+ bj + cj(j + 1)

qx+j,t+j = 1 − exp(−µx+j,t+j)
(3.16)

for j = −1, 0, . . . , ω − x where t = 2016, ω = 110, x = 65, 70, . . . , 85 and µ110,2016+j = 0.7

and qx+j,t+j is derived from Equation (3.15). All our analysis is performed in R (R Core

Team, 2022).
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3.4 Results

3.4.1 Clustering results

3.4.1.1 Body mass index trajectories

On the right of Figure 3.1(a) are the two clusters and the mean body mass index tra-

jectories of the 9, 815 subjects. On the left, the black dot represents the partition which

is stable after re-rolling 17 times. There are 66.6% individuals in cluster A and 33.4%

individuals in Cluster B. Cluster A (red trajectories) has steady low BMIs that are associ-

ated with normal and underweight individuals. Cluster B (blue trajectories) has high and

increasing BMIs which taper off slightly after eight waves. Some individuals have BMI’s

greater than 50 or less than 15 which might suggest that some of the data are entered

incorrectly. However, excluding individuals with extreme values of BMI did not change

cluster allocation so we did not discard individuals with extreme values.

(a) Mean body mass index trajectories with
two clusters

(b) Mean body mass index trajectories with
three clusters

Figure 3.1: Single variable mean body mass index trajectories using Calinski Harabatz
criterion

Figure 3.1(b) shows three mean body mass trajectories. Individuals are assigned to the

following partitions: 43.2% in cluster A, 42.9% in Cluster B and 14% in Cluster C. Cluster

B and Cluster C have similar BMI trajectories that are high and increasing. However,
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individuals in Cluster B are in the overweight category and those in Cluster C fall into

the World Health Organisation (WHO) obesity classes I, II and III.

3.4.1.2 Self reported health trajectories

Figure 3.2(a) shows 2 trajectories for self reported health. In the HRS, Individuals assess

their health on a scale of 1–5 where 1 is excellent, 2 is very good, 3 is good, 4 is fair and

5 is poor. There are 52.9% individuals in cluster A and 47.1% individuals in Cluster B.

Trajectory A shows individuals with very good health but whose health deteriorates over

time towards good health. Trajectory B presents individuals initially in good health but

whose health worsens over time toward fair health. Figure 3.2(b) shows 3 trajectories

for self reported health. There are 39.6% individuals in Cluster A, 33.7% individuals in

Cluster B and 26.7% in Cluster C. Trajectory A presents individuals initially in good

health but whose health worsens over time toward fair health. Trajectory B (in green)

shows individuals with very good health but whose health deteriorates over time towards

good health. Trajectory C shows individuals whose fair health state is constant over time.

(a) Mean self reported health trajectories with
2 clusters

(b) Mean self reported health with 3 clusters

Figure 3.2: Single variable mean self reported health trajectories using Calinski
Harabatz criterion
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3.4.1.3 Joint body mass index and self reported health trajectories

Figure 3.3 shows the joint trajectories for body mass index and self reported health with 2

clusters. There are 59.8% subjects in Cluster A and 40.2% in Cluster B. The partitioning

shown by BMI results is similar to Figure 3.1. However, the population in Cluster A

has reduced from 66.6% to 59.8% while Cluster B’s size has increased to 40.2% from

33.4%. For self reported health, the segmentation is similar to results in Figure 3.2. The

population in Cluster A has increased from 52.9% to 59.8% while Cluster B’s size has

decreased to 40.2%.

(a) Mean joint trajectories for body mass index
and self reported health trajectories with 2
clusters

(b) Mean joint trajectories for body mass index
and self reported health trajectories with 3
clusters

Figure 3.3: Mean joint trajectories for body mass index and self reported health
trajectories

Figure 3.3(b) shows the joint trajectories for body mass index and self reported health

with three clusters. There are 41.8% individuals in Cluster A, 34% in Cluster B and 24.2%

in Cluster C. Unlike Figure 3.3(a) this segmentation is able to split individuals who have

steady normal BMIs by their self reported health. We can clearly see that decisions based

on an assumption that of steady and normal weight are incorrect as they mask the effects

of deteriorating health. Remarkably, individuals in Cluster B have the worst health status

that is higher than obese individuals in Cluster C.
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3.4.1.4 Cluster summaries

Table 3.1 provides summaries of the characteristic features of the different clusters and

the overall dataset in 1992 based on the segmentation from joint body mass index and

self reported health trajectories in Figure 3.3(b). All the individuals have roughly the

same average age of 55 years and were born in 1936. Females represent 53% of the

overall population and there are more females than males in each cluster. However,

Cluster C has the highest proportion of females than any other cluster. Body mass index

(BMI) is calculated as weight in kilograms divided by height in meters squared (kg/m2).

We classify BMI using the World Health Organisation recommendations on nutritional

status. The majority (40.95%) are overweight, that is a 25.0 <BMI< 29.9 and only 1.4%

are underweight with a BMI of less than 18.5. Roughly a third of the sample have a

normal weight 18.5 <BMI< 24.9. Almost a quarter of the group are obese which is

further classified into three groups: Obesity Class I is 30.0 <BMI< 34.9, Obesity Class

II is 35.0 <BMI< 39.9 and Obesity Class III is BMI> 40. The majority of individuals

in Cluster A have a normal weight (48.05%) with only (5.68%) being obese. Most of the

individuals in Cluster B are overweight (49.55%) and a significant proportion (39.20%)

have normal weight. More than three quarters (77.34%) of Cluster C are in obesity classes

I,II and III.

The average value of the primary residence in Cluster A is 80% higher than Cluster B.

Average total non–housing wealth in Cluster A is at least double the values in Clusters B

and C. Both the total household income in Clusters B and C are lower than the overall

average. However, the average value of primary residence, household income and total

household income in Cluster C is at least 12% higher than the same values in Cluster

B. Cluster A has the highest proportion (48.17%) of individuals with “some college” and

“college and above education”. Clusters B and C have similar levels of individuals who

did not attend college. Approximately 68% have at least graduated from high school.

However, the proportion of people who left high school without graduating are over rep-

resented in Cluster B. Cluster A has higher than average rates of people who are married.

Individuals who have been divorced, never married, partnered, separated or widowed are

higher than average in Clusters B and C.

Overall, Clusters B and C have higher than average rates of any disease. People
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in Cluster C have the highest rates of high blood pressure, diabetes and arthritis

(48.63%, 16.48%, 43.30%), respectively. Individuals in Cluster A have the lowest rates

of any disease. Individuals in Cluster B and Cluster C have 6 times and 7 times the

proportion of diabetes in Cluster A. Cluster B has double the average rates of lung

disease (10.23%) and stroke (4.68%), respectively. Psychiatric problems (11.73%) are

most common in Cluster B. Cluster B has the highest level of current smokers (39.17%)

and Cluster A has the highest number of people who have ever drunk alcohol (68.99%).

Cluster A has the highest levels of people in excellent or very good health (84.33%).

Clusters B and C have (40.97%) and (29.21%) in fair or poor health, respectively. This

implies that Cluster B has the worst health status overall and these rates are higher than

the overall average rates for fair and poor health.

Table 3.1: Baseline summary statistics for Wave 1 in 1992 based on the segmentation
from joint body mass index and self reported health trajectories in Figure 3.3(b)

Description Cluster Aa Cluster Bb Cluster Cc Overalld

Clusters

Cluster 41.82% 33.97% 24.21% 100%

Socio–demographic

Age in years 55.86 56.37 55.77 56.01

Year of birth 1936.33 1935.83 1936.42 1936.18

Wealth and income

Value of primary residence $111,313 $61,314 $69,416 $84,187

Total non-housing wealth $224,732 $97,040.25 $109,163 $153,381

Total household income $60,894 $33,748 $39,819 $46,571

Gender

Female 52.67% 50.69% 57.32% 53.12%

Male 47.33% 49.31% 42.68% 46.88%

Education

College and above 25.29% 9.57% 11.41% 16.59%

GED* 4.02% 5.82% 6.02% 5.11%

High School Graduate 34.84% 29.51% 33.29% 32.65%

Lt High-school† 12.98% 39.62% 32.37% 26.72%

Some college 22.87% 15.48% 16.92% 18.92%

Marital status

Divorced 9.67% 12.27% 10.90% 10.85%

Married 79.39% 67.43% 70.12% 73.08%

Married, spouse absent 0.58% 0.45% 0.34% 0.48%

Never married 2.34% 4.89% 4.17% 3.65%
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Table 3.1: Baseline summary statistics for Wave 1 in 1992 based on the segmentation
from joint body mass index and self reported health trajectories in Figure 3.3(b)
(continued)

Description Cluster Aa Cluster Bb Cluster Cc Overalld

Partnered 2.24% 2.76% 2.69% 2.53%

Separated 1.71% 4.71% 3.41% 3.14%

Widowed 4.07% 7.50% 8.38% 6.28%

Doctor diagnosed health conditions

High blood pressure 20.95% 40.46% 48.70% 34.29%

Diabetes 2.34% 13.08% 16.50% 9.41%

Cancer 3.17% 6.60% 4.67% 4.70%

Lung disease 1.34% 10.23% 4.97% 5.24%

Heart problems 3.70% 17.04% 12.29% 10.31%

Stroke 0.56% 4.68% 2.57% 2.45%

Psychiatric problems 2.10% 11.73% 7.95% 6.79%

Arthritis 21.58% 40.94% 43.35% 33.43%

Health behaviour

Ever drinks alcohol 68.99% 54.29% 53.91% 60.35%

Ever smoked 59.00% 70.55% 61.49% 63.53%

Smokes now 21.34% 39.17% 21.30% 27.39%

Self reported health

Excellent 43.02% 3.51% 10.31% 21.68%

Fair 1.29% 27.11% 19.28% 14.42%

Good 14.20% 38.54% 36.15% 27.78%

Poor 0.19% 16.98% 9.97% 8.26%

Very good 41.29% 13.86% 24.28% 27.86%

Body mass index

Normal weight 48.04% 39.20% 1.05% 33.66%

Obesity class I 5.51% 7.98% 49.03% 16.88%

Obesity class II 0.15% 0.39% 18.90% 4.77%

Obesity class III 0.02% 0.09% 9.51% 2.34%

Overweight 45.21% 49.55% 21.51% 40.95%

Underweight 1.07% 2.79% 0.00% 1.40%

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;
d Overall is the entire dataset without clustering;
* GED means graduated high school by taking a General Education Development Test;
† Lt-High school means left high school without graduation.
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3.4.1.5 Dependence between cluster membership and predictors

To test if there is an association between cluster membership and each socioeconomic

characteristic, we conduct One–Way Analysis of Variance (ANOVA) tests with Holm cor-

rections (p < 0.05) to adjust for multiple testing (Fisher, 1919; Holm, 1979). Table 3.2

shows the results for group comparisons for the continuous variables. For statistically

significant variables, we carry out pairwise comparisons with Tukey’s Honest Significant

Difference (HSD) test and a 95% family wise confidence level to show the actual dif-

ferences between clusters (Tukey, 1949). There is strong evidence that the mean age

(F = 76.47, p < 0.0001), value of primary residence (F = 1375.36, p < 0.0001), total

non–housing wealth (F = 579.47, p < 0.0001) and total household income (F = 6.74, p =

0.0012) are different across each cluster.

Table 3.3 shows the results for overall group and pairwise comparisons for categorical

variables using Chi-squared (χ2) tests with Holm corrections (p < 0.05) to adjust for mul-

tiple testing (Pearson, 1900). Since the adjusted p–values are all less than 0.05 for all the

predictors, we reject the null hypothesis that there is no dependence between cluster mem-

bership and each predictor. We conclude that there is very strong evidence (p < 0.0001)

that cluster membership is associated with gender, education, marital status, drinking

behaviour, smoking behaviour and all the doctor diagnosed conditions. Consequently,

pairwise tests specify which clusters are different from each other for all predictors. The

null hypothesis is that the proportions of each predictor are the same in each cluster.

We strongly reject the null hypothesis (p < 0.0001) for pairwise comparisons of all the

variables except drinking behaviour (p = 0.2682).
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Table 3.2: Comparison tests for numerical variables: age, value of primary residence, total non–housing wealth and total household
income using one-way ANOVA test and Tukey’s HSD test

Predictor Term F value Pr(>F)† Adjusted p–value B–A1 C–A2 C–B3

Age 76.4724 0.0000 0.0000

Difference in means -0.7765 -0.4625 0.3140

Lower bound 95% CI -0.9262 -0.6237 0.1405

Upper bound 95% CI -0.6267 -0.3012 0.4875

Adjusted p-value 0.0000 0.0000 0.0001

Value of primary residence 1,375.3582 0.0000 0.0000

Difference in means -85,885.1285 -73,760.0160 12,125.1125

Lower bound 95% CI -90,096.9118 -78,295.9778 7,243.9864

Upper bound 95% CI -81,673.3451 -69,224.0541 17,006.2386

Adjusted p-value 0.0000 0.0000 0.0000

Total non-housing wealth 579.4693 0.0000 0.0000

Difference in means -241,345.0243 -208,593.3787 32,751.6456

Lower bound 95% CI -259,616.6825 -228,271.3960 11,576.2288

Upper bound 95% CI -223,073.3662 -188,915.3615 53,927.0624

Adjusted p-value 0.0000 0.0000 0.0008

Total household income 6.7363 0.0012 0.0012

Difference in means -23,450.4145 -36,939.1088 -13,488.6943

Lower bound 95% CI -46,506.5967 -61,769.9122 -40,208.9986

Upper bound 95% CI -394.2324 -12,108.3055 13,231.6100

Adjusted p-value 0.0451 0.0014 0.4632

1 Tukey’s HSD test for pairwise comparison between Cluster B and Cluster A with a 95% family wise confidence level;
2 Tukey’s HSD test for pairwise comparison between Cluster C and Cluster A with a 95% family wise confidence level
3 Tukey’s HSD test for pairwise comparison between Cluster C and Cluster B with a 95% family wise confidence level;
† One–Way Anova test to compare the effect of cluster membership on predictors with Holm corrections (p<0.05).
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Table 3.3: Comparison tests for categorial variables: gender, education, marital status, doctor diagnosed conditions and health
behaviour using χ2 tests with Holm corrections (p<0.05)

Predictor Term χ2 p–value Adjusted p–value B–A1 C–A2 C–B3

Gender 169.7636 <0.0001 <0.0001

Raw p-value 0.0391 0.0000 0.0000

Adjusted p-value 0.0391 0.0000 0.0000

Education 47,330.3578 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

Marital Status 1,381.3050 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

High blood pressure 3,930.0947 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

Diabetes 5,850.3772 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

Cancer 193.6758 <0.0001 <0.0001

Raw p-value 0.0000 0.0106 0.0000

Adjusted p-value 0.0000 0.0106 0.0000

Lung disease 2,695.0048 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

Heart problems 2,860.0503 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000
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Table 3.3: Comparison tests for categorial variables: gender, education, marital status, doctor diagnosed conditions and health
behaviour using χ2 tests with Holm corrections (p<0.05) (continued)

Predictor Term χ2 p–value Adjusted p–value B–A1 C–A2 C–B3

Stroke 1,388.0545 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

Psychiatric problems 3,088.0434 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

Arthritis 3,536.8922 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

Ever drinks alcohol 2,726.0009 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.2682

Adjusted p-value 0.0000 0.0000 0.2682

Ever smoked 641.3706 <0.0001 <0.0001

Raw p-value 0.0000 0.0000 0.0000

Adjusted p-value 0.0000 0.0000 0.0000

Smokes now 2,031.3510 <0.0001 <0.0001

Raw p-value 0.0000 0.0000

Adjusted p-value 0.0000 0.0000

1 χ2 test for pairwise comparison between Cluster B and Cluster A;
2 χ2 test for pairwise comparison between Cluster C and Cluster A;
3 χ2 test for pairwise comparison between Cluster C and Cluster B.
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3.4.2 Mortality experience in each cluster

Table 3.4 presents the mortality experience of each cluster using training data. Cluster

B has the worst mortality rate (57.08%) which is higher than the overall mortality rate

(38.82%). Clusters A (21.49%) has the lowest mortality rate. Cluster C (42.74%) has a

mortality rate lower than the overall mortality rate but higher than Cluster A’s.

Table 3.4: Crude mortality rates from 1992–2016 using training data

Cluster Number Alive Percentage Number Dead Mortality rate
A 3,266 41.59% 702 21.49%
B 2,691 34.27% 1,536 57.08%
C 1,895 24.13% 810 42.74%
Overall 7,852 100.00% 3,048 38.82%
a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;
* Overall is the entire dataset without clustering.

3.4.3 Marginal model results

Firstly, we fit a marginal model with mortality as the response and clusters as the pre-

dictor. We reject the null hypothesis that the proportion of deaths in each cluster is the

same and find very strong evidence (χ2(2) = 798, p < 0.0001) of an association between

mortality and cluster allocation. Pairwise, we have very strong evidence of differences

in mortality amongst clusters (p < 0.0001). The mortality odds are 0.303(0.274, 0.334)

times lower in Cluster A than in Cluster B. They are 0.461(0.412, 0.516) times lower in

Cluster A than in Cluster C, and 1.525(1.391, 1.671) times higher in Cluster B than C.

Table 3.5 presents the regression coefficients for Model 1 which includes all the predictors

without cluster allocation. The goal of this baseline analysis is to identify the variables

impact mortality and quantify their impact on mortality in terms of odds ratios.
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Table 3.5: Odds ratios for mortality fitted using Model 1

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1 686.9720 0.0000 ***

Education (ref: College and above)

Lt High-school† 0.940 0.816 1.083 0.7293 0.3931

GED‡ 0.920 0.756 1.119 0.6972 0.4037

High School Graduate 1.072 0.939 1.224 1.0572 0.3038

Some college 1.058 0.919 1.218 0.6204 0.4309

Gender (ref: Female)

Male 1.516 1.397 1.646 99.4247 0.0000 ***

Sociodemographic

Age 1.671 1.601 1.744 550.3427 0.0000 ***

Marital status (ref: Married)

Married spouse absent 1.868 1.478 2.360 27.4343 0.0000 ***

Partnered 1.363 1.099 1.690 7.9640 0.0048 **

Separated 1.258 0.990 1.598 3.5100 0.0610 .

Divorced 1.165 1.032 1.315 6.0808 0.0137 *

Separated/divorced 1.394 1.013 1.918 4.1519 0.0416 *

Widowed 1.070 0.964 1.189 1.6150 0.2038

Never married 1.419 1.174 1.714 13.1255 0.0003 ***

Doctor diagnosed health conditions

Psychiatric problems 1.155 1.052 1.267 9.1438 0.0025 **

High blood pressure 1.185 1.088 1.290 15.2774 0.0001 ***

Diabetes 1.431 1.316 1.556 70.5618 0.0000 ***

Cancer 1.722 1.573 1.885 139.2812 0.0000 ***

Lung disease 1.428 1.303 1.565 57.8264 0.0000 ***

Heart problems 1.316 1.214 1.428 44.0040 0.0000 ***

Stroke 1.403 1.266 1.553 42.0635 0.0000 ***

Arthritis 0.911 0.837 0.992 4.5754 0.0324 *

Health behaviour

Ever drinks alcohol 0.816 0.752 0.885 24.0349 0.0000 ***

Ever smoked 1.398 1.276 1.532 51.5381 0.0000 ***

Smokes now 1.472 1.331 1.627 56.5806 0.0000 ***

Body mass index (ref: Normal weight)

Underweight 1.941 1.650 2.283 64.1075 0.0000 ***

Overweight 0.716 0.655 0.784 53.0161 0.0000 ***

Obesity class I 0.615 0.550 0.687 72.9836 0.0000 ***
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Table 3.5: Odds ratios for mortality fitted using Model 1 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Obesity class II 0.710 0.606 0.831 18.0449 0.0000 ***

Obesity class III 0.846 0.698 1.026 2.8777 0.0898 .

Self reported health (ref: Excellent)

Very good 1.202 0.960 1.504 2.5681 0.1090

Good 1.672 1.346 2.077 21.5397 0.0000 ***

Fair 2.960 2.377 3.687 93.8567 0.0000 ***

Poor 5.322 4.243 6.675 209.1711 0.0000 ***

Wealth and income

Value of primary residence 0.822 0.762 0.887 25.5420 0.0000 ***

Total non-housing wealth 1.008 0.963 1.055 0.1230 0.7258

Total household income 0.748 0.309 1.814 0.4122 0.5209

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

† GED means graduated high school by taking a General Education Development Test;
‡ Lt-High school means left high school without graduation.

All the variables have the expected impact on mortality except for education, total non–

housing wealth, total household income and body mass index. There is not enough

evidence to conclude that having left high school decreases mortality risk by 6% (OR =

0.94(0.82, 1.09), p = 0.3931) or graduating with a GED decreases your mortality risk

by 8% (OR = 0.92(0.756, 1.119), p = 0.4037) when compared to an average individual

with an education level of college and above. The mortality odds of being underweight or

overweight when compared to the average patient who has a normal weight are 96% higher

(CI = (1.650, 2.283), p < 0.0001) and 28% lower (CI = (0.655, 0.784), p < 0.0001). This

indicates that being underweight presents a greater mortality risk than being overweight.

An obese individual (Class I, II or III) has lower mortality odds 39%, 29%, 15% than the

average individual with normal weight, respectively. These results are consistent with the

literature on BMI and mortality.

Amongst doctor diagnosed health conditions: cancer, diabetes, lung disease and stroke

have the highest impact on mortality. In particular, we have strong evidence that the

odds of an average individual dying if the individual has cancer is 1.7 times (CI =

(1.57, 1.89), p < 0.0001) the mortality odds of an average individual who does not have
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cancer while holding all other variables constant. Having arthritis is associated with a

decrease in an average person’s mortality odds by 0.9 times ((CI = (0.84, 0.99), p <

0.0001) when compared to the mortality odds of an average individual who does not have

arthritis while holding all other variables constant. The odds of an average individual

dying if they are married and their spouse is absent is 1.8 times (CI = (1.57, 1.88), p <

0.0001) when compared to the mortality odds of an average individual who is married

while holding all other variables constant. The odds of an average individual dying if they

have poor health status is 4.6 times CI = (4.24, 6.68), p < 0.0001 when compared to the

mortality odds of an average individual who has excellent health all other things being

equal.

Table 3.6: Odds ratios for mortality fitted using Model

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.005 0.009 1 682.2840 0.0000 ***

Education (ref: College and above)

Lt High-school† 0.916 0.795 1.055 1.4753 0.2245

GED‡ 0.896 0.735 1.092 1.1876 0.2758

High School Graduate 1.061 0.929 1.212 0.7591 0.3836

Some college 1.050 0.911 1.209 0.4522 0.5013

Gender (ref: Female)

Male 1.515 1.395 1.644 98.2199 0.0000 ***

Clusters (ref: Cluster Aa)

Cluster Bb 1.238 1.101 1.393 12.7302 0.0004 ***

Cluster Cc 1.475 1.264 1.721 24.4355 0.0000 ***

Sociodemographic

Age 1.696 1.623 1.772 559.2876 0.0000 ***

Marital status (ref: Married)

Married spouse absent 1.860 1.472 2.351 26.9545 0.0000 ***

Partnered 1.373 1.108 1.702 8.3837 0.0038 **

Separated 1.255 0.988 1.594 3.4544 0.0631 .

Divorced 1.163 1.030 1.314 5.9339 0.0149 *

Separated/divorced 1.383 1.005 1.903 3.9619 0.0465 *

Widowed 1.063 0.957 1.182 1.3151 0.2515

Never married 1.391 1.150 1.681 11.6154 0.0007 ***

Doctor diagnosed health conditions
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Table 3.6: Odds ratios for mortality fitted using Model (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Psychiatric problems 1.155 1.052 1.268 9.1004 0.0026 **

High blood pressure 1.177 1.081 1.282 14.0126 0.0002 ***

Diabetes 1.401 1.288 1.524 61.8989 0.0000 ***

Cancer 1.725 1.576 1.889 139.0086 0.0000 ***

Lung disease 1.423 1.298 1.560 56.3127 0.0000 ***

Heart problems 1.304 1.202 1.415 40.8241 0.0000 ***

Stroke 1.392 1.257 1.543 39.9951 0.0000 ***

Arthritis 0.899 0.826 0.980 5.9114 0.0150 *

Health behaviour

Ever drinks alcohol 0.819 0.755 0.889 22.9715 0.0000 ***

Ever smoked 1.400 1.277 1.534 51.6080 0.0000 ***

Smokes now 1.462 1.322 1.618 54.2892 0.0000 ***

Body mass index (ref: Normal weight)

Underweight 1.932 1.642 2.272 63.1679 0.0000 ***

Overweight 0.704 0.643 0.771 57.3787 0.0000 ***

Obesity class I 0.531 0.462 0.611 79.1340 0.0000 ***

Obesity class II 0.575 0.473 0.698 31.2048 0.0000 ***

Obesity class III 0.690 0.551 0.865 10.3462 0.0013 **

Self reported health (ref: Excellent)

Very good 1.173 0.937 1.468 1.9409 0.1636

Good 1.515 1.214 1.890 13.5548 0.0002 ***

Fair 2.562 2.034 3.227 63.9354 0.0000 ***

Poor 4.599 3.624 5.835 157.7008 0.0000 ***

Wealth and income

Value of primary residence 0.829 0.769 0.895 23.4959 0.0000 ***

Total non-housing wealth 1.008 0.964 1.054 0.1247 0.7240

Total household income 0.764 0.321 1.818 0.3708 0.5426

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;
† GED means graduated high school by taking a General Education Development Test;
‡ Lt-High school means left high school without graduation.

Table 3.6 presents the regression coefficients for Model 2 which includes all the important
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variables from Table 3.5 and adds cluster membership. The goal of this analysis is to

quantify the impact of cluster allocation on mortality. There is strong evidence that the

odds of an average individual dying if they are in Cluster B are 1.238 times higher ((CI =

1.10, 1.39), p = 0.0004) when compared to the mortality odds of an average individual who

is in Cluster A, holding all other variables constant. The odds of an average individual

dying if they are in Cluster C are 1.48 times higher ((CI = 1.26, 1.72), p < 0.0001) when

compared to the mortality odds of an average individual who is in Cluster A holding all

other variables constant. All the other variables have generally similar impact as observed

in Table 3.5 with minor changes in the regression coefficients and confidence intervals.

Table 3.7: Odds ratios for mortality fitted using Model 3

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 3 521.5266 0.0000 ***

Education (ref: College and above)

Lt High-school† 1.023 0.888 1.179 0.1008 0.2245

GED‡ 0.921 0.752 1.127 0.6429 0.2758

High School Graduate 1.070 0.936 1.222 0.9832 0.3836

Some college 1.049 0.910 1.209 0.4387 0.5013

Gender (ref: Female)

Male 1.486 1.367 1.615 86.6297 0.0000 ***

Clusters (ref: Cluster A)

Cluster Bb 1.985 1.791 2.200 170.9773 0.0004 ***

Cluster Cc 1.496 1.338 1.671 50.4198 0.0000 ***

Sociodemographic

Age 1.720 1.645 1.798 569.7416 0.0000 ***

Marital status (ref: Married)

Married spouse absent 2.211 1.729 2.827 39.9437 0.0000 ***

Partnered 1.403 1.132 1.738 9.5908 0.0038 **

Separated 1.391 1.078 1.794 6.4316 0.0631 *

Divorced 1.249 1.104 1.413 12.5026 0.0149 ***

Separated/divorced 1.493 1.075 2.072 5.7276 0.0465 *

Widowed 1.097 0.986 1.220 2.9034 0.2515 .

Never married 1.409 1.168 1.700 12.8578 0.0007 ***

Doctor diagnosed health conditions

Psychiatric problems 1.327 1.207 1.459 34.2215 0.0026 ***

High blood pressure 1.157 1.063 1.260 11.3773 0.0002 ***

53



Chapter 3. Mortality heterogeneity and k–means clustering of health trajectories

Table 3.7: Odds ratios for mortality fitted using Model 3 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Diabetes 1.430 1.316 1.554 70.9857 0.0000 ***

Cancer 1.944 1.772 2.133 196.7051 0.0000 ***

Lung disease 1.697 1.544 1.864 121.6194 0.0000 ***

Heart problems 1.451 1.337 1.576 78.8145 0.0000 ***

Stroke 1.607 1.448 1.784 79.4370 0.0000 ***

Arthritis 0.923 0.848 1.004 3.4720 0.0150 .

Health behaviour

Ever drinks alcohol 0.741 0.683 0.804 51.9473 0.0000 ***

Ever smoked 1.396 1.273 1.530 50.3977 0.0000 ***

Smokes now 1.616 1.461 1.788 86.9698 0.0000 ***

Wealth and income

Value of primary residence 0.818 0.756 0.886 24.4136 0.0000 ***

Total non-housing wealth 1.018 0.970 1.069 0.5154 0.0000

Total household income 0.413 0.127 1.346 2.1521 0.0000

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;
† GED means graduated high school by taking a General Education Development Test;
‡ Lt-High school means left high school without graduation.

Table 3.7 presents the regression coefficients for Model 3 which includes all the variables

from Table 3.6. The goal of this analysis is to determine the impact of cluster alloca-

tion impact when the clustering variables: body mass index and self reported health are

removed. There is strong evidence that the odds of an average individual dying if they

are in Cluster B is 1.99 times (CI = (1.79, 2.20), p = 0.004) when compared to the mor-

tality odds of an average individual who is in Cluster A while holding all other variables

constant. The odds of an average individual dying if they are in Cluster C is 1.50 times

(CI = (1.34, 1.67), p < 0.0001) when compared to the mortality odds of an average in-

dividual who is in Cluster A while holding all other variables constant. Contrary to the

results in Table 3.6, these results are more in line with the raw mortality experience shown

in Table 3.4.
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3.4.3.1 Model performance

Table 3.8 presents the marginal model results for all three models. We use Quasilikeli-

hood Information Criterion (QIC) to determine the model with the best fit (Pan, 2001).

Comparing Model 2 and Model 1 shows that clustering impacts mortality when control-

ling for socio–economic variables since it has the lowest QIC. This shows that clustering

does provide additional information in the prediction of mortality. Omitting the variables

used to cluster the data results in the worst model performance as shown by the high

QIC in model 3 when compared to model 2. Hence, the joint trajectories of BMI and

self reported health cannot accurately predict mortality in the absence of the actual BMI

and self reported health variables. This proves that just relying on clusters results in the

worst performance overall even though it more parsimonious.

Table 3.8: Comparison of goodness of fit using quasilikelihood information criterion

Model QIC Parameters
Model 1 22,003.67 37
Model 2 21,983.42 39
Model 3 22,617.05 30

Table 3.9: Odds ratios for mortality fitted using Model 2 while excluding variables
with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1 944.1840 0.0000 ***

Gender (ref: Female)

Male 1.506 1.387 1.635 95.3176 0.0000 ***

Clusters (ref: Cluster A)

Cluster B† 1.219 1.084 1.370 10.9564 0.0009 ***

Cluster C‡ 1.451 1.244 1.692 22.4239 0.0000 ***

Sociodemographic

Age 1.696 1.624 1.772 558.7873 0.0000 ***

Marital status (ref: Married)

Married spouse absent 1.851 1.463 2.340 26.4019 0.0000 ***

Partnered 1.357 1.096 1.681 7.8200 0.0052 **

Separated 1.234 0.971 1.568 2.9464 0.0861 .
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Table 3.9: Odds ratios for mortality fitted using Model 2 while excluding variables
with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Divorced 1.172 1.039 1.322 6.6491 0.0099 **

Separated/divorced 1.379 1.002 1.899 3.8829 0.0488 *

Widowed 1.061 0.956 1.178 1.2382 0.2658

Never married 1.385 1.144 1.676 11.1677 0.0008 ***

Doctor diagnosed health conditions

Psychiatric problems 1.146 1.043 1.259 8.0724 0.0045 **

High blood pressure 1.175 1.079 1.280 13.6446 0.0002 ***

Diabetes 1.396 1.284 1.518 60.8503 0.0000 ***

Cancer 1.735 1.585 1.900 141.7971 0.0000 ***

Lung disease 1.415 1.291 1.552 54.7508 0.0000 ***

Heart problems 1.314 1.211 1.425 43.2840 0.0000 ***

Stroke 1.403 1.266 1.555 41.6205 0.0000 ***

Arthritis 0.897 0.824 0.978 6.1579 0.0131 *

Health behaviour

Ever drinks alcohol 0.825 0.761 0.895 21.6319 0.0000 ***

Ever smoked 1.395 1.273 1.529 50.5611 0.0000 ***

Smokes now 1.456 1.316 1.610 53.0883 0.0000 ***

Body mass index (ref: Normal weight)

Underweight 1.942 1.650 2.284 64.0333 0.0000 ***

Overweight 0.705 0.644 0.772 57.0354 0.0000 ***

Obesity class I 0.533 0.464 0.613 78.4823 0.0000 ***

Obesity class II 0.578 0.476 0.701 30.6895 0.0000 ***

Obesity class III 0.692 0.552 0.868 10.1722 0.0014 **

Self reported health (ref: Excellent)

Very good 1.180 0.943 1.476 2.0969 0.1476

Good 1.524 1.222 1.900 14.0369 0.0002 ***

Fair 2.552 2.029 3.210 64.0277 0.0000 ***

Poor 4.547 3.590 5.761 157.5238 0.0000 ***

Wealth and income

Value of primary residence 0.837 0.780 0.898 24.4468 0.0000 ***

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.
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Table 3.9: Odds ratios for mortality fitted using Model 2 while excluding variables
with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;
† GED means graduated high school by taking a General Education Development Test;
‡ Lt-High school means left high school without graduation.
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Figure 3.4: Predicted probability of death for males and females at different ages on
training data

Figure 3.4 and Figure 3.5 show the predicted probabilities of death based for males and

females on the training data and testing data, respectively. We use marginal Model 2 to

fit the data but exclude variables with p > 0.2. Both training and test data exhibit the

same behaviour where individuals in Cluster A have the lowest mortality rates and Cluster

B has the highest mortality rates. The mortality rates of individuals in Cluster C lie in

between Cluster A and Cluster B. The overall data represents males and females without
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specifying the cluster to which the individual belongs. Males have higher mortality rates

than females. The data are noisy after age 80 for both males and females.
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Figure 3.5: Predicted probability of death at different ages for males and females on
test data

3.4.4 Pricing implications for each cluster

Table 3.10 shows the prices for whole life immediate annuities at 5 year intervals from

ages 65 to 85 for males and females in the different clusters and their relative differences

to the overall rate. If prices are charged at actuarially fair rates, individuals from ages

65 to 80 in Cluster A would pay between 14% and 36% above overall rates. However,

individuals in Clusters B would pay between 22% and and 28% lower than the overall

rates. Individuals in Cluster C would pay between 8% and 10% lower than the overall

rate in Cluster C for ages 65 to 75 but 4% higher at age 80. Similar rates are observed for

females with Cluster A having the most expensive annuities and the cheapest annuities

in Cluster B. Generally, annuities for males are cheaper than those for females.
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Table 3.10: Comparison of cluster specific prices for underwritten annuities for males
and females at ages 65, 70, 75, 80 and 85 at 3% with sample with no cluster allocation

Cluster A Cluster B Cluster C
Normal, stable BMI and very good health Normal, stable BMI and fair health High, increasing BMI and good health

Age Sex Price Changea Price Changeb Price Changec Overall*

65 Male 13.86 23.31% 8.83 -21.44% 10.88 -3.20% 11.24
70 Male 13.96 19.73% 8.52 -26.93% 10.40 -10.81% 11.66
75 Male 11.61 34.53% 6.42 -25.61% 7.96 -7.76% 8.63
80 Male 9.22 40.33% 4.88 -25.72% 6.80 3.50% 6.57
85 Male 5.63 6.03% 13.62 156.50% 2.63 -50.47% 5.31
65 Female 17.27 18.29% 12.08 -17.26% 14.75 1.03% 14.60
70 Female 14.99 19.92% 12.26 -1.92% 9.34 -25.28% 12.50
75 Female 11.65 16.15% 9.36 -6.68% 8.34 -16.85% 10.03
80 Female 11.91 36.27% 6.16 -29.52% 7.00 -19.91% 8.74
85 Female 12.17 77.41% 5.02 -26.82% 6.87 0.15% 6.86
a Difference in price of whole annuity immediate betweeen Cluster A and overall group at same age;
b Difference in price of whole annuity immediate betweeen Cluster B and overall group at same age;
c Difference in price of whole annuity immediate betweeen Cluster C and overall group at same age;
* Price of whole annuity immediate calculated without specifying cluster allocation

3.5 Discussion

The goal of this study is to investigate mortality heterogeneity using distinct risk profiles

determined from the clustering of longitudinal data using BMI and self reported health

trajectories. This is the first study in the actuarial literature using k–means clustering of

longitudinal data. Our results from single variable clustering prove to be not interesting

as they corroborate findings already in the epidemiological literature showing three tra-

jectories for BMI: low and steady, medium and increasing, and high and steady. For self

reported health, we find two trajectories: good health and deteriorating, plus poor health

and deteriorating. However, clustering both BMI and self reported health offers quite

interesting and highly nuanced trajectories which have not yet been observed elsewhere in

the literature. We find this particular segmentation highly relevant for the insurance and

annuities industries as it allows us to study BMI in conjunction with health status. The

clusters that emerge from this analysis are different from those determined using a non–

parametric hierarchical clustering of BMI trajectories estimated with Principal Analysis

through Conditional Expectation using the same dataset (Zajacova et al., 2015).

The main difference is that the authors find a decreasing BMI trajectory for both males

and females containing around 15% of individuals. Their stable BMI trajectory contains

a much larger proportion of individuals for both males (69%) and females (81%) which

further validates the result that relying on BMI trajectories is myopic and fails to fully

capture the evolution of health status over time. Our results show that this stable tra-

jectory can be further split into 2: one with deteriorating health from fair to poor and

another with very good health which deteriorates to good health. The high and increasing
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BMI trajectory is similar in both studies except that we find a higher proportion (24%)

compared to males 16% and females 8% in Zajacova et al. (2015). We also find that di-

chotomising gender did not change the trajectories significantly so our clustering focuses

on the overall dataset.

Our results suggest that relying on joint trajectories of BMI and self reported health to

price annuities will lead to fairer pricing. This is particularly important for individuals

who have poor health and normal BMI. If BMI alone was used to price annuities, these

individuals would pay more whereas they are much more likely to live for shorter periods.

Furthermore, education, total–housing wealth, total household income are shown to be

not statistically significant when predicting mortality in Tables 3.5, 3.6 and 3.7. This

suggests that their effects on mortality are already accounted for through the predictors:

marital status, doctor diagnosed health conditions, health behaviour, body mass index

and self–reported health.

One limitation of this study is the use of body mass index as a measure of obesity. While

a high BMI is associated with high mortality, central obesity (accumulation of fat in the

abdominal area) in individuals with normal BMI is associated with an even higher risk

of mortality (Cerhan et al., 2014; Coutinho et al., 2013; Sahakyan et al., 2015). Using

Cox-regression analysis for a large sample of over 650,000 Caucasians with a median

follow up of 9 years, Cerhan et al. (2014) find that for all BMIs, having a large waist

circumference increases one’s risk of death. A high waist circumference is likely to decrease

life expectancy in females and males by 3 years and 5 years respectively. Having a high

waist to hip ratio doubles the risk of death after controlling for BMI (Sahakyan et al.,

2015). This means that other measures of obesity might lead to more accurate estimates

of probabilities of death at each age.

In addition, the marginal models we fit did not show the impact of time on mortality.

As such, future research could show the impact of time on mortality and estimate cohort

probabilities of death with age specific trends instead of using period life tables. We

could also use multiple imputation by chained equations to replace missing data instead

of last one carried forward to reduce bias in the regression estimates (Huque et al., 2018;

Sterne et al., 2009; White et al., 2011). In terms of clustering techniques, we could also

investigate more robust clustering methods to deal with categorical predictors such as

hidden Markov models (Ghassempour et al., 2014). Further research on clustering using
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other variables or more robust clustering techniques can be explored in the future. It would

also be interesting to forecast trajectories of obesity measures or self reported health and

determine the impact on life expectancy and healthy life expectancy of the population.

We could also use quintiles from a logistic regresssion to determine risk profiles instead

of clustering individual level data and also consider survival analysis.

3.6 Conclusion

Our results demonstrate the importance of using individual level data to identify individ-

uals with different mortality risk profiles. These findings add to the increasing literature

on using data that is specific to an individual and not population level data. Longitu-

dinal individual level data is readily accessible and quantifies mortality heterogeneity by

providing insights that are difficult to obtain from data based on a single time point.

The joint modelling of BMI and self reported health show that individuals with normal

BMI and declining fair health trajectories have the worst mortality outcomes than those

with either a normal BMI and declining very good health or those who are obese and

have declining good health. We find strong evidence of an association between cluster

membership and each socio–economic variable and other risk factor. We also find strong

evidence of an association between mortality and cluster allocation. The clusters continue

to impact mortality when controlling for other risk factors. The clusters are poor pre-

dictors of mortality in the absence of the predictors BMI and self reported health whilst

controlling for socio–economic variables and other risk factors. We find that there are

significant differences in the pricing of annuities due to differences in body mass index

and health status for both males and females. These results raise awareness for more

rigorous determination of mortality risk profiles particularly when based on BMI, health

status, education, income and wealth. Our results are relevant to policymakers, insurers,

annuity providers and pension funds. From a business perspective, precise calculation of

mortality risk can have a direct impact on the amount of reserves and profits attributable

to shareholders.
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Appendix

3.A Testing for interactions between clusters and

predictors using training data

We were also interested in determining whether there was an interaction between a pre-

dictor and the clusters since the predictors had significant effects on the mortality odds.

Section 3.A presents the results of all the tests we carried out. Table 3.11 reports the

results from testing whether the effect of self reported health on mortality risk varies by

cluster whilst controlling for significant variables reported in Model 2. We find no evidence

that there is an interaction between self reported health and cluster membership.

Table 3.11: Interaction of self reported health and clusters on mortality odds fitted
using Model 2 which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1715.788 0.000 ***

Gender (ref: Female)

Male 1.506 1.387 1.635 95.623 0.000 ***

Sociodemographic

Age 1.686 1.614 1.762 546.358 0.000 ***

Marital status (ref: Married)

Married spouse absent 1.836 1.454 2.320 25.995 0.000 ***

Partnered 1.353 1.091 1.678 7.584 0.006 **

Separated 1.245 0.980 1.582 3.223 0.073 .

Divorced 1.173 1.040 1.323 6.757 0.009 **

Separated/divorced 1.380 1.003 1.899 3.922 0.048 *

Widowed 1.061 0.956 1.177 1.243 0.265

Never married 1.389 1.149 1.679 11.501 0.001 ***

Doctor diagnosed health conditions

Psychiatric problems 1.151 1.048 1.264 8.694 0.003 **

High blood pressure 1.177 1.081 1.282 13.976 0.000 ***

Diabetes 1.408 1.295 1.531 64.329 0.000 ***

Cancer 1.730 1.580 1.894 141.141 0.000 ***

Lung disease 1.426 1.302 1.563 57.792 0.000 ***
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Table 3.11: Interaction of self reported health and clusters on mortality odds fitted
using Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Heart problems 1.316 1.214 1.428 44.091 0.000 ***

Stroke 1.404 1.267 1.555 42.051 0.000 ***

Arthritis 0.905 0.831 0.986 5.250 0.022 *

Health behaviour

Ever drinks alcohol 0.827 0.763 0.897 21.155 0.000 ***

Ever smoked 1.391 1.270 1.525 49.859 0.000 ***

Smokes now 1.452 1.313 1.606 52.792 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.944 1.653 2.287 64.398 0.000 ***

Overweight 0.707 0.646 0.774 56.144 0.000 ***

Obesity class I 0.537 0.468 0.618 76.619 0.000 ***

Obesity class II 0.581 0.478 0.705 30.207 0.000 ***

Obesity class III 0.689 0.548 0.865 10.291 0.001 **

Wealth and income

Value of primary residence 0.836 0.779 0.897 24.725 0.000 ***

Self reported health (ref: Excellent)

Very good 1.106 0.862 1.419 0.624 0.430

Good 1.290 0.996 1.670 3.723 0.054 .

Fair 3.324 2.511 4.399 70.490 0.000 ***

Poor 6.343 4.513 8.916 113.094 0.000 ***

Clusters (ref: Cluster Aa)

Cluster Bb 0.645 0.210 1.979 0.588 0.443

Cluster Cc 1.547 0.840 2.852 1.957 0.162

Self reported health × Clusters

Very good × Cluster B 2.502 0.786 7.964 2.409 0.121

Good × Cluster B 2.370 0.762 7.373 2.221 0.136

Fair × Cluster B 1.408 0.452 4.387 0.348 0.555

Poor × Cluster B 1.254 0.395 3.979 0.148 0.701

Very good × Cluster C 0.983 0.506 1.907 0.003 0.958

Good × Cluster C 1.139 0.604 2.145 0.161 0.688

Fair × Cluster C 0.633 0.334 1.200 1.962 0.161

Poor × Cluster C 0.687 0.352 1.343 1.203 0.273

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.
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Table 3.11: Interaction of self reported health and clusters on mortality odds fitted
using Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.12 reports the results from testing whether the effect of gender on mortality odds

varies by cluster whilst controlling for significant variables reported in Model 2. We find

that there is no interaction between gender and cluster membership.

Table 3.12: Interaction of gender and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.005 0.009 1781.17 0.000 ***

Sociodemographic

Age 1.696 1.624 1.772 560.21 0.000 ***

Marital status (ref: Married)

Married spouse absent 1.849 1.462 2.337 26.39 0.000 ***

Partnered 1.355 1.094 1.679 7.77 0.005 **

Separated 1.228 0.966 1.561 2.82 0.093 .

Divorced 1.169 1.036 1.319 6.43 0.011 *

Separated/divorced 1.373 0.998 1.890 3.78 0.052 .

Widowed 1.059 0.954 1.175 1.16 0.282

Never married 1.383 1.143 1.674 11.10 0.001 ***

Doctor diagnosed health conditions

Psychiatric problems 1.144 1.041 1.256 7.83 0.005 **

High blood pressure 1.175 1.079 1.280 13.65 0.000 ***

Diabetes 1.396 1.284 1.518 61.06 0.000 ***

Cancer 1.732 1.582 1.896 140.73 0.000 ***

Lung disease 1.416 1.292 1.553 55.07 0.000 ***

Heart problems 1.314 1.212 1.426 43.45 0.000 ***

Stroke 1.403 1.266 1.555 41.73 0.000 ***

Arthritis 0.898 0.825 0.978 6.06 0.014 *

Health behaviour
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Table 3.12: Interaction of gender and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Ever drinks alcohol 0.827 0.763 0.897 21.05 0.000 ***

Ever smoked 1.394 1.272 1.528 50.33 0.000 ***

Smokes now 1.457 1.318 1.612 53.62 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.953 1.659 2.299 64.82 0.000 ***

Overweight 0.702 0.641 0.769 58.14 0.000 ***

Obesity class I 0.532 0.463 0.611 79.18 0.000 ***

Obesity class II 0.575 0.473 0.698 31.34 0.000 ***

Obesity class III 0.683 0.544 0.858 10.76 0.001 **

Self reported health (ref: Excellent)

Very good 1.182 0.945 1.479 2.14 0.143

Good 1.526 1.224 1.903 14.11 0.000 ***

Fair 2.552 2.029 3.211 63.99 0.000 ***

Poor 4.550 3.591 5.766 157.41 0.000 ***

Wealth and income

Value of primary residence 0.837 0.780 0.898 24.54 0.000 ***

Gender (ref: Female)

Male 1.670 1.431 1.948 42.52 0.000 ***

Clusters (ref: Cluster Aa)

Cluster Bb 1.311 1.123 1.530 11.78 0.001 ***

Cluster Cc 1.575 1.303 1.905 21.95 0.000 ***

Gender × Cluster

Male × Cluster B 0.877 0.729 1.056 1.92 0.166

Male × Cluster C 0.862 0.700 1.061 1.96 0.161

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.13 reports the results from testing whether the effect of marital status on mortality

odds varies by cluster whilst controlling for significant variables reported in Model 2. We

find that being married and having an absent spouse increases mortality odds (OR =

0.48(0.27, 0.86), p = 0.013) in Cluster B than Cluster A. A similar effect is observed with
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being divorced (OR = 0.74(0.56, 0.98), p = 0.036).

Table 3.13: Interaction of marital status and clusters on mortality odds fitted using
Model 2 which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1859.109 0.000 ***

Gender (ref: Female)

Male 1.508 1.389 1.637 95.662 0.000 ***

Sociodemographic

Age 1.698 1.625 1.774 558.686 0.000 ***

Doctor diagnosed health conditions

Psychiatric problems 1.147 1.044 1.260 8.203 0.004 **

High blood pressure 1.174 1.077 1.279 13.422 0.000 ***

Diabetes 1.398 1.286 1.520 61.561 0.000 ***

Cancer 1.740 1.589 1.906 142.890 0.000 ***

Lung disease 1.420 1.295 1.556 55.638 0.000 ***

Heart problems 1.320 1.217 1.432 44.847 0.000 ***

Stroke 1.406 1.268 1.558 42.181 0.000 ***

Arthritis 0.897 0.824 0.978 6.157 0.013 *

Health behaviour

Ever drinks alcohol 0.824 0.760 0.894 21.800 0.000 ***

Ever smoked 1.395 1.273 1.530 50.524 0.000 ***

Smokes now 1.460 1.320 1.616 53.911 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.959 1.665 2.304 65.910 0.000 ***

Overweight 0.706 0.645 0.773 56.425 0.000 ***

Obesity class I 0.532 0.463 0.611 79.141 0.000 ***

Obesity class II 0.577 0.475 0.700 30.932 0.000 ***

Obesity class III 0.693 0.552 0.868 10.136 0.002 **

Self reported health (ref: Excellent)

Very good 1.180 0.944 1.476 2.111 0.146

Good 1.514 1.214 1.887 13.592 0.000 ***

Fair 2.527 2.010 3.179 62.812 0.000 ***

Poor 4.508 3.559 5.711 155.912 0.000 ***

Wealth and income

Value of primary residence 0.836 0.779 0.898 24.504 0.000 ***

Marital status (ref: Married)

Married spouse absent 2.994 1.872 4.788 20.956 0.000 ***
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Table 3.13: Interaction of marital status and clusters on mortality odds fitted using
Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Partnered 1.082 0.686 1.708 0.116 0.734

Separated 0.616 0.223 1.700 0.877 0.349

Divorced 1.456 1.155 1.835 10.109 0.002 **

Separated/divorced 1.442 0.609 3.416 0.693 0.405

Widowed 1.028 0.840 1.259 0.073 0.787

Never married 1.125 0.642 1.973 0.170 0.680

Clusters (ref: Cluster Aa)

Cluster Bb 1.249 1.082 1.441 9.185 0.002 **

Cluster Cc 1.469 1.229 1.755 17.903 0.000 ***

Marital status × Cluster

Married spouse absent × Cluster B 0.483 0.273 0.857 6.200 0.013 *

Partnered × Cluster B 1.406 0.808 2.447 1.455 0.228

Separated × Cluster B 2.089 0.727 6.003 1.871 0.171

Divorced × Cluster B 0.742 0.561 0.981 4.387 0.036 *

Separated/divorced × Cluster B 0.773 0.294 2.035 0.271 0.603

Widowed × Cluster B 1.059 0.836 1.341 0.225 0.635

Never married × Cluster B 1.204 0.652 2.223 0.353 0.552

Married spouse absent × Cluster C 0.614 0.336 1.120 2.526 0.112

Partnered ×Cluster C 1.266 0.696 2.303 0.597 0.440

Separated ×Cluster C 2.210 0.720 6.788 1.920 0.166

Divorced × Cluster C 0.777 0.563 1.073 2.348 0.125

Separated/divorced × Cluster C 1.374 0.506 3.733 0.389 0.533

Widowed × Cluster C 1.004 0.769 1.311 0.001 0.975

Never married × Cluster C 1.440 0.746 2.779 1.181 0.277

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.14 reports the results from testing whether the effect of high blood pressure on

mortality odds varies by cluster whilst controlling for significant variables reported in

Model 2. We find that there is no interaction between high blood pressure and cluster

membership.
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Table 3.14: Interaction of high blood pressure and clusters on mortality odds fitted
using Model 2 which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1888.926 0.000 ***

Gender (ref: Female)

Male 1.506 1.387 1.635 95.215 0.000 ***

Sociodemographic

Age 1.696 1.623 1.772 558.397 0.000 ***

Marital status (ref: Married)

Married spouse absent 1.851 1.463 2.341 26.351 0.000 ***

Partnered 1.358 1.096 1.682 7.831 0.005 **

Separated 1.234 0.971 1.569 2.954 0.086 .

Divorced 1.172 1.039 1.322 6.637 0.010 **

Separated/divorced 1.380 1.002 1.900 3.894 0.048 *

Widowed 1.061 0.956 1.177 1.226 0.268

Never married 1.383 1.143 1.674 11.066 0.001 ***

Doctor diagnosed health conditions

Psychiatric problems 1.146 1.043 1.258 8.016 0.005 **

Diabetes 1.397 1.284 1.519 60.959 0.000 ***

Cancer 1.736 1.585 1.901 141.683 0.000 ***

Lung disease 1.416 1.291 1.552 54.768 0.000 ***

Heart problems 1.313 1.211 1.425 43.181 0.000 ***

Stroke 1.403 1.265 1.555 41.450 0.000 ***

Arthritis 0.898 0.824 0.978 6.116 0.013 *

Health behaviour

Ever drinks alcohol 0.825 0.761 0.895 21.602 0.000 ***

Ever smoked 1.395 1.273 1.529 50.621 0.000 ***

Smokes now 1.455 1.315 1.609 52.920 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.944 1.653 2.287 64.425 0.000 ***

Overweight 0.704 0.643 0.771 57.263 0.000 ***

Obesity class I 0.532 0.463 0.612 78.774 0.000 ***

Obesity class II 0.577 0.476 0.701 30.814 0.000 ***

Obesity class III 0.693 0.553 0.869 10.076 0.002 **

Self reported health (ref: Excellent)

Very good 1.180 0.942 1.478 2.062 0.151

Good 1.525 1.220 1.906 13.699 0.000 ***
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Table 3.14: Interaction of high blood pressure and clusters on mortality odds fitted
using Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Fair 2.555 2.026 3.221 62.862 0.000 ***

Poor 4.553 3.586 5.781 154.720 0.000 ***

Wealth and income

Value of primary residence 0.837 0.780 0.898 24.434 0.000 ***

Doctor diagnosed health conditions

High blood pressure 1.178 1.010 1.373 4.373 0.036 *

Clusters (ref: Cluster Aa)

Cluster Bb 1.207 1.024 1.422 5.033 0.025 *

Cluster Cc 1.504 1.198 1.888 12.402 0.000 ***

High blood pressure × Cluster

High blood pressure × Cluster B 1.013 0.840 1.223 0.019 0.890

High blood pressure × Cluster C 0.955 0.755 1.208 0.148 0.700

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.15 reports the results from testing whether the effect of current smoking status

on mortality odds varies by cluster whilst controlling for significant variables reported in

Model 2. We find that there is an interaction between current smoking status and cluster

membership.

Table 3.15: Interaction of current smoking status and clusters on mortality odds fitted
using Model 2 which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.005 0.008 1936.67 0.000 ***

Gender (ref: Female)

Male 1.512 1.393 1.642 96.99 0.000 ***

Sociodemographic

Age 1.692 1.619 1.768 553.22 0.000 ***
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Table 3.15: Interaction of current smoking status and clusters on mortality odds fitted
using Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Marital status (ref: Married)

Married spouse absent 1.847 1.461 2.335 26.32 0.000 ***

Partnered 1.345 1.085 1.667 7.34 0.007 **

Separated 1.239 0.974 1.576 3.04 0.081 .

Divorced 1.177 1.044 1.328 7.04 0.008 **

Separated/divorced 1.392 1.012 1.915 4.12 0.042 *

Widowed 1.058 0.953 1.174 1.11 0.292

Never married 1.384 1.144 1.676 11.15 0.001 ***

Doctor diagnosed health conditions

Psychiatric problems 1.146 1.043 1.259 8.07 0.004 **

High blood pressure 1.181 1.084 1.287 14.42 0.000 ***

Diabetes 1.396 1.284 1.518 60.93 0.000 ***

Cancer 1.742 1.591 1.908 144.06 0.000 ***

Lung disease 1.421 1.296 1.557 56.22 0.000 ***

Heart problems 1.315 1.212 1.427 43.41 0.000 ***

Stroke 1.404 1.266 1.556 41.75 0.000 ***

Arthritis 0.901 0.827 0.982 5.67 0.017 *

Health behaviour

Ever drinks alcohol 0.828 0.764 0.898 20.81 0.000 ***

Ever smoked 1.385 1.263 1.519 47.89 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.945 1.652 2.289 64.05 0.000 ***

Overweight 0.707 0.645 0.774 55.81 0.000 ***

Obesity class I 0.534 0.465 0.614 77.81 0.000 ***

Obesity class II 0.580 0.478 0.705 29.97 0.000 ***

Obesity class III 0.695 0.554 0.872 9.89 0.002 **

Self reported health (ref: Excellent)

Very good 1.187 0.949 1.485 2.25 0.133

Good 1.532 1.229 1.909 14.40 0.000 ***

Fair 2.561 2.036 3.221 64.57 0.000 ***

Poor 4.578 3.614 5.799 158.96 0.000 ***

Wealth and income

Value of primary residence 0.840 0.783 0.901 23.77 0.000 ***

Health behaviour

Smokes now 1.928 1.594 2.332 45.74 0.000 ***

Clusters (ref: Cluster Aa)
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Table 3.15: Interaction of current smoking status and clusters on mortality odds fitted
using Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Cluster Bb 1.336 1.175 1.520 19.45 0.000 ***

Cluster Cc 1.517 1.288 1.787 24.98 0.000 ***

Smokes now × Cluster

Smokes now × Cluster B 0.668 0.537 0.831 13.16 0.000 ***

Smokes now × Cluster C 0.797 0.609 1.043 2.74 0.098 .

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.16 reports the results from testing whether the effect of stroke on mortality odds

varies by cluster whilst controlling for significant variables reported in Model 2. We find

no evidence of an interaction between stroke and cluster membership.

Table 3.16: Interaction of stroke and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1945.137 0.000 ***

Gender (ref: Female)

Male 1.506 1.388 1.636 95.647 0.000 ***

Sociodemographic

Age 1.696 1.623 1.771 557.800 0.000 ***

Marital status (ref: Married)

Married spouse absent 1.860 1.473 2.348 27.222 0.000 ***

Partnered 1.360 1.098 1.684 7.929 0.005 **

Separated 1.241 0.977 1.576 3.139 0.076 .

Divorced 1.173 1.040 1.324 6.755 0.009 **

Separated/divorced 1.383 1.004 1.903 3.949 0.047 *

Widowed 1.062 0.957 1.179 1.297 0.255

Never married 1.387 1.146 1.677 11.329 0.001 ***
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Table 3.16: Interaction of stroke and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Doctor diagnosed health conditions

Psychiatric problems 1.146 1.043 1.259 8.081 0.004 **

High blood pressure 1.177 1.080 1.282 13.900 0.000 ***

Diabetes 1.396 1.284 1.518 60.963 0.000 ***

Cancer 1.737 1.587 1.902 142.653 0.000 ***

Lung disease 1.414 1.290 1.551 54.720 0.000 ***

Heart problems 1.312 1.210 1.423 42.907 0.000 ***

Arthritis 0.897 0.824 0.977 6.190 0.013 *

Health behaviour

Ever drinks alcohol 0.825 0.761 0.894 21.715 0.000 ***

Ever smoked 1.397 1.274 1.531 50.959 0.000 ***

Smokes now 1.454 1.314 1.608 52.712 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.941 1.651 2.283 64.397 0.000 ***

Overweight 0.705 0.643 0.771 57.234 0.000 ***

Obesity class I 0.535 0.465 0.615 77.843 0.000 ***

Obesity class II 0.579 0.477 0.704 30.346 0.000 ***

Obesity class III 0.693 0.552 0.870 10.015 0.002 **

Self reported health (ref: Excellent)

Very good 1.178 0.941 1.474 2.044 0.153

Good 1.514 1.214 1.890 13.488 0.000 ***

Fair 2.532 2.011 3.188 62.523 0.000 ***

Poor 4.517 3.563 5.725 155.307 0.000 ***

Wealth and income

Value of primary residence 0.837 0.780 0.898 24.497 0.000 ***

Doctor diagnosed health conditions

Stroke 1.501 1.176 1.916 10.623 0.001 **

Clusters (ref: Cluster Aa)

Cluster Bb 1.246 1.101 1.410 12.159 0.000 ***

Cluster Cc 1.437 1.223 1.688 19.426 0.000 ***

Stroke × Cluster

Stroke × Cluster B 0.879 0.666 1.161 0.827 0.363

Stroke × Cluster C 1.019 0.757 1.372 0.015 0.901

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.
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Table 3.16: Interaction of stroke and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.17 reports the results from testing whether the effect of lung disease on mortality

odds varies by cluster whilst controlling for significant variables reported in Model 2. We

find some evidence of an interaction between lung disease and cluster membership.

Table 3.17: Interaction of lung disease and clusters on mortality odds fitted using
Model 2 which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1947.65 0.000 ***

Gender (ref: Female)

Male 1.508 1.389 1.637 96.17 0.000 ***

Sociodemographic

Age 1.694 1.621 1.770 555.98 0.000 ***

Marital status (ref: Married)

Married spouse absent 1.850 1.464 2.339 26.50 0.000 ***

Partnered 1.354 1.093 1.679 7.67 0.006 **

Separated 1.232 0.969 1.565 2.91 0.088 .

Divorced 1.172 1.039 1.321 6.64 0.010 **

Separated/divorced 1.379 1.002 1.898 3.89 0.049 *

Widowed 1.060 0.955 1.177 1.21 0.272

Never married 1.383 1.143 1.674 11.13 0.001 ***

Doctor diagnosed health conditions

Psychiatric problems 1.148 1.045 1.260 8.29 0.004 **

High blood pressure 1.172 1.076 1.277 13.23 0.000 ***

Diabetes 1.396 1.284 1.517 61.01 0.000 ***

Cancer 1.737 1.586 1.902 142.75 0.000 ***

Heart problems 1.318 1.215 1.429 44.30 0.000 ***

Stroke 1.401 1.264 1.552 41.44 0.000 ***

Arthritis 0.897 0.824 0.977 6.18 0.013 *
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Table 3.17: Interaction of lung disease and clusters on mortality odds fitted using
Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Health behaviour

Ever drinks alcohol 0.825 0.761 0.894 21.74 0.000 ***

Ever smoked 1.391 1.269 1.525 49.70 0.000 ***

Smokes now 1.456 1.316 1.610 53.45 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.934 1.644 2.276 63.12 0.000 ***

Overweight 0.705 0.644 0.772 57.12 0.000 ***

Obesity class I 0.533 0.464 0.613 78.45 0.000 ***

Obesity class II 0.577 0.476 0.701 30.72 0.000 ***

Obesity class III 0.691 0.550 0.867 10.15 0.001 **

Self reported health (ref: Excellent)

Very good 1.168 0.933 1.461 1.83 0.176

Good 1.492 1.196 1.861 12.54 0.000 ***

Fair 2.499 1.986 3.145 60.95 0.000 ***

Poor 4.477 3.533 5.673 154.05 0.000 ***

Wealth and income

Value of primary residence 0.837 0.780 0.898 24.47 0.000 ***

Doctor diagnosed health conditions

Lung disease 1.719 1.385 2.133 24.20 0.000 ***

Clusters (ref: Cluster Aa)

Cluster Bb 1.274 1.123 1.445 14.15 0.000 ***

Cluster Cc 1.489 1.268 1.748 23.55 0.000 ***

Lung disease × Cluster

Lung disease × Cluster B 0.780 0.612 0.994 4.04 0.044 *

Lung disease × Cluster C 0.831 0.633 1.089 1.80 0.180

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.17 reports the results from testing whether the effect of cancer on mortality odds

varies by cluster whilst controlling for significant variables reported in Model 2. The effect

of cancer on mortality odds is the same in each cluster.
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Table 3.18: Interaction of cancer and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1926.191 0.000 ***

Gender (ref: Female)

Male 1.505 1.387 1.634 95.052 0.000 ***

Sociodemographic

Age 1.696 1.623 1.772 558.464 0.000 ***

Marital status (ref: Married)

Married spouse absent 1.852 1.464 2.341 26.499 0.000 ***

Partnered 1.355 1.094 1.679 7.758 0.005 **

Separated 1.233 0.970 1.568 2.938 0.086 .

Divorced 1.172 1.039 1.323 6.669 0.010 **

Separated/divorced 1.378 1.001 1.898 3.865 0.049 *

Widowed 1.061 0.956 1.178 1.253 0.263

Never married 1.385 1.145 1.676 11.223 0.001 ***

Doctor diagnosed health conditions

Psychiatric problems 1.146 1.043 1.258 8.046 0.005 **

High blood pressure 1.175 1.078 1.280 13.565 0.000 ***

Diabetes 1.396 1.284 1.518 60.843 0.000 ***

Lung disease 1.416 1.292 1.552 55.046 0.000 ***

Heart problems 1.314 1.211 1.425 43.379 0.000 ***

Stroke 1.403 1.266 1.555 41.739 0.000 ***

Arthritis 0.898 0.824 0.978 6.119 0.013 *

Health behaviour

Ever drinks alcohol 0.825 0.761 0.895 21.670 0.000 ***

Ever smoked 1.395 1.272 1.528 50.505 0.000 ***

Smokes now 1.456 1.316 1.610 53.220 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.939 1.648 2.281 63.669 0.000 ***

Overweight 0.705 0.644 0.772 57.124 0.000 ***

Obesity class I 0.533 0.464 0.613 78.606 0.000 ***

Obesity class II 0.578 0.476 0.701 30.717 0.000 ***

Obesity class III 0.692 0.551 0.867 10.222 0.001 **

Self reported health (ref: Excellent)

Very good 1.176 0.940 1.471 2.002 0.157

Good 1.515 1.215 1.888 13.635 0.000 ***
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Table 3.18: Interaction of cancer and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Fair 2.535 2.016 3.189 63.322 0.000 ***

Poor 4.522 3.570 5.726 156.719 0.000 ***

Wealth and income

Value of primary residence 0.837 0.780 0.898 24.509 0.000 ***

Doctor diagnosed health conditions

Cancer 1.826 1.538 2.169 47.070 0.000 ***

Clusters (ref: Cluster Aa)

Cluster Bb 1.240 1.091 1.410 10.859 0.001 ***

Cluster Cc 1.480 1.259 1.738 22.657 0.000 ***

Cancer × Cluster

Cancer × Cluster B 0.938 0.759 1.159 0.352 0.553

Cancer × Cluster C 0.929 0.727 1.188 0.345 0.557

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.19 reports the results from testing whether the effect of heart problems on mor-

tality odds varies by cluster whilst controlling for significant variables reported in Model

2. There is some weak evidence of an interaction between heart problems and cluster

membership.

Table 3.19: Interaction of heart problems and clusters on mortality odds fitted using
Model 2 which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1933.679 0.000 ***

Gender (ref: Female)

Male 1.509 1.390 1.639 96.239 0.000 ***

Sociodemographic

Age 1.696 1.623 1.772 557.163 0.000 ***
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Table 3.19: Interaction of heart problems and clusters on mortality odds fitted using
Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Marital status (ref: Married)

Married spouse absent 1.839 1.455 2.324 25.981 0.000 ***

Partnered 1.358 1.097 1.681 7.893 0.005 **

Separated 1.230 0.969 1.561 2.891 0.089 .

Divorced 1.171 1.038 1.321 6.625 0.010 *

Separated/divorced 1.380 1.002 1.899 3.898 0.048 *

Widowed 1.062 0.957 1.179 1.290 0.256

Never married 1.383 1.143 1.674 11.090 0.001 ***

Doctor diagnosed health conditions

Psychiatric problems 1.142 1.040 1.255 7.701 0.005 **

High blood pressure 1.180 1.083 1.286 14.367 0.000 ***

Diabetes 1.391 1.279 1.513 59.135 0.000 ***

Cancer 1.735 1.584 1.900 141.790 0.000 ***

Lung disease 1.420 1.296 1.557 55.834 0.000 ***

Stroke 1.401 1.264 1.553 41.458 0.000 ***

Arthritis 0.899 0.825 0.979 5.984 0.014 *

Health behaviour

Ever drinks alcohol 0.824 0.760 0.893 21.965 0.000 ***

Ever smoked 1.393 1.271 1.527 50.080 0.000 ***

Smokes now 1.452 1.312 1.606 52.436 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.937 1.647 2.277 63.982 0.000 ***

Overweight 0.706 0.644 0.772 57.105 0.000 ***

Obesity class I 0.536 0.467 0.616 77.014 0.000 ***

Obesity class II 0.576 0.474 0.700 30.711 0.000 ***

Obesity class III 0.690 0.549 0.867 10.180 0.001 **

Self reported health (ref: Excellent)

Very good 1.184 0.945 1.482 2.155 0.142

Good 1.525 1.220 1.906 13.738 0.000 ***

Fair 2.539 2.013 3.203 61.826 0.000 ***

Poor 4.521 3.562 5.739 153.674 0.000 ***

Wealth and income

Value of primary residence 0.838 0.780 0.899 24.358 0.000 ***

Doctor diagnosed health conditions

Heart problems 1.259 1.058 1.498 6.733 0.010 **

Clusters (ref: Cluster Aa)
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Table 3.19: Interaction of heart problems and clusters on mortality odds fitted using
Model 2 which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Cluster Bb 1.255 1.098 1.435 11.037 0.001 ***

Cluster Cc 1.319 1.109 1.570 9.734 0.002 **

Heart problems × Cluster

Heart problems × Cluster B 0.964 0.788 1.180 0.125 0.724

Heart problems × Cluster C 1.242 0.993 1.552 3.612 0.057 .

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;

Table 3.20 reports the results from testing whether the effect of age on mortality odds

varies by cluster whilst controlling for significant variables reported in Model 2. There is

some weak evidence of an interaction between age and cluster membership.

Table 3.20: Interaction of age and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2

95% CI

Term Odds ratio Lower Upper Wald p–value

Beta

Intercept 0.007 0.006 0.009 1937.44 0.000 ***

Gender (ref: Female)

Male 1.504 1.386 1.633 95.04 0.000 ***

Marital status (ref: Married)

Married spouse absent 1.850 1.466 2.336 26.77 0.000 ***

Partnered 1.359 1.097 1.683 7.89 0.005 **

Separated 1.228 0.967 1.560 2.83 0.092 .

Divorced 1.172 1.039 1.322 6.70 0.010 **

Separated/divorced 1.371 0.995 1.889 3.72 0.054 .

Widowed 1.060 0.955 1.176 1.20 0.273

Never married 1.384 1.144 1.673 11.23 0.001 ***

Doctor diagnosed health conditions

Psychiatric problems 1.147 1.045 1.260 8.31 0.004 **

High blood pressure 1.173 1.077 1.278 13.40 0.000 ***
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Table 3.20: Interaction of age and clusters on mortality odds fitted using Model 2
which excludes variables with p < 0.2 (continued)

95% CI

Term Odds ratio Lower Upper Wald p–value

Diabetes 1.393 1.281 1.515 60.40 0.000 ***

Cancer 1.731 1.582 1.895 141.75 0.000 ***

Lung disease 1.415 1.292 1.551 55.33 0.000 ***

Heart problems 1.313 1.211 1.424 43.45 0.000 ***

Stroke 1.405 1.268 1.556 42.37 0.000 ***

Arthritis 0.897 0.824 0.977 6.29 0.012 *

Health behaviour

Ever drinks alcohol 0.825 0.761 0.894 21.85 0.000 ***

Ever smoked 1.396 1.274 1.530 51.00 0.000 ***

Smokes now 1.447 1.307 1.601 51.09 0.000 ***

Body mass index (ref: Normal weight)

Underweight 1.933 1.645 2.272 63.82 0.000 ***

Overweight 0.704 0.643 0.771 57.70 0.000 ***

Obesity class I 0.534 0.464 0.613 78.22 0.000 ***

Obesity class II 0.578 0.476 0.703 30.40 0.000 ***

Obesity class III 0.695 0.554 0.872 9.91 0.002 **

Self reported health (ref: Excellent)

Very good 1.158 0.924 1.452 1.62 0.203

Good 1.480 1.184 1.851 11.82 0.001 ***

Fair 2.481 1.968 3.128 59.09 0.000 ***

Poor 4.415 3.478 5.604 148.78 0.000 ***

Wealth and income

Value of primary residence 0.837 0.780 0.898 24.63 0.000 ***

Sociodemographic

Age 1.776 1.641 1.922 202.87 0.000 ***

Clusters (ref: Cluster Aa)

Cluster Bb 1.291 1.128 1.477 13.82 0.000 ***

Cluster Cc 1.488 1.252 1.767 20.44 0.000 ***

Age × Cluster

Age × Cluster B 0.923 0.843 1.010 3.01 0.083 .

Age × Cluster C 0.979 0.883 1.086 0.16 0.689

Note: Significance levels
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1; p<1.

a Cluster A: normal, stable BMI and declining very good health;
b Cluster B: normal, stable BMI and declining fair health;
c Cluster C: high, increasing BMI and declining good health;
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Chapter 4

Modelling mortality and functional

disability risks using hidden Markov

models with covariates

Earlier versions of this chapter were presented at the following conferences and events:

• Seventeenth International Longevity Risk and Capital Markets Solutions Confer-

ence, Waterloo, Canada. “Modelling mortality risks using hidden Markov models

with covariates”, 13 September 2022.

• CEPAR Longevity Risk Workshop, Retirement Income: Risks and Solutions, Uni-

versity of New South Wales, Sydney, Australia. “Modelling mortality and functional

disability risks using hidden Markov models with covariates”, 28 November 2022.

4.1 Introduction

There is a large body of literature on the pricing of long term care products using multi-

state models. For example, Renshaw & Haberman (1995) demonstrate how to graduate

transition rates in a three state Markov Chain Monte Carlo model with recovery from

sickness in a generalised linear model (GLM) framework using United Kingdom (UK)

data (Forfar et al., 1988; Nelder & Wedderburn, 1972). An extension of this work is in

Rickayzen & Walsh (2002), where a multistate Markov chain model is used to estimate the
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number and trend of people with disabilities in the UK but the authors do not consider the

financial implications nor the uncertainty. Using United States (US) longitudinal data,

Pritchard (2006) shows that not accounting for recovery from illness in a multiple state

model tends to increase costs of long–term care. Fong et al. (2015) develop a multistate

functional disability model that has sex and age specific transition probabilities in a three

state model with recovery from disabled to nondisabled for individuals aged 50 to 100.

Hanewald et al. (2019) extend the work in Fong et al. (2015) by developing a generalised

linear model that allows for age effects, time trends and age–time interactions in a multi-

state Markov model using data from the Chinese Longitudinal Healthy Longevity Survey.

However, there is no recovery from the functionally disabled state to the non–disabled

state (healthy). Kogure et al. (2019) propose integrating Lee–Carter with additional

parameters on mortality differentials in health status using a Bayesian approach. This is

because long–term care models based on longitudinal data (Fong et al., 2015; Z. Li et al.,

2017; Shao et al., 2017; Sherris & Wei, 2021) only cover short durations and there are

gaps between survey intervals which would result in loss of information. However, their

work fails to model transitions between states.

Sherris & Wei (2021) develop a five state Markov model that includes an independent

health state to capture differences in mortality risk due to the presence of a chronic con-

dition such as diabetes and heart disease. Their results show that disregarding health

status can cause adverse selection from individuals with chronic conditions due to inaccu-

rate pricing of mortality and disability risks. However, while this is a remarkable extension

of the multistate Markov models with systematic trend and uncertainty; it fails to make

a more holistic use of the full breadth and depth of longitudinal data by neglecting the

impact of individual risk factors such as body mass index, education, wealth and income

on health status. These variables are known to have a significant impact on mortality

and morbidity as discussed in Chapter 2.4. As such, we incorporate these predictors by

fitting hidden Markov models (HMMs) with health status as the response and covariates

of body mass index (BMI) and self reported health. We then cluster the multivariate time

series using HMMs to create an indicator variable that captures the relationship between

health status and covariates and illustrates the heterogeneity of mortality risk amongst

individuals. Our motivation is that, there are variations in risk amongst people who are

in ill health and their particular dynamics need to be accounted for in longevity products
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for fairer and better management of mortality and functional disability risks.

Hidden Markov models are doubly embedded stochastic processes that are used to model

an output based on an assumption that the system being modelled is Markovian in nature

and has unobservable states. The parameters of the hidden states are determined from

the observed output. Emission probabilities are probabilities from the hidden state to the

observed state while transition probabilities describe the Markov process from one hidden

state to another. HMMs are commonly used to analyse time series and can be used to

cluster trajectories since they offer a model based clustering method that is embedded in

a probabilistic framework.

Therefore, in this paper we cluster health trajectories to place individuals with similar

mortality/morbidity risk profiles in the same groups to demonstrate heterogeneity. We

verify if this clustering improves the estimation of transition rates among the different

states of a three state Markov chain model with systematic trend and uncertainty. This

leads us to the following research questions:

1. To what extent do the clusters developed from the multivariate-time series cluster-

ing of health trajectories using HMMs with covariates, provide well developed risk

profiles that exhibit mortality heterogeneity?

2. Does clustering provide a better fit to empirical data when estimating transition

rates and life expectancy in a multistate model of health status and functional

disability while controlling for age and gender?

The rest of the chapter is structured as follows: Section 4.2 briefly describes the data

and the steps taken to clean the dataset. Section 4.3 describes the methods used to esti-

mate the hidden Markov models, cluster the trajectories and estimate multistate Markov

models. Section 4.4 provides the results of the HMMs, clustering and multistate models.

Section 4.5 is a discussion of the results and we conclude in Section 4.6.

4.2 Data

The data are from the United States Health and Retirement Study (HRS) which is con-

ducted by the University of Michigan. We use waves 4 to 13 to fit the multistate models.
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The year 1998 is the first interview year in the multistate model data. Earlier waves have

inconsistencies in survey questions pertaining to activities of daily living. This handling

of the data is similar to previous studies using this dataset (Fong et al., 2015; Z. Li et

al., 2017; Shao et al., 2017; Sherris & Wei, 2021). Waves 1 to 13 are used to estimate

the HMMs and cluster the trajectories as they have more information on health status

and the covariates. We exclude individuals who provide inappropriate responses, who fail

to respond in any wave and those who do not respond at least twice to the survey. We

also limit our sample to individuals who acquire a chronic condition. Our final sample

contains 3, 940 participants and 60, 855 observations. All individuals are at least aged 45

and are observed from 1992–2016. This is departure from previous studies because we

want to fit HMMs with a multinomial logistic regression to each individual who acquires

a chronic disease during the observation period. Table 4.1 summarises the variables used

in our analysis.

Table 4.1: Descriptions of variables extracted from the Health and Retirement Study

Variable Description

Socio–demographic

HHIDPN Person specific identifier in each household

RAGENDER Gender

RAEDUC Highest level of education

RMSTAT Marital status

HACOHORT Cohort

RABMONTH Birth month

RABYEAR Birth year

RABDATE Date of birth

RADMONTH Month of death

RADYEAR Year of death

RADDATE Date of death

Interview

RxIWEND End date of interview

RxIWENDY End year of interview

RxIWSTAT Interview status
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Table 4.1: Descriptions of variables extracted from the Health and Retirement Study
(continued)

Variable Description

Activities of daily living

RxWALKRA Some difficulty walking across room

RxDRESSA Some difficulty dressing

RxEATA Some difficulty eating

RxBEDA Some difficulty getting in and out of bed

RxTOILTA Some difficulty using the toilet

RxBATHA Some difficulty bathing or showering

Doctor diagnosed health conditions

RxDIABE Ever had diabetes

RxLUNGE Ever had lung disease

RxSTROKE Ever had a stroke

RxHEARTE Ever had heart problems

Health behaviour

RxBMI Self reported body mass index

RxSMOKEN Current smoking status

RxDRINK Ever drinks any alcohol

RxSHLT Self–reported health

Wealth and income

HAHOUS Value of primary residence

HATOTN Total non–housing wealth

HITOT Total household income

Note: x indicates the wave of the HRS dataset
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4.3 Methodology

4.3.1 Approach

We follow the procedure outlined in Ghassempour et al. (2014) to develop clusters using

hidden Markov models. We define Ti as the health trajectories for i = 1, . . . , N where N

is the number of individuals. Each Ti is a t× d matrix where d are the columns relating

to the the multivariate time series of the response and covariates (health status, BMI, self

reported health) and t are the rows relating to the number of waves, tmax = 13. Similar to

Sherris & Wei (2021), we define health status as the presence of at least one of 4 chronic

doctor diagnosed conditions (heart problems, diabetes, lung disease and stroke). This is

different from at Ghassempour et al. (2014), who consider the presence of three doctor

diagnosed conditions in their analysis. The reason for this departure is that payments in

a health and functional disability product are triggered by the onset of only one disease.

4.3.2 Hidden Markov Models

In this section we provide some background to hidden Markov models. Figure 4.1 shows

a schematic of a hidden Markov model with qT hidden states and observed output OT .

q1 q2 . . . qT

O1 O2
. . . OT

Figure 4.1: A graphical representation of a Hidden Markov Model

4.3.2.1 Principles

As described in Rabiner & Juang (1986), we assume that a Hidden Markov Model (HMM)

has Q = q1, q2, . . . , qN finite N hidden (unobserved) states and V = v1, v2, . . . , vM discrete
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set M of possible observations. The HMM is specified as λ = (A,B, π) where A = {aij}

is the matrix of state transition probabilities, aij is the probability from state qi at time

ti to state qj at time ti + 1, B = {bj(k)} is the matrix of emission probabilities, bj(k) is

the observation symbol probability in state j and π = πi, is the initial state distribution,

π is the probability of qi at t = 1. Matrices A and B are unknown. Emission probabilities

are probabilities from the hidden state to the observed state while transition probabilities

describe the Markov process from one hidden state to another. The observation sequence

O = (O1, O2, . . . , Ot) represents the outcome generated by the HMM. To solve a HMM

we need solutions to the following problems: evaluation, estimation and training.

4.3.2.2 The evaluation problem

The evaluation problem seeks a solution to compute Pr(O|λ) given an observation se-

quence. For a fixed state sequence I = i1, i2, . . . , it,

Pr(O|I, λ) = bi1(O1)bi2(O2) . . . bit(OT ). (4.1)

While

Pr(I|λ) = π11ai1i2 . . . aiT −1iT
. (4.2)

The joint probability of O and I is Pr(O, I|λ) = Pr(O|I, λ) Pr(I, λ). Therefore

Pr(O|λ) =
∑
all I

Pr(O|I, λ) Pr(I|λ)

=
∑

i1,i2,...,iT

πi1bi1(O1)ai1i2bi2(O2) . . . aiT −1iT
biTOT .

(4.3)

This means we need to make 2(T−1)NT calculations to determine Pr(O|λ) directly. Since

this is not feasible we use the forward–backward procedure to solve for Pr(O|λ) (Baum

& Eagon, 1967). The forward variable αt(i), is the probability of the partial observation

sequence until time t and state qi given the model λ,
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αt(i) = Pr(O1, O2, . . . , Ot, it = qi|λ). (4.4)

We solve for αt(i) in three steps: initialisation, induction and termination. First, initialise

the forward probabilities with the joint probability of state qi and initial observation O1,

αt(i) = πibiO1 1 ≤ i ≤ N. (4.5)

Secondly, induce αt+1(j) recursively using the initial conditions

αt+1(j) =
 N∑

i,j=1
αt(i)aij

 bj(Ot+1). (4.6)

Lastly, compute

Pr(O|λ) =
N∑

i=1
αT (i) (4.7)

to terminate the forward procedure.

4.3.2.3 The estimation problem

The second question we have to solve is what is the optimal hidden state sequence I =

i1, i2, . . . , iT given an observation sequence. That is, calculate the probability of being in

state qi at time t given the observation sequence O = O1, O2, . . . , OT and the model λ,

that is

γt(i) = Pr(it = qi|O, λ)

= Pr(O1, O2, . . . , Ot, it = qi|λ) Pr(Ot+1, Ot+2, . . . , OT , it = qi|λ)

= αt(i)βt(i)
PrO|λ

.

(4.8)

From Equation (4.8), we define the backward variable βt(i) as

βt(i) = Pr(Ot+1Ot+2 . . . OT |it = qi, λ), (4.9)
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the probability of the partial observation sequence from t+ 1 to the end T given the state

qi at time t and the model λ. We solve for βt(i) inductively.

Firstly, initialise the procedure by setting

βt(i) = 1, 1 ≤ i ≤ N. (4.10)

Secondly, compute

βt(i) =
N∑
j

aijbj(Ot+1(j)) (4.11)

for t = T − 1, T − 2, . . . , 1.

4.3.2.4 The training problem

The third problem we have to solve is finding the parameters of λ = (A,B, π) that

maximise Pr(O|λ). So we define the latent variable ξij, the probability of a path being

in state qi at time t and making a transition to state qj at time ti+1 given the observation

sequence O and the model λ as follows

ξt(i, j) = Pr(it = qi, it+1 = qj|O, λ). (4.12)

This can be written as

ξt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
Pr(O|λ)

= αt(i)aijbj(Ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(4.13)

where Pr(O|λ) is a normalisation factor. Equation (4.13) is related to Equation (4.8) by

summing ξt(i, j) over j

γt(i) =
N∑

j=1
ξt(i, j). (4.14)
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The expected number of transitions made from state qi is ∑T −1
t=1 γt(i) where γt(i) is a

latent variable. The expected number of transitions made from state qi to state qj is∑T −1
t=1 ξt(i, j). We then use the Baum–Welch algorithm to update the parameters of the

HMM until convergence. The re–estimated values of λ∗ are defined as follows:

π∗
i = γ1(i), 1 ≤ i ≤ N, (4.15)

a∗
ij =

∑T −1
t=1 ξt(i, j)∑T −1

t=1 γt(i)
(4.16)

and

b∗
j(k) =

∑T
t=1 1Ot=k

γt(j)∑T
t=1 γt(j)

. (4.17)

Figure 4.2 shows the forward, emission and backward probabilities needed to calculate

ξt(i, j) in one step of training.
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Figure 4.2: Forward, emission and backward probabilities required to calculate ξt(i, j)

Note that

max
Q

Q(λ, λ∗) ⇒ Pr(O|λ∗) > Pr(O|λ). (4.18)

4.3.2.5 Distance

HMMs allow us to define a meaningful distance measure between trajectories through the

use of probability densities that define trajectories. We use the Kullback–Leibler (KL)

Divergence to calculate the distance between trajectories (Kullback & Leibler, 1951). The

KL distance between probability densities, Pr(T |λi) and Pr(T |λj) is the distance between

the trajectories λi and λj and is defined as follows:

DKL(Pr(T |λi) ∥ Pr(T |λj)) =
∫

Pr(T |λi) log Pr(T |λi)
Pr(T |λj)

dT, (4.19)

which leads us to
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DKL(Pr(T |λi) ∥ Pr(T |λj)) ≈ 1
n

N∑
α=1

log Pr(Tα|λi)
Pr(Tα|λj)

. (4.20)

If we assume that the KL distance from Equation (4.19) is based on one data point so

that Pr(T |λi) is concentrated on the observed trajectory Ti, then

DKL(Pr(T |λi) ∥ Pr(T |λj)) ≈ log Pr(Ti|λi)
Pr(Ti|λj)

. (4.21)

This distance measure is asymmetric and we can make it symmetric as follows

DKLsym(Pr(T |λi) ∥ Pr(T |λj)) ≈ 1
2

(
DKL(Pr(T |λi) ∥ Pr(T |λj))+

DKL(Pr(T |λj) ∥ Pr(T |λi))
)
. (4.22)

This means that the KL distance is

DKLsym(Pr(T |λi) ∥ Pr(T |λj)) ≈ 1
2

(
log Pr(Ti|λi)

Pr(Ti|λj)
+ log Pr(Tj|λj)

Pr(Tj|λi)

)
, (4.23)

(see García-García et al., 2009).

For simplicity, we can combine the main principles from Equation (4.23) with Equation

(4.20) to calculate the KL distance. Firstly, we define an N-dimensional vector P̃r(λ)

which is a probability mass function that can sufficiently describe the Pr(T |λ) over the

set of N observed trajectories Ti,

Pr(T |λ) → P̃r(λ) = 1
Zλ

{
Pr(T1|λ),Pr(T2|λ), . . . ,Pr(TN |λ)

}

=
{

P̃r(T1|λ), P̃r(T2|λ), . . . , P̃r(TN |λ)
}
,

(4.24)

where Z is a normalising factor Zλ = ∑N
i=1 Pr(Ti|λ) and P̃r(Ti|λ) = 1

Z
Pr(Ti|λ). Then the

distance between HMM models λi and λj is
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DKL(λi, λj) = DKL(Pr
λi

∥ Pr
λj)

≈
N∑

i=1
P̃r(Ti|λi) log P̃r(Ti|λi)

P̃r(Ti|λj

, (4.25)

and the distance between λj and λi is

DKL(λj, λi) = DKL(Pr
λj

∥ Pr
λi)

≈
N∑

j=1
P̃r(Tj|λj) log P̃r(Tj|λj)

P̃r(Tj|λi

. (4.26)

We use the average of Equation (4.25) and Equation (4.26) to calculate the KL divergence.

4.3.3 Clustering of HMMs using k–medoids clustering

K–medoids clustering is a partitioning method (Kaufman & Rousseeuw, 1987). It works

by ensuring that the dissimilarity of objects and the nearest medoid is minimal. Dis-

similarity measures how far away two objects are from each other. One has to spec-

ify the number of medoids to initialise the algorithm. We want to find the medoids

m1,m2, . . . ,mk ⊂ {1, 2, . . . , N} that minimises the objective function

N∑
i=1

min
t,=1,2,...,k

d(i,mt). (4.27)

An object is assigned to the cluster Ci corresponding to the nearest medoid

d(i,mCi
) ≤ d(i,mw) ∀w = (1, . . . , k). (4.28)

Object i is put into cluster vi when medoid mvi
is nearer to i than any other medoid mw.

A cluster index is then used to assess the quality of clustering. There are two steps in a

k–medoids clustering, a building phase and then a swapping phase.

4.3.3.1 Algorithm

As described in Struyf et al. (1997) in the build phase, we create initial medoids where

m1 is the smallest
N∑

i=1
d(i,mt),
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and m2, . . . ,mk decreases the objective function. In the swap phase, we take all pairs of

(i, j) where i ∈ {m1,m2, . . . ,mk} and j /∈ {m1,m2, . . . ,mk} and swap i with j will to

minimise the objective function. We repeat until we reach convergence.

4.3.3.2 Sihlouette index and plot

To interpret the cluster analysis we use silhouettes to visualise the results and a sihlouette

index to quantify the quality of segmentation (Rousseeuw, 1987). We define the silhouette

index s(i) as follows:

s(i) = b(i) − a(i)
max{a(i), b(i)} − 1 ≤ s(i) ≤ 1, (4.29)

where a(i) is the average dissimilarity of i to all other objects of cluster A (intracluster

distance)

a(i) = 1
|A| − 1

∑
j∈A,j /∈i

d(i, j), (4.30)

and b(i) is the smallest average dissimilarity of i to all objects of C, that is, intercluster

distance

b(i) = min
C ̸=A

d(i, C). (4.31)

The average dissimilarity of i to all objects of any cluster C

d(i, C) = 1
|C|

∑
j∈C

d(i, j). (4.32)

If s(i) = 1 this means that the i is well clustered while s(i) = −1 means that the i is far

away from A than B. A s(i) = 0 means that the object is equally distant from A and B.

4.3.3.3 Dunn index

The Dunn index measures the level of separation and compactness of a partition (Dunn,

1973, 1974). If
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C = C1, C2, . . . , Cp,

Ci ∩ Cj = ∅ and

Ci = ∅,

(4.33)

then the Dunn index (D) is

D(p, C) = min
1≤i≤p

 min
1≤j≤p,i̸=j

 δ(Ci, Cj)
max1≤k≤p ∆(Ck)


, (4.34)

where the intercluster distance is δ(Ci, Cj) and the intracluster distance is ∆(Ck).

4.3.3.4 Davies–Bouldin index

The Davies–Bouldin index (DB) measures the similarity of clusters (Davies & Bouldin,

1979). The smallest DB value indicates the recommended number of clusters as it min-

imises the average similarity of clusters. Therefore,

DB(p, C) = 1
p

p∑
i=1

max
i̸=j

∆(Ci) + ∆(Cj)
δ(Ci, Cj)

, (4.35)

where δ(Ci, Cj) is the intercluster distance, ∆(Ci) and ∆(Cj) are the intracluster distances

of clusters Ci and Cj, respectively.

4.3.4 Extending the three state functional disability model

Following the proportional hazard specification in Z. Li et al. (2017), we model the

transition intensity type s of type s = 1, . . . , S for an individual k for k = 1, . . . , K at

time t years with

λk,s(t) = exp(βs + γ′
swk(t) + αsψ(t))Hk,s(t), (4.36)

where βs is the time invariant baseline log–intensity for transition type s, wk(t) is a vector

of the observed predictors for each individual k, ψ(t) is frailty which is a stochastic latent
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process, γs is a vector measuring the sensitivity of λk,s(t) with respect to wk(t), αs is a

scalar measuring the sensitivity of λk,s(t) with respect to ψ(t) and the baseline hazard

function for duration dependence Hk,s(t) = 1 (Koopman et al., 2008a). Figure 4.3 shows

the three state functional disability model that we will use in this analysis.

Figure 4.3: Three state functional disability model

Similar to Z. Li et al. (2017) we consider three models: a static model, a static model

with a linear time trend, and a frailty model with time trend. However, we compare all

the models under 2 cases, one with clustering and another without. The conversion of

the calendar year to time is presented in Table 4.2.

For the static model, the transition rate λk,s(t) is assumed to be dependent on age and

sex only:

ln λk,s = βs + γage
s xk(t) + γfemale

s Fk

ln λk,s = βs + γage
s xk(t) + γfemale

s Fk + γcluster
s Ck

(4.37)

where βs is the time invariant baseline log–intensity for transition type s, xk(t) is the kth

individual’s age at time t, Fk is the binary variable indicating the gender for the individual

k, Ck is the categorical variable indicating the cluster for the individual k, γage
s measures

the sensitivity of ln λk,s(t) with respect to age and γcluster
s measures the sensitivity of

ln λk,s(t) with respect to cluster αs is a scalar measuring the sensitivity of ln λk,s(t) with

respect to sex.
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For the model with systematic trend,

ln λk,s = βs + γage
s xk(t) + γfemale

s Fk + ϕtime
s t

ln λk,s = βs + γage
s xk(t) + γfemale

s Fk + ϕtime
s t+ γcluster

s Ck,
(4.38)

where ϕs measures the sensitivity of ln λk,s(t) with respect to the time trend t.

For the model with systematic trend and uncertainty,

ln λk,s = βs + γage
s xk(t) + γfemale

s Fk + ϕtime
s t+ αsψi

ln λk,s = βs + γage
s xk(t) + γfemale

s Fk + +ϕtime
s t+ αsψi + γcluster

s Ck

(4.39)

where αs measures the sensitivity of ln λk,s(t) with respect to the latent factor ψ that is

modelled as a random walk,

ψj = ψj−1 + ϵj, ϵj ∼ N(0, σ2), ψ0 = 0 and σ2 = tj − tj−1. (4.40)

We estimate the transition rates using code developed in Fu et al. (2021) that is available

at Functional Disability China US. We make some adjustments to allow the incorporation

of clusters.
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Table 4.2: Conversion of calendar year to time for HRS

Year Time

1998–1999 1

2000–2001 3

2002–2003 5

2004–2005 7

2006–2007 9

2008–2009 11

2010–2011 13

2012–2013 15

2014–2015 17

2016–2017 19

4.4 Results

We now provide the results. Table 4.3 shows the cluster quality assessment across 3 indices

where the response is the presence of any one of the four chronic diseases and BMI as

the covariate. Table 4.4 shows the cluster quality assessment across 3 indices where the

response is the presence of any one of the four chronic diseases and the covariates are BMI

and self–reported health. Optimal cluster solution minimises the Davies Bouldin Index

(a measure of similiarity of the clusters) and maximises both the Sihlouette and Dunn

indices. The Sihlouette index quantifies the quality of segmentation while the Dunn index

is a measure of compactness and separation of a cluster. However, there is no consensus

amongst the different criteria as shown in the Table 4.3 and 4.4. The following results are

based on opting for a 3 cluster solution from Table 4.4.
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Table 4.3: Cluster quality assessment with BMI as the only covariate

Clusters Sihlouette Dunn Davies Bouldin

2 0.744 0.019 0.394

3 0.519 0.019 0.962

4 0.646 0.051 0.560

5 0.655 0.026 0.590

6 0.591 0.024 0.721

7 0.558 0.016 0.797

8 0.416 0.003 0.893

9 0.426 0.003 0.819

10 0.423 0.006 0.835

Table 4.4: Cluster quality assessment with covariates of BMI and self reported health
status

Clusters Sihlouette Dunn Davies Bouldin

2 0.352 0.015 0.935

3 0.449 0.017 1.005

4 0.617 0.014 0.653

5 0.644 0.012 0.686

6 0.703 0.018 0.570

7 0.746 0.033 0.517

8 0.763 0.023 0.489

9 0.784 0.018 0.408

10 0.675 0.018 0.542

4.4.1 Cluster profiles

We summarise the characteristics of the individuals in each cluster using information

from the first wave in Table 4.5. Age wise, individuals in Cluster 2 are slightly younger

than all the other clusters. Individuals in Cluster 3 own homes with the largest values,
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have the highest household income and have the highest proportion of individuals who

graduated from college. All clusters have more males than females. Cluster 1 has the

lowest proportion of people in excellent or very good health and the highest proportion

of people who are obese. Individuals in Cluster 2 generally have mean proportions or

values close to the Overall (model with no clusters).

Table 4.5: Baseline summary statistics for wave 1 in 1992 using three clusters
estimated from hidden Markov models with covariates of BMI and self reported health

Description Cluster 1 Cluster 2 Cluster 3 Overalla

Socio–demographic

Year of birth 1934 1935 1934 1935

Wealth and income

Value of primary residence $69,258 $71,320 $71,911 $71,074

Total non-housing wealth $106,968 $120,069 $109,048 $115,193

Total household income $40,469 $37,842 $41,771 $39,205

Education

Lt High-schoolb 33.01% 35.94% 29.37% 33.93%

GEDc 8.74% 5.41% 6.35% 6.23%

High School Graduate 24.27% 32.33% 30.56% 30.45%

Some college 22.33% 15.64% 18.65% 17.54%

College and above 11.65% 10.68% 15.08% 11.84%

Gender

Male 55.83% 55.64% 57.54% 56.10%

Female 44.17% 44.36% 42.46% 43.90%

Body mass index

Underweight 0.49% 0.90% 0.79% 0.80%

Normal weight 24.76% 25.56% 26.59% 25.65%

Overweight 47.57% 50.68% 54.76% 51.02%

Obese 27.18% 22.86% 17.86% 22.53%

Health behaviour

Ever drinks 58.25% 61.05% 59.52% 60.20%

Marital status

Married 72.82% 73.38% 78.57% 74.44%

Married, spouse absent 0.49% 0.45% 0.00% 0.36%

Partnered 4.37% 3.46% 3.57% 3.65%
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Table 4.5: Baseline summary statistics for wave 1 in 1992 using three clusters estimated
from hidden Markov models with covariates of BMI and self reported health (continued)

Description Cluster 1 Cluster 2 Cluster 3 Overalla

Separated 1.46% 2.41% 2.38% 2.23%

Divorced 10.19% 10.98% 10.71% 10.77%

Widowed 5.83% 6.47% 3.97% 5.79%

Never married 4.85% 2.86% 0.79% 2.76%

Self reported health

Excellent 9.22% 14.44% 27.38% 16.38%

Very good 24.27% 28.72% 31.75% 28.58%

Good 49.51% 32.63% 25.40% 34.11%

Fair 13.11% 16.84% 13.10% 15.32%

Poor 3.88% 7.37% 2.38% 5.61%

Smoking status

Current smoker 41.75% 44.81% 40.08% 43.19%

a Overall represents the model with no clusters;
b Lt-High school means left high school without graduation
c GED means graduated high school by taking a General Education Development Test.

4.4.2 Multistate model results

Table 4.6 presents the estimated parameters for the static model specified in Equation

(4.37). Disability rates (H→F) increase with age and females are more likely to

become disabled than males. Recovery rates (F→H) decrease with age and females are

more likely to recover. Mortality rates (H→D,F→D) increase with age and females

tend to live longer than males. All these findings corroborate results from earlier

studies (Fong et al., 2015; Z. Li et al., 2017; Shao et al., 2017; Sherris & Wei, 2021).

However, the size of the coefficients for functional disability and mortality for the

functionally disabled are smaller than those reported in Fu et al. (2021). This could

be due to the size of our sample. Table 4.7 reports the estimated parameters for the

static model with clustering. We find that the functional disability rates from the

healthy state decrease with clustering. By contrast, while the transition rates from the

functionally disabled to the healthy state vary with clustering, this effect is not significant.
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Table 4.8 reports the estimated parameters for the trend model specified in Equation

(4.38). Functional disability rates and mortality rates increase with time. This is in

contrast to Fu et al. (2021), where disability rates and mortality rates decrease with time.

However, this effect of time is very significant (p < 0.01), highlighting that individuals

who acquire chronic diseases tend to deteriorate with time. Another anomaly is that

females are less likely to recover from disability than males as shown by the negative

coefficient. Nevertheless, this effect is not significant.

Table 4.9 shows the estimated parameters for the trend model with clustering. We note

that individuals in Cluster 3 are more likely to recover from disability than those in

Cluster 1 while individuals in Cluster 2 are less likely to recover from disability than

those in Cluster 1. Belonging to Clusters 2 and 3 results in lower chance of becoming

functionally disabled when compared to Cluster 1. Individuals in Cluster 2 have higher

mortality rates than individuals in Cluster 1 while individuals in Cluster 3 have lower

mortality rates from the functionally disabled state than those in Cluster 1.

Table 4.10 shows the estimated parameters for the frailty model specified in Equation

(4.39). Functional disability and mortality rates have significant systematic uncertainty.

Fu et al. (2021) show than only the functional disability rates have significant uncertainty

and the size of the stochastic frailty factor is close to zero for all other transitions. This is

likely due to the notion that the risk profiles of the samples used to estimate the models

are very different. Table 4.11 shows the estimated parameters for the frailty model with

clustering. All parameters exhibit similar behaviour to the trend model with clustering.

However, there is greater uncertainty in disability, mortality and recovery rates.
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Table 4.6: Static model without clustering: estimated parameters with standard errors
in parentheses

Transition H→F F→H H→D F→D

s 1 2 3 4

β̂s -3.6100 ∗∗∗ -2.0366 ∗∗∗ -3.4748 ∗∗∗ -2.2359 ∗∗∗

(0.0603) (0.0879) (0.0587) (0.0756)

γ̂age
s 0.5081 ∗∗∗ -0.3927 ∗∗∗ 0.6377 ∗∗∗ 0.4537 ∗∗∗

(0.0311) (0.0442) (0.0318) (0.0332)

γ̂female
s 0.3147 ∗∗∗ 0.0226 -0.2470 ∗∗∗ -0.2952 ∗∗∗

(0.0567) (0.0977) (0.0548) (0.0616)

Log likelihood -14,361

Note: Age covariate is calculated using age last birthday.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 4.7: Static model with clustering: estimated parameters with standard errors in
parentheses

Transition H→F F→H H→D F→D

s 1 2 3 4

β̂s -3.2831 ∗∗∗ -2.0241 ∗∗∗ -3.6716 ∗∗∗ -2.2016 ∗∗∗

(0.1070) (0.1687) (0.1324) (0.1197)

γ̂age
s 0.5088 ∗∗∗ -0.3896 ∗∗∗ 0.6327 ∗∗∗ 0.4497 ∗∗∗

(0.0312) (0.0444) (0.0319) (0.0333)

γ̂female
s 0.3022 ∗∗∗ 0.0193 -0.2282 ∗∗∗ -0.2942 ∗∗∗

(0.0569) (0.0977) (0.0550) (0.0617)

γ̂cluster2
s -0.2905 ∗∗∗ -0.1123 0.4760 ∗∗∗ 0.0563

(0.1065) (0.1795) (0.1302) (0.1120)

γ̂cluster3
s -0.3677 ∗∗∗ 0.0198 0.0950 -0.0705

(0.0965) (0.1610) (0.1254) (0.1053)

Log likelihood -14,330

Note: Age covariate is calculated using age last birthday.
‡ Reference level for Cluster 2 and Cluster 3 is Cluster 1;
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table 4.8: Trend model without clustering: estimated parameters with standard errors
in parentheses

Transition H→F F→H H→D F→D

s 1 2 3 4

β̂s -3.7414 ∗∗∗ -1.4331 ∗∗∗ -5.1971 ∗∗∗ -3.1831 ∗∗∗

(0.0709) (0.1065) (0.0880) (0.1015)

γ̂age
s 0.4776 ∗∗∗ -0.2905 ∗∗∗ 0.3114 ∗∗∗ 0.3580 ∗∗∗

(0.0322) (0.0448) (0.0328) (0.0342)

γ̂female
s 0.3266 ∗∗∗ -0.0301 -0.1302 ∗∗ -0.2115 ∗∗∗

(0.0567) (0.0983) (0.0546) (0.0619)

γ̂time
s 0.2352 ∗∗∗ -0.9571 ∗∗∗ 2.3323 ∗∗∗ 1.0764 ∗∗∗

(0.0643) (0.1117) (0.0674) (0.0681)

Log likelihood -13,525

Note: Age covariate is calculated using age last birthday.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 4.9: Trend model with clustering: estimated parameters with standard errors in
parentheses

Transition H→F F→H H→D F→D

s 1 2 3 4

β̂s -3.4226 ∗∗∗ -1.4370 ∗∗∗ -5.5091 ∗∗∗ -3.1672 ∗∗∗

(0.1135) (0.1778) (0.1479) (0.1369)

γ̂age
s 0.4773 ∗∗∗ -0.2712 ∗∗∗ 0.3140 ∗∗∗ 0.3418 ∗∗∗

(0.0322) (0.0455) (0.0326) (0.0343)

γ̂female
s 0.3158 ∗∗∗ -0.0433 -0.1035 ∗ -0.2039 ∗∗∗

(0.0570) (0.0984) (0.0547) (0.0620)

γ̂cluster2
s -0.2697 ∗∗ -0.1973 0.6893 ∗∗∗ 0.1878 ∗

(0.1066) (0.1799) (0.1300) (0.1121)

γ̂cluster3
s -0.3712 ∗∗∗ 0.1230 0.0998 -0.1989 ∗

(0.0965) (0.1614) (0.1253) (0.1054)

γ̂time
s 0.2433 ∗∗∗ -1.0182 ∗∗∗ 2.3758 ∗∗∗ 1.1561 ∗∗∗

(0.0646) (0.1141) (0.0672) (0.0692)

Log likelihood -13,450

Note: Age covariate is calculated using age last birthday.
‡ Reference level for Cluster 2 and Cluster 3 is Cluster 1;
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table 4.10: Frailty model without clustering: estimated parameters with standard
errors in parentheses

Transition H→F F→H H→D F→D

s 1 2 3 4

β̂s -3.6783 ∗∗∗ -1.3683 ∗∗∗ -5.2663 ∗∗∗ -3.2166 ∗∗∗

(0.0749) (0.1157) (0.0858) (0.1000)

γ̂age
s 0.4774 ∗∗∗ -0.2907 ∗∗∗ 0.3153 ∗∗∗ 0.3494 ∗∗∗

(0.0322) (0.0449) (0.0328) (0.0341)

γ̂female
s 0.3276 ∗∗∗ -0.0318 -0.1353 ∗∗ -0.2057 ∗∗∗

(0.0567) (0.0983) (0.0547) (0.0619)

γ̂time
s 0.1268 -1.0671 ∗∗∗ 2.4808 ∗∗∗ 1.1786 ∗∗∗

(0.0775) (0.1368) (0.0672) (0.0696)

α̂s -0.0741 ∗∗ -0.0745 0.1799 ∗∗∗ 0.1190 ∗∗∗

(0.0288) (0.0521) (0.0246) (0.0263)

Log likelihood -13,485

Note: Age covariate is calculated using age last birthday.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table 4.11: Frailty model with clustering: estimated parameters with standard errors
in parentheses

Transition H→F F→H H→D F→D

s 1 2 3 4

β̂s -3.1092 ∗∗∗ -1.1362 ∗∗∗ -5.5344 ∗∗∗ -3.2034 ∗∗∗

(0.1314) (0.2213) (0.1444) (0.1343)

γ̂age
s 0.4748 ∗∗∗ -0.2706 ∗∗∗ 0.3209 ∗∗∗ 0.3311 ∗∗∗

(0.0322) (0.0455) (0.0326) (0.0341)

γ̂female
s 0.3159 ∗∗∗ -0.0424 -0.1083 ∗∗ -0.1984 ∗∗∗

(0.0570) (0.0984) (0.0547) (0.0620)

γ̂cluster2
s -0.2660 ∗∗ -0.1985 0.6799 ∗∗∗ 0.1899 ∗

(0.1066) (0.1799) (0.1301) (0.1121)

γ̂cluster3
s -0.3684 ∗∗∗ 0.1175 0.0935 -0.1824 ∗

(0.0965) (0.1615) (0.1253) (0.1055)

γ̂time
s -0.0183 -1.2712 ∗∗∗ 2.2852 ∗∗∗ 1.1142 ∗∗∗

(0.0888) (0.1655) (0.0624) (0.0658)

α̂s -0.1827 ∗∗∗ -0.1652 ∗∗ 0.1953 ∗∗∗ 0.1321 ∗∗∗

(0.0362) (0.0700) (0.0215) (0.0229)

Log likelihood -13,382

Note: Age covariate is calculated using age last birthday.
‡ Reference level for Cluster 2 and Cluster 3 is Cluster 1;
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

4.4.3 Model performance

Table 4.12 show the AIC and BIC for the static, trend and frailty models. We note that

trend and frailty models with clustering have a better fit than those without clustering as

shown by the smaller values of AIC and BIC. The frailty model with clustering has the

best fit. We cannot say which of the static models performs the best since the AIC and

BIC are not in consensus. However, the static model has the worst fit amongst all of the

models. The model selection criteria are calculated as follows:

AIC = 2κ− 2 ln L̂, BIC = κ lnn− 2 ln L̂,
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where κ is the number of estimated parameters in the model, L̂ is the maximum likelihood

of the model and n is the number of observations used to fit the model.

Table 4.12: Model selection using Akaike information criterion (AIC) and Bayesian
information criterion (AIC)

No Clustering Clustering

Model AIC BIC AIC BIC

Static 28,745 28,850 28,700 28,874

Trend 27,082 27,222 26,947 27,156

Frailty 27,010 27,184 26,819 27,063

Table 4.13 presents the results of the likelihood tests. The null model is the model

without the clustering variable. All p–values are close to zero and this suggests that

there is very strong evidence to reject the null models in favor of the alternative mod-

els. The likelihood tests also confirm that the static model does not provide a good fit

to the empirical data. The frailty model with clustering outperforms all the other models.

Table 4.13: Likelihood tests for models with and without clustering

Null model Alternative model p–Value Chi–square Symbol1

Static Static with Clustering 2.8842e-10 61.1 ***

Trend Trend with Clustering 0.0000e+00 150.9 ***

Frailty Frailty with Clustering 0.0000e+00 206.4 ***

Static with Clustering Trend with Clustering 0.0000e+00 1760.6 ***

Trend with Clustering Frailty with Clustering 0.0000e+00 136.2 ***
1 Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

4.4.4 Future lifetime statistics

Table 4.14 shows the future lifetime statistics for healthy 65 year old individuals across

different clusters and the model with no clusters using simulated results from the esti-
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mated static parameters in Tables 4.6 and 4.7. The overall mean life expectancy for males

and females is 14.62 years and 13.17 years, respectively. This is lower than the values

(20.17 years and 17.69 years) calculated in Fu et al. (2021), showing that the sample in

this analysis is negatively skewed towards individuals with lower life expectancy. This

makes sense since we focus on people with chronic diseases and these individuals are

likely to have a lower life expectancy overall. However, even amongst these individuals

with various health issues, we observe heterogeneity in life expectancy, healthy life

expectancy, the onset of disability and the proportion of years spent in a healthy state.

Cluster 3 has the most favourable future lifetime statistics and Cluster 1 has the worst

mortality experience. People in Cluster 2 have lower life expectancy and healthier life

expectancy than the overall model. The mean life expectancy for the model with no clus-

ters for healthy 75 year olds is 9.81 years and 8.68 years for males and females, respectively.

Table 4.15 presents the future lifetime statistics for healthy 65 year old individuals starting

in 1998 across different clusters and the model with no clusters using simulated results

from the estimated trend models in Tables 4.8 and 4.9. The overall mean life expectancy

for males and females is 12.33 years and 11.94 years, respectively. These values are less

than those reported using the static model because the static model fails to capture the

mortality deterioration in the sample. Regardless, we notice significant heterogeneity in

the longevity and morbidity experience across clusters. Cluster 3 outperforms all the

clusters and the model with no clusters in life expectancy and healthy life expectancy.

Cluster 2 has the lowest life expectancy for both males and females while Cluster 1 has the

lowest HLE/TLE ratio (Healthy Life Expectancy/Total Life Expectancy). Individuals in

Cluster 1 spend more time disabled than others because they tend not to recover from

disability when compared to other clusters. They also tend have an earlier disability

onset. Females spend more years disabled than males across clusters. Table 4.18 shows

results analogous to the results for 65–year olds but for 75–year olds.
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Table 4.14: Static model with clustering: Future lifetime statistics for healthy 65–year
old males and females across clusters

Cluster 1 Cluster 2 Cluster 3 Overalla

Female Male Female Male Female Male Female Male

Total future lifetime

Mean 12.823 11.362 13.952 12.451 15.146 13.578 14.624 13.174

Standard error 0.078 0.072 0.083 0.077 0.088 0.082 0.086 0.080

Standard deviation 7.844 7.214 8.314 7.728 8.761 8.228 8.558 8.044

Healthy future lifetime

Mean 9.881 9.630 10.963 10.684 12.136 11.809 11.636 11.379

Standard error 0.066 0.066 0.071 0.071 0.076 0.076 0.074 0.074

Standard deviation 6.622 6.586 7.121 7.109 7.636 7.638 7.413 7.441

Disabled future lifetime

Mean 2.942 1.732 2.989 1.768 3.010 1.769 2.988 1.795

Standard error 0.043 0.032 0.043 0.032 0.044 0.032 0.043 0.032

Standard deviation 4.264 3.148 4.340 3.191 4.380 3.185 4.342 3.222

Healthy future lifetime over total future lifetime

Mean 0.804 0.867 0.816 0.875 0.827 0.883 0.822 0.879

Standard error 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Standard deviation 0.253 0.223 0.242 0.212 0.231 0.201 0.236 0.206

Age at onset of disability conditional on becoming disabled

Mean 74.446 74.353 75.300 75.233 76.285 76.403 75.831 75.952

Standard error 0.086 0.099 0.092 0.108 0.100 0.117 0.096 0.113

Standard deviation 6.274 6.193 6.724 6.730 7.257 7.320 7.010 7.101

Note: Simulation results for 10,000 individuals with maximal age of 110 years.
a Overall represents the model with no clusters.
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Table 4.15: Trend model with clustering: Future lifetime statistics for healthy 65–year
old males and females across clusters in 1998

Cluster 1 Cluster 2 Cluster 3 Overalla

Female Male Female Male Female Male Female Male

Total future lifetime

Mean 12.503 12.272 10.881 10.553 12.837 12.515 12.328 11.938

Standard error 0.044 0.043 0.042 0.040 0.044 0.043 0.044 0.043

Standard deviation 4.412 4.328 4.151 4.017 4.428 4.307 4.425 4.314

Healthy future lifetime

Mean 9.818 10.455 9.063 9.354 10.710 11.092 10.224 10.546

Standard error 0.047 0.047 0.042 0.042 0.046 0.045 0.045 0.045

Standard deviation 4.656 4.660 4.219 4.148 4.609 4.530 4.536 4.462

Disabled future lifetime

Mean 2.685 1.817 1.818 1.199 2.127 1.423 2.104 1.393

Standard error 0.035 0.029 0.030 0.024 0.034 0.027 0.033 0.027

Standard deviation 3.484 2.860 3.002 2.407 3.359 2.732 3.307 2.673

Healthy future lifetime over total future lifetime

Mean 0.792 0.851 0.846 0.892 0.844 0.890 0.841 0.888

Standard error 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Standard deviation 0.254 0.226 0.240 0.208 0.233 0.202 0.236 0.205

Age at onset of disability conditional on becoming disabled

Mean 73.116 73.350 72.531 72.622 73.506 73.657 73.298 73.403

Standard error 0.058 0.066 0.062 0.072 0.068 0.078 0.066 0.076

Standard deviation 4.390 4.444 3.959 3.994 4.507 4.510 4.428 4.393

Note: Simulation results for 10,000 individuals with maximal age of 110 years.
a Overall represents the model with no clusters.

Table 4.16 shows the future lifetime statistics for healthy 65 year old individuals starting

in 1998 across different clusters and the model with no clusters using simulated results

from the estimated frailty parameters in Tables 4.10 and 4.11. The overall mean life

expectancy for males and females is 12.11 years and 11.71 years, respectively. These

values are slightly lower than the values from the 1998 trend model. As observed earlier,

Cluster 3 has the highest life expectancy, healthy life expectancy and age at onset of

disability. Cluster 1 has the worst mortality experience and greatest number of years

spent in disability. Males spend most of their future lifetime healthy while females

spend a lesser proportion healthy. This is true across clusters with Cluster 2 having

a longevity and morbidity experience quite similar to the overall cluster. We observe
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similar results when we simulate healthy 75–year olds. The results are shown in Table 4.19.

Table 4.16: Frailty model with clustering: Future lifetime statistics for healthy 65–year
old males and females across clusters in 1998

Cluster 1 Cluster 2 Cluster 3 Overalla

Female Male Female Male Female Male Female Male

Total future lifetime

Mean 12.803 12.555 11.217 10.878 13.248 12.889 12.110 11.713

Standard error 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.001

Standard deviation 4.655 4.520 4.352 4.206 4.678 4.526 4.282 4.144

Healthy future lifetime

Mean 9.468 10.168 8.844 9.236 10.483 10.952 10.000 10.302

Standard error 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001

Standard deviation 4.569 4.607 4.220 4.196 4.574 4.549 4.396 4.312

Disabled future lifetime

Mean 3.335 2.387 2.374 1.641 2.765 1.936 2.110 1.411

Standard error 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Standard deviation 3.719 3.124 3.297 2.690 3.611 2.981 3.211 2.606

Healthy future lifetime over total future lifetime

Mean 0.758 0.821 0.814 0.865 0.814 0.864 0.841 0.888

Standard error 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Standard deviation 0.255 0.230 0.248 0.217 0.235 0.208 0.234 0.204

Age at onset of disability conditional on becoming disabled

Mean 72.484 72.884 72.076 72.279 73.077 73.333 72.962 73.049

Standard error 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Standard deviation 4.265 4.354 3.902 3.918 4.427 4.463 4.252 4.219

Note: Simulation results for 10,000 individuals with maximal age of 110 years.
a Overall represents the model with no clusters.
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Table 4.17: Comparison of future lifetime statistics for healthy 65–year old males and
females across clusters using trend and frailty models

Cluster 1a Cluster 2b Cluster 3c

Change Female Male Female Male Female Male

Trend in 1998

Total future lifetime 101.42% 102.79% 88.26% 88.40% 104.13% 104.83%

Healthy future lifetime 96.03% 99.14% 88.64% 88.70% 104.76% 105.19%

Disabled future lifetime 127.60% 130.47% 86.40% 86.06% 101.10% 102.15%

Age at onset of disability 99.75% 99.93% 98.95% 98.94% 100.28% 100.35%

Frailty in 1998

Total future lifetime 105.72% 107.19% 92.63% 92.87% 109.40% 110.03%

Healthy future lifetime 94.68% 98.70% 88.44% 89.65% 104.83% 106.31%

Disabled future lifetime 158.09% 169.24% 112.53% 116.35% 131.08% 137.27%

Age at onset of disability 99.35% 99.78% 98.79% 98.95% 100.16% 100.39%

Note: Age at onset of disability is conditional on becoming disabled.
a Percentage difference in future lifetime betweeen Cluster 1 and model with no clusters of the same sex;
b Percentage difference in future lifetime betweeen Cluster 2 and model with no clusters of the same sex;
c Percentage difference in future lifetime betweeen Cluster 3 and model with no clusters of the same sex.

Table 4.17 shows comparisons of future lifetime statistics across the three clusters. All the

clusters are compared to the relevant model with no clusters. We find differences in mean

life expectancy and healthy life expectancy. Individuals in Cluster 3 have the highest

total future lifetime, healthy future lifetime and age at onset of disability conditional

on being disabled for trend and frailty models. Individuals in Cluster 2 have the lowest

total future lifetime and healthy future lifetime. They also experience disability earlier

than all other groups. Cluster 1 generally experiences better life expectancy than Cluster

2 but worse experience than Cluster 3. In terms of disability, Cluster 1 spends the

largest amount of time disabled while Cluster 3 spends the least. The results in Table

4.20 are similar to those in Table 4.17 except that they are for healthy individuals aged 75.

4.4.5 Survival curves of trend and frailty models

Figures 4.4 and 4.5 illustrate the survival curves of the trend and frailty models for

the models excluding clusters and including clusters, respectively. As expected, healthy
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females in 1998 have higher survival probabilities and more uncertainty than males at

ages 65 and 75. Amongst all the clusters we note that there is great overlap between the

male and female survival confidence intervals even though females slightly outlive males.

Figure 4.6 presents the probability of being disabled for healthy males and females across

clusters at age 65. Females are generally more likely to be disabled than males. However,

we note that individuals in Cluster 1 are more likely to become disabled earlier than

individuals in Clusters 2 and 3. The bell curve is due to the fact that as time increases,

mortality deterioration exceeds the impact of disability. Note that the sample is includes

very sick individuals who have relatively low longevity prospects than average.
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(d) Healthy 75–year old male

Figure 4.4: Survival curves of trend and frailty models for healthy 65 and 75 year old
males and females for the case with no clusters in 1998
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Figure 4.5: Survival curves of trend and frailty models across clusters in 1998 for
healthy 65 year old males and females
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Figure 4.6: Probability of being disabled for healthy males and females aged 65 using
trend and frailty models across clusters in 1998

115



Chapter 4. Modelling risks using hidden Markov models with covariates

4.5 Discussion

4.5.1 Summary of key findings

The main aim of this work is to develop better risk profiling techniques using longitudinal

individual level data from other determinants of mortality and morbidity beyond age and

gender. We introduce hidden Markov models with covariates as a novel way of develop-

ing mortality/morbidity risk profiles through the construction of health trajectories for

individuals over their lifetime. This allows us to leverage a machine learning clustering

technique with a statistically robust multistate Markov model. Secondly, we evaluate

whether clustering improves the results from a traditional three state functional disability

Markov model fitted using the United States Health and Retirement Study.

We find that models with clusters provide a better fit to the empirical data. However,

the static model provides a poor fit and this is likely due to its inability to capture the

deterioration in mortality and morbidity over time. Trend and frailty models are able to

capture this effect with the frailty model with clustering outperforming all models. We also

find evidence of three clusters with varying mortality and disability experience. Cluster

2 has the lowest longevity prospects while Cluster 3 has the best mortality experience.

This is likely due to higher levels of generally good health and lower obesity. Individuals

in Clusters 1 and 2 have higher than average obesity levels and lower rates of education

at college level. Cluster 2 also has the highest levels of current smokers and people who

drink alcohol, which might contribute to the high mortality levels. All these negative

health behaviours were reported to increase mortality risk in Chapter 2.4. It is important

to note that the combined use of hidden Markov models and k–medoids clustering allows

us to delineate differences in education, wealth and income amongst clusters even though

these variables were not used in estimating the HMMs.

4.5.2 Contributions

Other studies in the actuarial literature mostly focus on age effects (Fong et al., 2015),

age and time interactions (Aro et al., 2014; Hanewald et al., 2019) or health status

(Sherris & Wei, 2021). However, there is not much work linking health status with its

driving factors such as BMI, income or self reported health. It is important to incorporate
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health status as a function of its drivers because there are varying levels of mortality and

functional disability risks associated with these determinants of mortality and morbidity.

These differences need to be accurately priced to enable better management and design

of longevity risk and critical illness products. In this chapter, we extend the literature by

linking health status with BMI and self reported health.

We use hidden Markov models and k–medoids clustering to determine clusters that demon-

strate varying life and healthy life expectancy. Hidden Markov models are used because

they allow us to calculate a meaningful distance measure (Kullback–Leibler Divergence)

between trajectories. HMMs can also handle covariates that are either categorical or con-

tinuous in nature. K–medoids clustering is a simple partitioning algorithm that is more

interpretable than k–means clustering because its medoids are representative of individ-

uals that exist in the clusters.

Additionally, we are unaware of studies that specifically focus on people who acquire at

least one chronic illness throughout their lifetime. Focussing on these individuals allows us

to report varying levels of mortality risk and other socioeconomic characteristics that are

specific to those who acquire chronic conditions. Isolating these effects would be masked

or dampened where we to study a larger population. Other three state Markov studies

using both Chinese and US data do not highlight these differences (Fu et al., 2021; Z. Li

et al., 2017). Although Q. Wang et al. (2022) use a combined neural network and GLM

to incorporate other predictors beyond age, gender and time such as marital status and

current smoking behaviour. They do not consider clustering which can show patterns

amongst different predictors instead of relying on single variables.

4.5.3 Limitations and future work

While hidden Markov models are very robust, it is quite challenging to use them when

the sample size is very large. Even with our relative small sample size, it takes more than

12 hours to compute the likelihood of the dataset with more than 17 million observations

in the likelihood matrix. More time is also needed to calculate the distance matrix and

perform the clustering. Hence, multiple solutions can be considered to deal with the high

dimensionality and the increasing computational power needed to estimate HMMs such

as penalised HMMs, hidden Markov neural networks and recursive multinomial approxi-
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mations (Rimella, 2021; Städler & Mukherjee, 2013). Future work will consider some of

these strategies.

One limitation of this study is that when we compare Chapters 3 and 4, we note that

k–means clustering for longitudinal data is more adept at handling missing values than

HMMs. With HMMs, one cannot compute the likelihood when there are missing values

unless they choose to ignore the missing data. However, more robust HMMs that can

handle missing data could be explored but were not available due to ease of implementa-

tion and time constraints at the time of completion of this study (Chassan & Concordet,

2023; Pandolfi et al., 2023).

We have only considered the impact of BMI and self reported health in this chapter.

However, HMMs have the capability to incorporate more covariates whether the variables

are categorical or continuous in nature. In the future we will consider other predictors

and determine whether this has an effect on the clusters produced.

4.6 Conclusion

Multivariate trajectories of BMI and self–reported health estimated using hidden Markov

models are able to capture mortality differences amongst different segments. The more

the covariates used the better the segmentation. We find that clustering provides a better

fit to empirical data than results not based on clustering. Frailty models had the best

performance while static models had the worst fit. We use likelihood tests and compare

AIC and BIC to confirm the differences in models. One limitation is the small sample

size used in this analysis which affects the estimation of transition rates. Future work will

look at pricing implications and a larger sample size.
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Appendix

4.A Simulated future lifetime statistics for healthy

75–year olds using trend and frailty models

Table 4.18: Trend: Future lifetime statistics for healthy 75–year old males and females
in 1998 across clusters

Cluster 1 Cluster 2 Cluster 3 Overalla

Female Male Female Male Female Male Female Male

Total future lifetime

Mean 10.782 10.633 9.464 9.196 11.336 11.070 10.782 10.482

Standard error 0.042 0.041 0.039 0.038 0.043 0.041 0.042 0.041

Standard deviation 4.212 4.112 3.909 3.800 4.278 4.143 4.212 4.095

Healthy future lifetime

Mean 7.795 8.497 7.439 7.845 8.747 9.307 8.342 8.817

Standard error 0.043 0.044 0.040 0.040 0.043 0.044 0.043 0.043

Standard deviation 4.281 4.366 3.952 3.948 4.343 4.346 4.273 4.254

Disabled future lifetime

Mean 2.987 2.136 2.025 1.351 2.589 1.763 2.441 1.666

Standard error 0.034 0.029 0.029 0.024 0.034 0.028 0.033 0.027

Standard deviation 3.359 2.857 2.934 2.385 3.417 2.801 3.259 2.682

Healthy future lifetime over total future lifetime

Mean 0.729 0.797 0.799 0.858 0.784 0.845 0.785 0.845

Standard error 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002

Standard deviation 0.278 0.255 0.269 0.237 0.264 0.234 0.266 0.236

Age at onset of disability conditional on becoming disabled

Mean 81.895 82.264 81.478 81.539 82.433 82.659 82.138 82.346

Standard error 0.048 0.054 0.051 0.058 0.055 0.062 0.054 0.060

Standard deviation 3.943 4.030 3.597 3.553 4.095 4.098 3.957 3.920

Note: Simulation results for 10,000 individuals with maximal age of 110 years.
a Overall represents the model with no clusters.
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Table 4.19: Frailty: Future lifetime statistics for healthy 75–year old males and
females in 1998 across clusters

Cluster 1 Cluster 2 Cluster 3 Overalla

Female Male Female Male Female Male Female Male

Total future lifetime

Mean 10.959 10.781 9.704 9.429 11.604 11.316 10.622 10.308

Standard error 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Standard deviation 4.398 4.283 4.100 3.964 4.477 4.326 4.092 3.959

Healthy future lifetime

Mean 7.347 8.111 7.089 7.581 8.421 9.024 8.163 8.622

Standard error 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Standard deviation 4.141 4.287 3.895 3.932 4.280 4.315 4.156 4.131

Disabled future lifetime

Mean 3.612 2.670 2.615 1.847 3.183 2.292 2.459 1.686

Standard error 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Standard deviation 3.606 3.097 3.207 2.675 3.640 3.072 3.217 2.650

Healthy future lifetime over total future lifetime

Mean 0.690 0.762 0.757 0.820 0.750 0.814 0.784 0.845

Standard error 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Standard deviation 0.280 0.261 0.277 0.250 0.267 0.241 0.266 0.236

Age at onset of disability conditional on becoming disabled

Mean 81.242 81.665 81.035 81.260 81.835 82.174 81.835 82.036

Standard error 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Standard deviation 3.693 3.840 3.466 3.510 3.915 3.980 3.817 3.811

Note: Simulation results for 10,000 individuals with maximal age of 110 years.
a Overall represents the model with no clusters.
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Table 4.20: Comparison of future lifetime statistics across clusters for healthy 75–year
old males and females using trend and frailty models

Cluster 1a Cluster 2b Cluster 3c

Female Male Female Male Female Male

Trend in 1998

Total future lifetime 100.00% 101.44% 87.77% 87.73% 105.14% 105.61%

Healthy future lifetime 93.44% 96.37% 89.17% 88.98% 104.86% 105.56%

Disabled future lifetime 122.39% 128.27% 82.99% 81.14% 106.08% 105.85%

Age at onset of disability 99.70% 99.90% 99.20% 99.02% 100.36% 100.38%

Frailty in 1998

Total future lifetime 103.17% 104.59% 91.35% 91.47% 109.24% 109.79%

Healthy future lifetime 90.00% 94.08% 86.84% 87.93% 103.16% 104.67%

Disabled future lifetime 146.87% 158.39% 106.33% 109.59% 129.44% 135.98%

Age at onset of disability 99.28% 99.55% 99.02% 99.05% 100.00% 100.17%

Note: Age at onset of disability is conditional on becoming disabled.
a Percentage difference in future lifetime betweeen Cluster 1 and model with no clusters of the same sex;
b Percentage difference in future lifetime betweeen Cluster 2 and model with no clusters of the same sex;
c Percentage difference in future lifetime betweeen Cluster 3 and model with no clusters of the same sex.
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4.B Simulated survival curves of trend and frailty

models for healthy 75–year olds

Figure 4.7: Survival curves of trend and frailty model across clusters in 1998 for
healthy 75–year old males and females
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Figure 4.8: Probability of being disabled for healthy males and females aged 75 using
trend and frailty models across clusters in 1998
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Chapter 5

Multimorbidity and functional

disability: Implications for life

annuities and long–term care

insurance

Earlier versions of this chapter were presented at the following conferences:

• Perspectives on Actuarial Risks in Talks of Young Researchers, Valencia, Spain.

“An actuarial lens on multimorbidity and long–term care”, 1 February 2023.

• 2023 International Congress of Actuaries, Sydney, Australia. “An actuarial lens on

multimorbidity and long–term care”, 30 May 2023.

5.1 Introduction

5.1.1 Background

Multimorbidity is commonly described as the presence of more than one chronic condition

at a particular time. It is an under researched area in the actuarial literature considering

the high prevalence of multiple diseases amongst older individuals. The majority of exist-

ing research on multimorbidity amongst older adults focusses on quantifying prevalence,

124



Chapter 5. Multimorbidity: Implications for life annuities and long–term care insurance

the incidence of morbidity and health care costs; describing the common comorbidities

and their pathology; identifying risk factors and determining the impact of multimor-

bidity on mortality. The backdrop of an ever increasing ageing population worldwide

and significant costs of chronic conditions on disease burdens globally has garnered more

attention towards multimorbidity.

5.1.1.1 Definitions of multimorbidity

There are various ways to define multimorbidity. In a systematic review by Marengoni

et al. (2011), the authors find that the customary way to define multimorbidity is as the

occurrence of 2 or 3 diseases in any individual. However, the pitfalls of this definition

are the disregard of the nature of the disease(s) and its potential impact on disability.

This leads to a second definition of multimorbidity as the occurrence of diseases, cognitive

impairment and/or functional disability. While this definition is exhaustive, it conflates

functional disability with multimorbidity which provides challenges in an insurance setting

since these two risks are different. Valderas et al. (2009) introduce a chronological aspect

to defining multimorbidity, where either the duration or the sequence of morbidity is

scrutinised. Adding chronology is particularly useful when dealing with longitudinal data

since duration of multimorbidity or its sequence can be easily determined. Lastly, an

indexation approach to multimorbidity is common amongst physicians. This entails the

process where each additional disease is analysed in reference to the initial index disease an

individual acquired. In a systematic review of 12 such indices, De Groot et al. (2003) find

that the Charlson Index, Cumulative Illness Rating Scale (CIRS), the Index of Coexisting

Disease (ICED) and the Kaplan Index are the most reliable and valid at estimating

multimorbidity in randomised control trials and prognostic studies (Charlson et al., 1987;

Greenfield et al., 1993; Imamura et al., 1997). It is important to note that most research

articles in the epidemiological literature refrain from using an index linked definition of

multimorbidity because of the lack of clinical expertise needed to select an index disease

and/or the data needed to apply such a definition.

Besides the definition, another crucial aspect in defining multimorbidity is to specify the

pool of conditions from which the number of diseases is ascertained. Fortin et al. (2012)

find that studies that consider between 4 and 7 conditions have more variability in the
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estimates of prevalence of multimorbidity. They recommend considering a group of 12 or

more diseases to counteract this effect.

For actuarial purposes, it seems that defining multimorbidity as the presence of more than

2 chronic diseases with or without cognitive impairment in an individual is useful in the

design of longevity and health linked insurance products. Definitions that combine chronic

diseases and functional disability are not ideal for the pricing or reserving of functional

disability risks accurately.

5.1.1.2 Risk factors

Generally, being older, female and having a lower socio–economic status is positively

associated with multimorbidity. Van den Akker et al. (1998) find very strong evidence

of an association between prevalence of multimorbidity and various risk factors. They

observe this by running Chi–squared tests with multimorbidity as the response variable

with separate and independent variables of sex, age, living arrangements, health insurance

and education. The data are from a sample of over 60, 000 individuals from the south of

the Netherlands.

Through multiple logistic regression, Van Den Akker et al. (2000) find that increasing

age, low education and having more than 2 conditions at the beginning of the study are

associated with differences between individuals with new multimorbidity and those with

new monomorbidity. The authors use a nested–case control study of general practitioner

records from Netherlands. Sex was not a significant predictor of multimorbidity.

Using the Heidelberg cohort of the European Prospective Investigation, Nagel et al. (2008)

find that low education attainment is positively associated with multimorbidity in both

men (Odds Ratio (OR)=1.43; 95% Confidence Interval (CI)=[1.28, 1.61]) and women

(OR = 1.33; 95%CI = [1.18, 1.57]). They define multimorbidity as the presence of 2 or

more chronic diseases. The authors also find that BMI plays a stronger intermediate role

than smoking in the relationship between education and multimorbidity. Other studies

also reach similar conclusions on the relationship between education and multimorbidity

(Schäfer et al., 2012; Schiøtz et al., 2017). There is very strong evidence of an associa-

tion between education, occupation and literacy with transitions from a healthy state to

multimorbid state (Dugravot et al., 2020).
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Rocca et al. (2014) find that multimorbidity varies by race/ethnicity using

county data from Minnesota, USA. Amongst individuals aged 65+, multimorbidity

(≥ 2 chronic conditions) is more common amongst Caucasians than Asians and Blacks.

However the dataset undersamples Blacks and Asians. Using UK data Siah et al. (2022)

also find that multimorbidity is positively associated with deprivation.

5.1.1.3 Projections of prevalence of multimorbidity

Kingston et al. (2018) estimate future prevalence, morbidity onset and life expectancy

from 2015 to 2035 using a discrete time dynamic microsimulation model fit on English

data. Multimorbidity is defined as the presence of 2 or more diseases with and without

impairment. They find that prevalence rates of diabetes (+179.4%), cancer (+118.1%)

and respiratory disease (+101.5%) will increase by more than 100% over the 20 year period

for individuals aged 65+. More than half of the older population will have multimorbidity

regardless of the definition of multimorbidity used. Interestingly, the authors note that

there is an overall gain in life expectancy at age 65 from 2015 to 2035. This gain consists

of a reduction in life expectancy for people with less than 2 chronic diseases and an

increase in the life expectancy of individuals with 2 or more diseases. Moreover, the

authors suggest that there will be morbidity expansion whereby people will spend more

time multimorbid even though they are living longer (Gruenberg, 1977). Kingston et al.

(2018) do not include a time trend in their modelling.

In a study of more than 1 million English people, Chan et al. (2019) find significant

differences in the onset of multimorbidity and life expectancy amongst 5 quintiles based

on deprivation even after controlling for age, sex and smoking status. They use a five

state model of multimorbidity with the following states: Healthy, 1 Disease, 2 Diseases,

More than 2 diseases and Dead. Multimorbidity is defined as the presence of more than

2 diseases from a list 30 chronic diseases that can be managed with medication but have

no cure. The authors do not allow recovery from any of the illness states even though

this has been shown to be significant in some studies. Individuals who have other diseases

that are not chronic in nature are labeled healthy. The results show that while the most

deprived spend the shortest times in a multimorbid state, they experience the highest

mortality rates and their onset of multimorbidity is earlier than all other groups. These
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results are insightful and extend Kingston et al. (2018) who project multimorbidity in

England up to 2035.

5.1.1.4 Multimorbidity and functional disability

The literature on functional disability and morbidity is sparse. However, Koller et al.

(2014) examine the impact of multimorbidity on long term care using a Cox–regression

framework. They use administrative data from a German statutory health insurance

company and select more than 123, 000 individuals who are at least 65 years old in 2004.

Multimorbidity is defined as the presence of more than 3 chronic conditions from a list

of 46 ICD–10 codes in 3 out of 4 quarters of the year 2004. Kaplan–Meier curves show

that the multimorbid group had a higher probability of making a claim on a long term

care insurance policy than the non–morbid group over a five year period. Even after

controlling for age, sex and the interaction between age and sex, multi–morbid individuals

had a 41% higher risk of needing long term care than those without multimorbidity

(Hazard Ratio (HR) = 1.41; 95%CI = [1.36, 1.47]). One weakness of this analysis is that

morbid and non–morbid groups are determined at the beginning of the study. This means

that the dynamics of people whose morbidity status changes over the 5 year period is lost.

A strength of this study is that it shows that individuals in multimorbid disease clusters

(based on the most common diseases) are associated with higher risks of long term care

than individuals who are not multimorbid.

5.1.1.5 Multimorbidity and mortality

Out of four methods of survival analysis: Cox proportional hazards, regularised Cox

models, accelerated failure time models, and a neural network survival model; Siah et

al. (2022) find that the standard Cox model has similar performance to all other models

based on its Concordance Index on test data (0.81) (Faraggi & Simon, 1995; Harrell et al.,

1982; Simon et al., 2011; Wei, 1992; Wilson et al., 1962). The response is the five–year

overall survival rate with various predictors including the most common pairs and triplets

of diseases amongst the aged (65-80 years) and elderly groups (80 years +). The data

are a sample of approximately 390, 000 patients from across the UK covering the period

from 2010 − 2012. Multimorbidity (having more than four chronic conditions) is the fifth
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highest risk factor (HR = 2.44; 95%CI = [2.22, 2.69]) after pancreas cancer, oesophageal

cancer, lung cancer and liver cancer. Parkinson’s disease is the lowest ranked of the top

ten risk factors. All hazard ratios are corrected for multiple testing using a Benjamini–

Hochberg adjustment rate with a 5% false discovery rate (Benjamini, 2010; Benjamini &

Hochberg, 1995).

Dugravot et al. (2020) study whether socio–economic inequalities in mortality appear be-

fore or after frailty, disability and multimorbidity using 6, 425 residents from the White-

hall II study aged 50+ on 31 August 2017. One interesting outcome is that the au-

thors find that multimorbidity had the strongest association with mortality (HR =

4.12; 95%CI = [3.41, 4.98]) compared to disability (HR = 2.38; 95%CI = [1.93, 2.93])

and frailty (HR = 1.34; 95%CI = [1.34, 2.22]) using separate 2–state mortality models.

The impact on mortality is determined using a Cox proportional hazard model with a

Weibull distribution (Carroll, 2003).

5.1.2 Literature gap

Overall, we are unaware of a link in the literature between multimorbidity and the pricing

of long term care products. Sherris & Wei (2021) propose a five state health status and

disability model but do not consider multimorbidity. Commonly used three state models

of health and functional disability do not distinguish between multimorbid and healthy

individuals who are not multimorbid (Fong et al., 2015; Hanewald et al., 2019; Z. Li

et al., 2017; Shao et al., 2017; Q. Wang et al., 2022). Multistate models are used to

calculate mortality rates, incidence and prevalence rates of multimorbidity for both men

and women (Chan et al., 2019; Kingston et al., 2018). However, they do not consider

functional disability or recovery from multimorbidity.

5.1.3 Research objectives

The overall aim of this paper is to determine how best to incorporate multimorbidity in

multistate models of functional disability since these models are used in practice to price

or reserve for long–term care products. In this paper we consider how to incorporate

multimorbidity in the pricing of health and longevity linked products using multistate
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models of functional disability with recovery. We compare two methods as seen in the

literature review, one where multimorbidity is treated as a covariate in a regression model

and another where multimorbidity is treated as a state. We do this by firstly extending a

three state health and functional disability model by adding multimorbidity as a predictor.

Secondly, we propose a five state model of multimorbidity and functional disability. Our

last objective is to determine the pricing implications of the methods used to incorporate

multimorbidity in annuities, long–term care and life care annuity products. Therefore,

our research questions are as follows:

1. What is the impact of multimorbidity on transition rates in a three state model of

health status and functional disability that controls for age and gender? Functional

disability is defined as the inability to perform 2 or more activities of daily living.

2. To what extent does a five state model of multimorbidity and functional disability

capture differences in mortality and functional disability risks?

3. What are the pricing and life expectancy implications of using the two different

methods of capturing the effect of multimorbidity on transition rates in multiple

state health models?

The remainder of the chapter is structured as follows: Section 5.2 briefly describes the

dataset. Section 5.3 describes the methods used to estimate the multistate Markov models.

Section 5.4 shows the results. We discuss the results in Section 5.5 and conclude in Section

5.6.

130



Chapter 5. Multimorbidity: Implications for life annuities and long–term care insurance

5.2 Data

The Health and Retirement Study (HRS) is a biennial longitudinal survey of Americans

aged 50 and above. As is standard practice, the HRS omits individuals in institutions

such as prisons or aged care facilities. However, if a member transitions from a regular

household to an institution, they continue to be interviewed despite their new residency

status. This means transitions to institutions and subsequent transitions are adequately

captured in the data. We use the final release of the RAND HRS Longitudinal File 2016

(V2) which contains 13 waves. There are seven cohorts in the dataset and the oldest cohort

was born during 1931 and 1941. The most recent cohort was born during 1960 and 1965

and represents the Late Baby Boomers. We define multimorbidity as the presence of more

than one chronic conditions from the following doctor diagnosed conditions: high blood

pressure, diabetes, cancer, lung disease, heart problems, stroke, psychiatric problems, and

arthritis. The respondent self declares that the doctor has diagnosed the illness. However,

this might be incorrect due to recall bias. While this list is not exhaustive, it is suitable for

our analysis. We fit multistate models using data from waves 4 to 13 since earlier waves

have inconsistencies in defining activities of daily living. Functional disability is defined

as the failure to perform 2 or more activities of daily living (walking across the room,

dressing, eating, getting in and out of bed, using the toilet and bathing or showering). To

clean the data, we remove participants who provide either inappropriate interview status

responses or do not respond in any wave. We also exclude individuals who do not appear

at least twice and those who have not turned 45 by the final interview date of 31 December

2018. The final sample used for model estimation contains 31, 969 individuals and 537, 622

observations. All data cleaning procedures were performed using Stata:Release 17. The

actual variables from the HRS that we use in this analysis are summarised in Table 5.1

while Figure 5.18 summarises our sample selection process.
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Table 5.1: Variable description

Variable Description

Socio-demographic

HHIDPN Person specific identifier in each household

RAGENDER Sex

HACOHORT Cohort

RABMONTH Birth month

RABYEAR Birth year

RABDATE Date of birth

RADMONTH Month of death

RADYEAR Year of death

RADDATE Date of death

Interview

RxIWEND End date of interview

RxIWENDY End year of interview

RxIWSTAT Interview status

Activities of daily living

RxWALKRA Some difficulty walking across room

RxDRESSA Some difficulty dressing

RxEATA Some difficulty eating

RxBEDA Some difficulty getting in and out of bed

RxTOILTA Some difficulty using the toilet

RxBATHA Some difficulty bathing or showering

Doctor diagnosed health conditions

RxHIBPE Ever had high blood pressure

RxDIABE Ever had diabetes

RxCANCRE Ever had cancer

RxLUNGE Ever had lung disease

RxHEARTE Ever had heart problems

RxSTROKE Ever had stroke

RxPSYCHE Ever had psychiatric problems

RxARTHRE Ever had arthritis

* x indicates the wave of the HRS dataset
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5.3 Methodology

We use a multistate latent factor intensity model with a proportional hazard specification

defined as follows: the transition intensity of type s = 1, . . . , S for an individual k for

k = 1, . . . , K at time t years is modelled as

λk,s(t) = exp(βs + γ′
swk(t) + αsψ(t))Hk,s(t),

where βs is the time invariant baseline log–intensity for transition type s, wk(t) is a

vector of the observed predictors for each individual k, ψ(t) is frailty which is a stochastic

latent process, γs is a vector measuring the sensitivity of λk,s(t) with respect to wk(t), αs

is a scalar measuring the sensitivity of λk,s(t) with respect to ψ(t) and the generalised

baseline hazard function for duration dependence Hk,s(t) = 1 due to having a Markovian

property (Koopman et al., 2008b; Z. Li et al., 2017; Sherris & Wei, 2021). We estimate

the transition rates and the relevant parameters using code developed by Fu et al. (2021)

which is available at Functional Disability China US. Adjustments are made to allow

the static, trend and frailty models to incorporate the multimorbidity covariates. The

likelihood function for the static and trend models is

L(θ|FJ) =
K∏

k=1

S∏
s=1

J∏
j=1

exp
{
Yk,s,j ln λk,s(t̂j) −Rk,s(tj)

∫ t̂j

tj

λk,s(u)du−

Rk,s(t̂j)
∫ tj+1

tj

λk,s(u)du
}
, (5.1)

where θ is set of parameters to be estimated, FJ denotes all the information up to time

tJ , Yk,s,j is an indicator function and Yk,s,j = 1 if transition type s is observed for the kth

individual between the jth and (j + 1)th interviews, Rk,s(t) is an indicator function and

Rk,s(t) = 1 if the individual is exposed to the risk of transition type s at time t, t̂j is the

time of transition if a transition occurs.

For the frailty model, the likelihood function conditional on the complete path of the

frailty is given by
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L(θ|FJ ,Ψ) =
K∏

k=1

S∏
s=1

J∏
j=1

exp
{
Yk,s,j ln λk,s(̂tj) −Rk,s(tj)

∫ t̂j

tj

λk,s(u)du−

Rk,s(t̂j)
∫ tj+1

tj

λk,s(u)du
}
, (5.2)

where FJ denotes all the information up to time tJ , Ψ = (Ψ(tj : j = 0, 1, . . . , J)). This

means that the likelihood function of the frailty model is

L(θ|FJ) =
∫
L(θ|FJ ,Ψ)dP (Ψ). (5.3)

We use a Monte Carlo simulation technique to determine the maximum likelihood and

define this as

L̂(θ|FJ) = 1
M

M∑
m=1

L(θ|FJ ,Ψ(m)), (5.4)

where M is the number of simulated paths Ψ(1), . . . ,Ψ(M). Further details for the recovery

of the frailty process are provided by Sherris & Wei (2021) and Fu et al. (2021).

5.3.1 Extending health and functional disability state models

To determine the impact of multimorbidity on log transition rates whilst controlling for

age and gender we fit a Cox regression model. Figure 5.1 shows the three state functional

disability model used to fit the empirical data and the 4 types of transitions that can occur.

An individual is considered healthy (H) if they have no functional disability. Functional

disability (F) is defined as the inability to perform 2 or more activities of daily living.

The absorbing state is the Dead (D) state. Disability rates are described by transition

type s = 1 while recovery rates are shown by transition type s = 2. Mortality rates

for the healthy and functionally disabled are shown by transition types s = 3 and s = 4,

respectively. Note that for this model, healthy individuals are exposed to risk of transition

types 1 and 3 only while functionally disabled individuals are exposed to risk of transition

types 2 and 4 only.
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For the static model, we assume that transition rates depend on age, gender and multi-

morbidity such that

ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Fk + γmultimorbidity
s Mk, (5.5)

where ln λk,s(t) is the log transition rate, βs is the reference level of each transition type

s, xk(t) is the age for the kth individual at time t, Fk = 1 if the kth individual is female

and 0 otherwise while Mk = 1 if the kth individual is multimorbid and 0 otherwise.

In the trend model, we add a time variable to capture sensitivity of log transition rates

ln λk,s(t) to variations in time so that

ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Fk + γmultimorbidity
s Mk + ϕtime

s t, (5.6)

where t is the time trend.

The frailty model captures the effect of systematic uncertainty on the transition rates:

ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Fk + γmultimorbidity
s Mk + ϕtime

s t+ αsψt, (5.7)

where ψt is the frailty factor that is modelled as a random walk process with a drift term,

ϵj and

ψt = ψj = ρtj−tj−1ψj−1 + ϵj, ϵj ∼ N(0, σ2
j ), ψ0 = 0, t ∈ (tj−1, tj), (5.8)

where tj is measured in years and denotes the time of the jth interview, ρ is the au-

toregressive parameter. Similar to Fu et al. (2021), we scale the age covariate xk(t) to
xlast

k (t)−65
10 where xlast

k (t) is the age at last birthday and t = t/10. Table 5.2 shows the

conversion of the calendar year to time t. We use estimated parameters from the health

and functional disability models to determine the transition probabilities. Consequently,

we can then derive future lifetime statistics of people with and without morbidity.
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1. H

3. D

2. F

D: Dead
H: Healthy
F: Functionally disabled
1, . . . , 4: transition type s

1

3

2

4

Figure 5.1: Three state health and functional disability model

Table 5.2: Conversion of calendar year to time

Year Time

1998–1999 1

2000–2001 3

2002–2003 5

2004–2005 7

2006–2007 9

2008–2009 11

2010–2011 13

2012–2013 15

2014–2015 17

2016–2017 19

In a three state functional disability model, for a healthy individual aged x

• 11
tpx = the probability of remaining healthy at age x+ t,

• 11
t−1px = the probability of remaining healthy at age x+ t− 1,

• 12
tpx = the probability of becoming functionally disabled at age x+ t,

• 12
t−1px = the probability of becoming functionally disabled at age x+ t+ 1 and

• 13
tpx = the probability of dying at age x+ t.

136



Chapter 5. Multimorbidity: Implications for life annuities and long–term care insurance

For a functionally disabled individual aged x

• 21
tpx = the probability of becoming healthy at age x+ t,

• 21
t−1px = the probability of becoming healthy at age x+ t− 1,

• 22
tpx = the occupancy probability at age x+ t,

• 22
t−1px = the occupancy probability at age x+ t− 1, and

• 23
tpx = the probability of dying at age x+ t.

Multi–year transition probabilities are defined by the following Chapman–Kolmogorov

equations for one year and are valid for t ≥ 1:

11
tpx = 11

t−1px
11px+t−1 + 12

t−1px
21px+t−1, (5.9)

12
tpx = 11

t−1px
12px+t−1 + 12px

22
t−1px+t−1, (5.10)

21
tpx = 22

t−1px
21px+t−1 + 21

t−1px
11px+t−1, (5.11)

22
tpx = 22

t−1px
22px+t−1 + 21

t−1px
12px+t−1, (5.12)

where the limiting age ω is 110, 11
0px = 1, 12

0px = 0, 22
0px = 1 and 21

0px = 0.

Table 5.3 shows the conditional probabilities related to the pricing of long term care

products using three state functional disability models.

Table 5.3: Conditional probabilities related to the pricing of annuities, long term care
insurance and life care annuities for three state model

State at age x State at x + 1

H F D

H 11px
12px

13px

F 21px
22px

23px

D 0 0 1

We consider three different products: a life annuity, a long term care insurance and a life

care annuity that combines long term care insurance and a life annuity. The life annuity

pays a benefit B = $12, 000 annually if the individual is healthy (State 1). The life

annuity continues to pay the benefit B = $12, 000 when the individual transitions to the
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functionally disabled state from the healthy state. The long term care insurance pays a

benefit B′ = $36, 000 annually once an individual is functionally disabled (State 2). The

annual effective interest rate is 3% and premiums are paid as lump sums. Benefits are

unlimited and there is no waiting period.

For a life annuity, the expected present value W for a healthy individual (H) is

E[W ] =
n∑

t=1
B 11

tpx v
t +

n∑
t=1

B 12
tpx v

t − Px, (5.13)

while the expected present value Y for a long term insurance product purchased by a

healthy individual (H) is

E[Y ] =
n∑

t=1
B′ 12

tpx v
t − Px, (5.14)

where n = ω − x, v = 1
1+i

, i = 3% and Px is the once–off premium.

For a life care annuity, the expected present value Z for a healthy individual (H) is

E[Z] =
n∑

t=1
B 11

tpx v
t +

n∑
t=1

B 12
tpx v

t +
n∑

t=1
(B′ −B)12

tpx v
t − Px, (5.15)

E[Z] =
n∑

t=1
B 11

tpx v
t +

n∑
t=1

B′ 12
tpx v

t − Px,

where n = ω − x, v = 1
1+i

, i = 3% and Px is the once–off premium at age x. Note

that changes in time for an individual aged x are captured in the multiyear transition

probabilities.

5.3.2 Proposed five state model of multimorbidity and func-

tional disability

Static, trend and frailty models for the proposed five state model of multimorbidity and

functional disability are defined by the following equations using previously defined nota-

tion:
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ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Fk, (5.16)

ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Fk + ϕtime
s t, (5.17)

ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Fk + ϕtime
s t+ αsψt. (5.18)

Figure 5.2 shows the five state multimorbidity and functional disability model used to fit

the empirical data along with the 12 possible transitions amongst the states. Functional

disability is triggered when an individual has any of two activities of living specified in

Table 5.1. Similar to the three state model we define multimorbidity as the presence of

any one of the 8 doctor diagnosed conditions in the HRS data.

Note that for the five state model, the state space is s = {1, . . . , 12} which means that

1. Individuals who are healthy (H), that is, not multimorbid and not functionally

disabled are exposed to risk of transition types 1, 2, 3 and 4;

2. Individuals who are not multimorbid and functionally disabled (F) are exposed to

risk of transition types 7, 8, 9 and 10;

3. Individuals who are multimorbid and not functionally disabled (M) are exposed to

risk of transition types 5 and 6; and

4. Individuals who are multimorbid and functionally disabled (MF) are exposed to risk

of transition types 11 and 12.
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5. D

4. MF 3. M 2. F

1. H

D: Dead
MF: Multimorbid and functionally disabled
M: Multimorbid and not functionally disabled
F: Functionally disabled and not multimorbid
H: Not multimorbid and not functionally dis-
abled
1, . . . , 12: transition type s

2
1

3

4

7

8

9

10

5

6
12

11

Figure 5.2: Five state multimorbidity and functional disability model

For a healthy individual aged x

• 11
tpx = the probability of remaining healthy (neither multimorbid nor functionally

disabled) at age x+ t,

• 11
t−1px = the probability of remaining healthy at age x+ t− 1,

• 12
tpx = the probability of becoming functionally disabled and not multimorbid at

age x+ t,

• 12
t−1px = the probability of becoming functionally disabled and not multimorbid at

age x+ t− 1,

• 13
tpx = the probability of becoming multimorbid and not functionally disabled at

age x+ t,

• 13
t−1px = the probability of becoming multimorbid and not functionally disabled at

age x+ t− 1,

• 14
tpx = the probability of becoming multimorbid and functionally disabled at age

x+ t, and

• 14
t−1px = the probability of becoming multimorbid and functionally disabled at age

x+ t− 1,.
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For a functionally disabled and not multimorbid individual aged x

• 21
tpx = the probability of becoming healthy at age x+ t,

• 21
t−1px = the probability of becoming healthy at age x+ t− 1,

• 22
tpx = the occupancy probability at age x+ t,

• 22
t−1px = the occupancy probability at age x+ t− 1,

• 23
tpx = the probability of becoming multimorbid and not functionally disabled at

age x+ t,

• 23
t−1px = the probability of becoming multimorbid and not functionally disabled at

age x+ t− 1,

• 24
tpx = the probability of becoming multimorbid and functionally disabled at age

x+ t, and

• 24
t−1px = the probability of becoming multimorbid and functionally disabled at age

x+ t− 1.

For a multimorbid and not functionally disabled individual aged x

• 33
tpx = the occupancy probability at age x+ t,

• 33
t−1px = the occupancy probability at age x+ t− 1,

• 34
tpx = the probability of becoming multimorbid and functionally disabled at age

x+ t and

• 34
t−1px = the probability of becoming multimorbid and functionally disabled at age

x+ t− 1

For a multimorbid and functionally disabled individual aged x

• 43
tpx = the probability of becoming multimorbid and not functionally disabled at

age x+ t,

• 43
t−1px = the probability of becoming multimorbid and not functionally disabled at

age x+ t− 1,

• 44
tpx = the occupancy probability at age x+ t and

• 44
t−1px = the occupancy probability at age x+ t− 1.
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Multi–year transition probabilities are defined by the following Chapman–Kolmogorov

equations for one year and are valid for t ≥ 1:

11
tpx = 11

t−1px
11px+t−1 + 12

t−1px
21px+t−1, (5.19)

12
tpx = 11

t−1px
12px+t−1 + 12px

22
t−1px+t−1, (5.20)

13
tpx = 11

t−1px
13px+t−1 + 13

t−1px
33px+t−1 + 12

t−1px
23px+t−1 + 14

t−1px
43px+t−1, (5.21)

14
tpx = 11

t−1px
14px+t−1 + 14

t−1px
44px+t−1 + 12

t−1px
24px+t−1 + 13

t−1px
34px+t−1, (5.22)

21
tpx = 22

t−1px
21px+t−1 + 21

t−1px
11px+t−1, (5.23)

22
tpx = 22

t−1px
22px+t−1 + 21

t−1px
12px+t−1, (5.24)

23
tpx = 22

t−1px
23px+t−1 + 23

t−1px
33px+t−1 + 24

t−1px
43px+t−1 + 21

t−1px
13px+t−1, (5.25)

24
tpx = 21

t−1px
14px+t−1 + 22

t−1px
24px+t−1 + 24

t−1px
44px+t−1 + 23

t−1px
34px+t−1, (5.26)

33
tpx = 33

t−1px
33px+t−1 + 34

t−1px
43px+t−1, (5.27)

34
tpx = 33

t−1px
34px+t−1 + 34

t−1px
44px+t−1 (5.28)

43
tpx = 44

t−1px
43px+t−1 + 43

t−1px
33px+t−1, (5.29)

44
tpx = 44

t−1px
44px+t−1 + 43

t−1px
34px+t−1, (5.30)

where the limiting age ω is 110, 11
0px = 1, 12

0px = 0, 13
0px = 0, 14

0px = 0, 21
0px = 0, 22

0px = 1,
23
0px = 0, 24

0px = 0, 33
0px = 1, 34

0px = 0, 43
0px = 0 and 44

0px = 1.

Table 5.4 shows the conditional probabilities related to the pricing of long term care

products using the five state multimorbidity and functional disability models.

Table 5.4: Conditional probabilities related to the pricing of annuities, long term care
insurance and life care annuities for five state model

State at age x State at age x + 1

H F M MF D

H 11px
12px

13px
14px

15px

F 21px
22px

23px
24px

25px

M 0 0 33px
34px

35px

MF 0 0 43px
44px

45px

D 0 0 0 0 1
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As in the previous case, we consider three different products: a life annuity, a long term

care insurance and a life care annuity that combines long term care insurance and a life

annuity. The long term care insurance pays B′ = $36, 000 per annum once an individual

is functionally disabled (State F) while the life annuity pays B = $12, 000 per annum if

the individual is alive. An individual who is both multimorbid and functionally disabled

receives a benefit B′′ = $48, 000. The annual effective interest rate is 3% and premiums

are paid as lump sums. Benefits are unlimited and there is no waiting period.

For a life annuity, the expected present value W for a healthy individual in State 1 at age

x is

1Wx =
n∑

t=1
B 11

tpx v
t +

n∑
t=1

B 12
tpx v

t +
n∑

t=1
B 13

tpx v
t +

n∑
t=1

B 14
tpx v

t − 1Px, (5.31)

and the expected present value W for a multimorbid and not functionally disabled indi-

vidual in State 3 at age x is

3Wx =
n∑

t=1
B 33

tpx v
t +

n∑
t=1

B 34
tpx v

t − 3Px, (5.32)

where n = ω − x, vt = 1
1+i

t is the discount factor at time t, i = 3% is the annual effective

interest rate, 1Px is the once–off premium in State 1 at age x and 3Px is the once–off

premium in State 3 at age x.

For a stand alone long term care insurance product, the expected present value Y for a

healthy individual in State 1 at age x is

1Yx =
n∑

t=1
B′ 12

tpx v
t +

n∑
t=1

B′′ 14
tpx v

t − 1Px (5.33)

and the expected present value Y for a multimorbid and not functionally disabled indi-

vidual in State 3 at age x is

3Yx =
n∑

t=1
B′′ 34

tpx v
t − 3Px, (5.34)

where n = ω − x, vt = 1
1+i

t is the discount factor at time t, i = 3% is the annual effective

interest rate, 1Px is the once–off premium in State 1 at age x and 3Px is the once–off
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premium in State 3 at age x.

For a life care annuity, the expected present value Z for a healthy individual in State 1

at age x is

1Zx =
n∑

t=1
B 11

tpx v
t +

n∑
t=1

B 12
tpx v

t +
n∑

t=1
(B′ −B)12

tpx v
t +

n∑
t=1

B 13
tpx v

t +
n∑

t=1
B 14

tpx v
t

+
n∑

t=1
(B′′ −B)14

tpx v
t − 1Px, (5.35)

1Zx =
n∑

t=1
B 11

tpx v
t +

n∑
t=1

B′ 12
tpx v

t +
n∑

t=1
B 13

tpx v
t +

n∑
t=1

B′′ 14
tpx v

t − 1Px,

the expected present value Z for a multimorbid and not functionally disabled individual

in State 3 at age x is

3Zx =
n∑

t=1
B 33

tpx v
t +

n∑
t=1

B 34
tpx v

t +
n∑

t=1
(B′′ −B)34

tpx v
t − 3Px, (5.36)

3Zx =
n∑

t=1
B 33

tpx v
t +

n∑
t=1

B′′ 34
tpx v

t − 3Px,

where n = ω − x, vt = 1
1+i

t is the discount factor at time t, i = 3% is the annual effective

interest rate, 1Px is the once–off premium in State 1 at age x and 3Px is the once–off

premium in State 3 at age x.

5.4 Results

5.4.1 Exploratory data analysis for three state health and func-

tional disability model

Figure 5.3 shows the exposed to risk at different ages for the overall dataset, multimorbid

and non–multimorbid groups. All curves for person years at risk are downward sloping

in the healthy state. However, the total exposed to risk for individuals who are not mul-

timorbid is much lower than that of the multimorbid groups particularly in the disabled

state. Figure 5.4 shows the proportions of person years at risk for different ages using
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the three state model. Individuals who are not multimorbid have a higher proportion of

years spent in the healthy state and a lower proportion spent in the disabled state.
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Figure 5.3: Total exposed to risk at different ages for three state model
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Figure 5.4: Proportions of person years at risk for different ages using three state
model

Figure 5.5 shows the proportions of transitions between states for the multimorbid sample,

the not multimorbid sample and the overall sample. Transitions between states for the

overall dataset and multimorbimorbid dataset are almost mirror images of each other.

However, whilst there is a jump in the proportions of transition counts in older ages from

either the healthy state or functionally diabled state in the not multimorbid group, we

observe a more dramatic shift in the overall and multimorbid groups.
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Figure 5.5: Proportions of transitions at different ages using three state model

Figure 5.6 and Figure 5.7 show the crude health transition rates for males and females

for the three state model. The curves for the multimorbid and not multimorbid groups

appear to cross over at older ages which suggests that we might need an interaction term

between age and multimorbidity in the 3 state model. This effect is magnified in females

more than males. Once we fit the model as specified by Equation (5.5) we notice in Figure

5.8 that while the model is reasonable for most groups it tends to overestimate mortality

and disability rates for females who are not multimorbid. This implies that we have to

remain aware of this discrepancy when interpreting life expectancy statistic and pricing

for females. By graphical inspection, we note that the proportional hazard assumption is

also valid when we plot crude transitions against multimorbidity as shown in Figure 5.9.
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Figure 5.6: Crude transition rates at different ages for females using three state model
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Figure 5.7: Crude transition rates at different ages for males using three state model
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Figure 5.8: Comparison of crude transition rates and estimated static model for three
state with multimorbidity predictor
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Figure 5.9: Crude transition rates versus multimorbidity using three state model

5.4.2 Exploratory data analysis for five state multimorbidity

and functional disability model

Figure 5.10a shows the total exposed to risk for all states in the 5 state model except

for the dead state. The functionally disabled and not multimorbid state has the lowest

exposure for all ages. The curves for the healthy state and the functionally disabled and

not multimorbid state are downward sloping. The person years at risk for the multimorbid

and functionally disabled state are stable for ages 65 to 90 and then decrease steadily in

later years. Figure 5.10b shows the proportion of person years at risk for states 1 to 4 in

the 5 state model. The curves for states 2 and 4 are upward sloping while the opposite is

true for states 1 and 3.
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Figure 5.10: Total exposed to risk and proportion of person years at risk at different
ages for 5 state model

Figure 5.11 and Figure 5.12 show the crude health transition rates for males and females

for the five state model. There are fewer transitions at older ages and this effect is more

pronounced for the individuals who are functionally disabled and not multimorbid (State

2). By graphical inspection, we note that log transition rates have a linear trend with

age for both males and females for most transition types. This allows us to estimate

the models as previously specified. Recovery from state 2 to either the healthy state or

multimorbidity state becomes less likely as age increases. Mortality rates increase with age

for all 4 states for males and females. Healthy females have a higher chance of becoming

functionally disabled than healthy males. Healthy males have a slighly higher chance of

becoming multimorbid and not functionally disabled than healthy females. Figure 5.13

and Figure 5.14 show the crude health transition rates overlaid by the static model which

verifies that our model is reasonable and valid.
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Figure 5.11: Crude transition rates at different ages for males and females using 5
state model (s=1 to s=6)
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Figure 5.12: Crude transition rates at different ages for males and females using 5
state model (s=7 to s=12)
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Figure 5.13: Crude transition rates at different ages for males and females using 5
state model (s=1 to s=6) overlaid by static
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Figure 5.14: Crude transition rates at different ages for males and females using 5
state model (s=7 to s=12) overlaid by static
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5.4.3 Model parameters

Table 5.5 and Table 5.6 show the estimated parameters for the three state static and

trend models with a multimorbidity predictor, respectively. Coefficients for the baseline

log intensity using static and trend models reveal that functionally disabled individuals

have higher mortality rates than healthy individuals. Disability rates increase with age

but recovery rates decrease with age. Females are more likely to become disabled than

males. The trend model shows that disability and mortality rates decrease with time and

recovery is less likely as time increases. These results corroborate previous findings in

the literature using three state models of functional disability (Fong et al., 2015; Fu et

al., 2021; Z. Li et al., 2017; Sherris & Wei, 2021). However, through our addition of a

multimorbidity predictor we show that multimorbidity increases disability and mortality

rates while it also decreases the chance of recovery. Both static and trend models with

multimorbidity have lower values of Akaike information Criterion (AIC) and Bayesian

Information Criterion (BIC) than models without implying better fits to the data (Akaike,

1974; Schwarz, 1978).

Table 5.5: Three state static model with multimorbidity: estimated parameters with
standard errors in parentheses

Transition H→F F→H H→D F→D

s 1 2 3 4

β̂s -4.5836 ∗∗∗ -1.6566 ∗∗∗ -4.7699 ∗∗∗ -3.0919 ∗∗∗

(0.0276) (0.0394) (0.0307) (0.0564)

γ̂age
s 0.4431 ∗∗∗ -0.3302 ∗∗∗ 0.8740 ∗∗∗ 0.6315 ∗∗∗

(0.0105) (0.0121) (0.0119) (0.0139)

γ̂female
s 0.2326 ∗∗∗ 0.0192 -0.4462 ∗∗∗ -0.3672 ∗∗∗

(0.0224) (0.0310) (0.0233) (0.0302)

γ̂multimorbidity
s 0.9124 ∗∗∗ -0.3064 ∗∗∗ 0.8601 ∗∗∗ 0.3900 ∗∗∗

(0.0270) (0.0381) (0.0299) (0.0506)

Log likelihood -95674

† Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01;
†† Age covariate is calculated using age last birthday.
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Table 5.6: Three state trend model with multimorbidity: estimated parameters with
standard errors in parentheses

Transition H→F F→H H→D F→D

β̂s -4.4453 ∗∗∗ -1.4445 ∗∗∗ -4.6476 ∗∗∗ -2.9798 ∗∗∗

(0.0321) (0.0449) (0.0353) (0.0605)

γ̂age
s 0.4448 ∗∗∗ -0.3345 ∗∗∗ 0.8770 ∗∗∗ 0.6320 ∗∗∗

(0.0105) (0.0121) (0.0120) (0.0140)

γ̂female
s 0.2331 ∗∗∗ 0.0103 -0.4469 ∗∗∗ -0.3729 ∗∗∗

(0.0224) (0.0311) (0.0233) (0.0302)

γ̂multimorbidity
s 0.9357 ∗∗∗ -0.2609 ∗∗∗ 0.8827 ∗∗∗ 0.4148 ∗∗∗

(0.0271) (0.0384) (0.0300) (0.0509)

γ̂time
s -0.1710 ∗∗∗ -0.2596 ∗∗∗ -0.1536 ∗∗∗ -0.1385 ∗∗∗

(0.0207) (0.0275) (0.0224) (0.0276)

Log likelihood -95559

† Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01;
†† Age covariate is calculated using age last birthday.

Table 5.7 and Table 5.8 report the estimated parameters for the five state static and

trend models of multimorbidity and functional disability. Mortality rates increase with

age (H→D, M→D, F→D and MF→D). Disability rates (H→F, H→MF and M→MF) also

increase with age. Multimorbidity rates from the healthy state (H→M, H→MF) increase

with age while the multimorbidity rate from the functionally disabled state (F→MF)

decreases with age. Recovery rates from functional disabilty (F→H, F→M and MF→M)

decrease with age. While the conclusions are similar to Sherris & Wei (2021) due to the

consistency in the signs of the coefficients, there are differences in the size of the effects

for all parameters. This could be due to the use of an updated dataset and difference

in definition of illness. Moreover, here we consider multimorbidity while Sherris & Wei

(2021) consider illness as the presence of only one disease from a pool of four diseases,

namely: diabetes, heart problems, lung disease and stroke. Consequently this affects the

size and number of all transitions amongst the states.

On sex, females have lower mortality rates than males. Females are more likely to become

disabled than males. Females are less likely to become multimorbid than males (H→M).

However, females are more likely than males to become multimorbid and functionally

disabled (H→MF and M→MF). The effect of gender on recovery rates is not significant.
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The estimated trend model shows that mortality rates have decreased with time. Gen-

erally disability rates have decreased with time but the same effect is not observed for

the transition from the healthy state to the multimorbid and functionally disabled state

(H→MF). The effect of time on multimorbidity is not significant and ambiguous (H→M,

H→MF, and F→MF). Generally recovery rates improve with time except for the transi-

tion from F→M.

The baseline intensity parameter shows that individuals who are multimorbid and func-

tionally disabled are the most likely to die. Individuals who are exclusively functionally

disabled are more likely to recover into the healthy state than the multimorbid state.

Disability rates are highest among those who are multimorbid.

Table 5.7: Five state model for s=1 to s=6: estimated parameters with standard errors
in parentheses

Transition H→M H→F H→MF H→D M→MF M→D

s 1 2 3 4 5 6

Static

β̂s -2.6980 ∗∗∗ -5.0637 ∗∗∗ -5.4317 ∗∗∗ -4.8005 ∗∗∗ -3.7013 ∗∗∗ -3.9213 ∗∗∗

(0.0161) (0.0508) (0.0613) (0.0442) (0.0231) (0.0250)

γ̂age
s 0.1943 ∗∗∗ 0.6382 ∗∗∗ 0.6394 ∗∗∗ 1.0238 ∗∗∗ 0.3963 ∗∗∗ 0.8401 ∗∗∗

(0.0100) (0.0266) (0.0328) (0.0240) (0.0121) (0.0136)

γ̂female
s -0.0558 ∗∗∗ 0.1456 ∗∗ 0.0550 -0.5423 ∗∗∗ 0.2716 ∗∗∗ -0.4190 ∗∗∗

(0.0215) (0.0616) (0.0754) (0.0535) (0.0255) (0.0258)

Log likelihood -131,332

Trend

β̂s -2.6875 ∗∗∗ -4.9033 ∗∗∗ -5.4352 ∗∗∗ -4.7387 ∗∗∗ -3.5367 ∗∗∗ -3.7694 ∗∗∗

(0.0234) (0.0685) (0.0856) (0.0607) (0.0314) (0.0337)

γ̂age
s 0.1941 ∗∗∗ 0.6362 ∗∗∗ 0.6394 ∗∗∗ 1.0238 ∗∗∗ 0.3990 ∗∗∗ 0.8441 ∗∗∗

(0.0100) (0.0266) (0.0328) (0.0240) (0.0121) (0.0137)

γ̂female
s -0.0559 ∗∗∗ 0.1451 ∗∗ 0.0550 -0.5427 ∗∗∗ 0.2725 ∗∗∗ -0.4196 ∗∗∗

(0.0215) (0.0616) (0.0754) (0.0535) (0.0255) (0.0258)

γ̂time
s -0.0124 -0.1972 ∗∗∗ 0.0042 -0.0753 -0.1756 ∗∗∗ -0.1627 ∗∗∗

(0.0202) (0.0584) (0.0710) (0.0513) (0.0234) (0.0249)

Log likelihood -131,217

Frailty

† Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01;
†† Age covariate is calculated using age last birthday.
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Table 5.8: Five state model for s=7 to s=12: estimated parameters with standard
errors in parentheses

Transition F→H F→M F→MF F→D MF→M MF→D

s 7 8 9 10 11 12

Static

β̂s -1.7771 ∗∗∗ -3.2671 ∗∗∗ -2.8417 ∗∗∗ -3.2331 ∗∗∗ -1.9824 ∗∗∗ -2.6866 ∗∗∗

(0.0610) (0.1283) (0.1012) (0.1070) (0.0290) (0.0340)

γ̂age
s -0.3457 ∗∗∗ -0.3273 ∗∗∗ -0.0408 0.7491 ∗∗∗ -0.3248 ∗∗∗ 0.6162 ∗∗∗

(0.0297) (0.0587) (0.0414) (0.0433) (0.0136) (0.0147)

γ̂female
s -0.0396 0.1178 0.1723 -0.3970 ∗∗∗ 0.0291 -0.3639 ∗∗∗

(0.0783) (0.1599) (0.1214) (0.0995) (0.0346) (0.0317)

Log likelihood -131332

Trend

β̂s -1.5973 ∗∗∗ -3.2612 ∗∗∗ -2.9376 ∗∗∗ -3.2078 ∗∗∗ -1.7117 ∗∗∗ -2.5433 ∗∗∗

(0.0852) (0.1801) (0.1404) (0.1325) (0.0408) (0.0440)

γ̂age
s -0.3486 ∗∗∗ -0.3274 ∗∗∗ -0.0393 0.7488 ∗∗∗ -0.3297 ∗∗∗ 0.6169 ∗∗∗

(0.0297) (0.0587) (0.0415) (0.0433) (0.0136) (0.0148)

γ̂female
s -0.0554 0.1173 0.1791 -0.3981 ∗∗∗ 0.0220 -0.3698 ∗∗∗

(0.0785) (0.1603) (0.1217) (0.0995) (0.0346) (0.0317)

γ̂time
s -0.2129 ∗∗∗ -0.0067 0.1088 -0.0302 -0.2748 ∗∗∗ -0.1454 ∗∗∗

(0.0733) (0.1447) (0.1083) (0.0936) (0.0303) (0.0289)

Log likelihood -131,217

Frailty

† Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01;
†† Age covariate is calculated using age last birthday.

5.4.4 Multiyear transition probabilities

Figure 5.15 shows the three state multiyear transition probabilities for males and females

aged 65 fitted using the static model. The curve for recovery probabilities is concave

downward and recovery rates (21
tpx) are higher than disability rates (12

tpx). The curves

showing occupancy probabilities are concave upwards in both healthy and functionally

disabled states. Occupancy probabilities (11
tpx) in the healthy state are higher than both

recovery and disability probabilities. Females have higher disability and recovery proba-

bilities than males.
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Figure 5.15: Multiyear transition probabilities for males and females aged 65 using
three state static model

Figure 5.16 and Figure 5.17 show the five state multiyear transition probabilities for

males and females aged 65 fitted using the static model. The probability of becoming

multimorbid and not functionally disabled (13
tpx) is consistently higher than that of either

becoming functionally disabled (12
tpx) or multimorbid and functionally disabled (14

tpx).

Recovery rates (21
tpx) are higher than disability rates. The probability of death is highest

for individuals who are multimorbid and functionally disabled and lowest for individuals

who are healthy.
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Figure 5.16: Multiyear transition probabilities for males aged 65 using five state static
model
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Figure 5.17: Multiyear transition probabilities for females aged 65 using five state
static model

5.4.5 Lifetime statistics

Table 5.9 shows the future lifetime statistics for healthy 65–year olds fitted using the three

state functional disability static models. Consistent with previous studies using HRS data,

generally females have longer life expectancy and spend more time disabled than males

(Fong et al., 2015; Fu et al., 2021; Z. Li et al., 2017). We extend these studies by quan-

tifying differences in future lifetime statistics by multimorbidity status. We find that the

gap in life expectancy at age 65 between non–multimorbid males and multimorbid males

is approximately 7.2 years while that for females is approximately 7.7 years. Additionally,

the gap in healthy life expectancy at age 65 between non–multimorbid males and multi-
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morbid males is approximately 7.760 years while that for females is approximately 8.574

years. We observe that individuals who are not multimorbid live longer and healthier lives

than individuals who are multimorbid. The proportion of Healthy Life Expectancy over

Total Life Expectancy (HLE/TLE) of individuals who are not multimorbid is higher than

both the multimorbid and the overall group. Individuals who are multimorbid become

functionally disabled much earlier than everyone else.

Table 5.9: Future lifetime statistics for 65–year old healthy males and females using
static three state models

Overall Multimorbid Not multimorbid

Female Male Female Male Female Male

Life expectancy

Mean 19.437 16.736 17.762 14.957 25.453 22.166

Standard error 0.090 0.083 0.088 0.080 0.107 0.102

Standard deviation 9.013 8.309 8.817 8.011 10.689 10.155

Healthy life expectancy

Mean 16.416 14.975 14.436 12.970 23.010 20.730

Standard error 0.085 0.080 0.081 0.076 0.105 0.100

Standard deviation 8.473 8.021 8.089 7.580 10.496 10.043

Disabled life expectancy

Mean 3.021 1.760 3.327 1.987 2.443 1.436

Standard error 0.044 0.033 0.046 0.035 0.040 0.030

Standard deviation 4.356 3.262 4.587 3.519 3.987 3.032

Healthy life expectancy over life expectancy

Mean 0.853 0.901 0.827 0.879 0.904 0.934

Standard error 0.002 0.002 0.002 0.002 0.002 0.001

Standard deviation 0.205 0.181 0.226 0.204 0.160 0.141

Age at onset of disability conditional on becoming disabled

Mean 79.023 78.068 77.129 76.228 83.736 82.035

Standard error 0.112 0.126 0.101 0.110 0.152 0.171

Standard deviation 8.206 7.706 7.588 6.949 10.332 9.632

* Overall represents the model without multimorbidity predictor;
† Maximal age is 110 years.

Table 5.10 and Table 5.11 show the life expectancy results from fitting the three state

trend models using the trend in 1998 and 2016, respectively. We find that the gap in life
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expectancy at age 65 between non–multimorbid males and multimorbid males is approx-

imately 8.276 years while that for females is approximately 8.855 years using the trend in

1998. Additionally, the gap in healthy life expectancy at age 65 between non–multimorbid

males and multimorbid males is approximately 8.793 years while that for females is ap-

proximately 9.712 years. We note that life expectancy using the recent time trend from

2016 captures the improvements in mortality as shown by the higher life expectancy and

healthy life expectancy for both males and females.

Table 5.10: Future lifetime statistics for healthy 65–year old males and females in 1998
using three state trend models

Overall Multimorbid Not multimorbid

Female Male Female Male Female Male

Life expectancy

Mean 19.821 16.953 18.336 15.206 27.191 23.482

Standard error 0.095 0.086 0.097 0.087 0.119 0.114

Standard deviation 9.464 8.649 9.737 8.710 11.930 11.358

Healthy life expectancy

Mean 16.516 15.066 14.691 13.096 24.403 21.889

Standard error 0.087 0.083 0.088 0.082 0.118 0.112

Standard deviation 8.732 8.260 8.813 8.148 11.784 11.226

Disabled life expectancy

Mean 3.306 1.887 3.646 2.110 2.789 1.593

Standard error 0.048 0.035 0.052 0.038 0.047 0.034

Standard deviation 4.835 3.499 5.176 3.772 4.725 3.411

Healthy life expectancy over life expectancy

Mean 0.846 0.897 0.819 0.875 0.898 0.931

Standard error 0.002 0.002 0.002 0.002 0.002 0.002

Standard deviation 0.211 0.184 0.234 0.208 0.171 0.147

Age at onset of disability conditional on becoming disabled

Mean 79.120 78.087 77.048 76.225 83.921 82.433

Standard error 0.116 0.128 0.108 0.117 0.167 0.188

Standard deviation 8.484 7.878 8.058 7.405 11.118 10.467

* Overall represents the model without multimorbidity predictor;
† Maximal age is 110 years.

Even though lifetimes are increasing for both males and females, the number of years spent

164



Chapter 5. Multimorbidity: Implications for life annuities and long–term care insurance

disabled is also increasing. The ratio of HLE/TLE is decreasing for the overall model and

relatively stable for multimorbid and non–multimorbid groups which suggests morbidity

expansion between 1998 and 2016. These results disagree with those in Z. Li et al. (2017)

who conclude that there is no strong evidence in the HRS to suggest either morbidity

compression or expansion. However, their models cover a shorter duration (1998–2012).

Fu et al. (2021) conclude that there is morbidity compression but their study also covers

a shorter period (1998-2014).

Table 5.11: Future lifetime statistics for healthy 65–year old males and females in 2016
using three state trend models

Overall Multimorbid Not multimorbid

Female Male Female Male Female Male

Life expectancy

Mean 20.966 17.956 20.946 17.594 30.006 26.303

Standard error 0.099 0.090 0.106 0.096 0.121 0.119

Standard deviation 9.902 9.007 10.577 9.570 12.110 11.906

Healthy life expectancy

Mean 17.005 15.710 16.825 15.226 26.870 24.471

Standard error 0.092 0.087 0.100 0.092 0.125 0.120

Standard deviation 9.202 8.675 9.972 9.229 12.460 12.007

Disabled life expectancy

Mean 3.961 2.246 4.120 2.368 3.136 1.831

Standard error 0.058 0.042 0.060 0.044 0.057 0.041

Standard deviation 5.836 4.205 6.025 4.369 5.687 4.093

Healthy life expectancy over life expectancy

Mean 0.828 0.885 0.818 0.875 0.894 0.929

Standard error 0.002 0.002 0.002 0.002 0.002 0.002

Standard deviation 0.235 0.205 0.246 0.216 0.188 0.159

Age at onset of disability conditional on becoming disabled

Mean 79.901 78.779 79.123 77.934 85.311 84.616

Standard error 0.123 0.136 0.126 0.136 0.184 0.210

Standard deviation 8.899 8.271 9.152 8.389 11.616 11.260

* Overall represents the model without multimorbidity predictor;
† Maximal age is 110 years.

Table 5.12 shows the future life statistics of healthy 65–year old individuals using five
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state static and trend models. Consistent with other findings, females have higher life

expectancy than males (Sherris & Wei, 2021). We find that the gap in healthy life ex-

pectancy at age 65 between the healthy state males and multimorbid and not functionally

disabled males is approximately 1.993 years while that for females is approximately 1.586

years. Individuals spend more time multimorbid (10.378 years) than they do healthy

(9.594 years). Using the most recent trend in 2016 results in a much higher life ex-

pectancy for both males and females than that based on the trend in 1998. However, the

proportion of years spent multimorbid over total life expectancy increases from 1998 to

2016 which suggests morbidity expansion. This means that gains in life expectancy are

counteracted by increases in multimorbidity. Similarly, for individuals in State 1, while

there are gains in healthy life expectancy, the proportion of healthy life expectancy over

life expectancy decreases from 1998 to 2016 despite the gains in total life expectancy

during the same period. This confirms morbidity expansion during the period 1998 to

2016. The mean time spent disabled increases during the same period for both males and

females. As observed in Fu et al. (2021), the life expectancy of the trend model in 1998

is higher than that estimated by the static model.

Table 5.12: Future lifetime statistics for healthy 65–year old individuals using five
state static and trend models

Static Trend in 1998 Trend in 2016

Female Male Female Male Female Male

Life expectancy

Mean 20.372 17.500 21.247 18.090 23.533 20.166

Standard error 0.087 0.080 0.096 0.088 0.104 0.096

Standard deviation 8.663 8.030 9.591 8.787 10.421 9.630

Healthy life expectancy

Mean 9.594 8.885 9.607 8.903 9.966 9.243

Standard error 0.074 0.068 0.075 0.069 0.078 0.072

Standard deviation 7.389 6.830 7.525 6.943 7.833 7.221

Functionally disabled and not multimorbid life expectancy

Mean 0.400 0.302 0.412 0.300 0.320 0.238

Standard error 0.016 0.014 0.017 0.014 0.015 0.013

Standard deviation 1.616 1.348 1.708 1.378 1.496 1.316

Multimorbid and not functionally disabled life expectancy
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Table 5.12: Future lifetime statistics for healthy 65–year old individuals using five
state static and trend models (continued)

Female Male Female Male Female Male

Mean 8.008 6.982 8.585 7.432 10.054 8.937

Standard error 0.078 0.073 0.085 0.078 0.097 0.091

Standard deviation 7.795 7.262 8.515 7.834 9.742 9.103

Multimorbid and functionally disabled life expectancy

Mean 2.369 1.331 2.643 1.454 3.193 1.747

Standard error 0.038 0.028 0.043 0.031 0.053 0.037

Standard deviation 3.853 2.783 4.344 3.082 5.325 3.728

Healthy life expectancy over total life expectancy

Mean 0.505 0.549 0.494 0.540 0.471 0.515

Standard error 0.003 0.003 0.003 0.003 0.003 0.003

Standard deviation 0.323 0.333 0.323 0.334 0.323 0.336

Mean time spent disabled

Mean 2.769 1.634 3.055 1.754 3.513 1.986

Standard error 0.055 0.041 0.060 0.045 0.068 0.050

Standard deviation 5.469 4.131 6.052 4.460 6.821 5.044

Mean time spent multimorbid

Mean 10.378 8.313 11.228 8.886 13.248 10.684

Standard error 0.116 0.100 0.129 0.109 0.151 0.128

Standard deviation 11.648 10.045 12.859 10.917 15.067 12.831

Multimorbidity over life expectancy

Mean 0.474 0.434 0.485 0.442 0.514 0.471

Standard error 0.003 0.003 0.003 0.003 0.003 0.003

Standard deviation 0.333 0.340 0.333 0.340 0.330 0.342

Age at onset of multimorbidity conditional on becoming multimorbid

Mean 74.793 73.970 74.756 74.053 75.116 74.365

Standard error 0.079 0.074 0.079 0.076 0.083 0.078

Standard deviation 6.856 6.225 6.850 6.354 7.220 6.606

Age at onset of disability conditional on becoming disabled

Mean 76.796 75.649 76.088 74.900 76.386 75.136

Standard error 0.240 0.245 0.241 0.244 0.285 0.290

Standard deviation 7.496 6.827 7.453 6.644 7.686 6.815

* Overall represents the model without multimorbidity predictor;
† Maximal age is 110 years.
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5.4.6 Pricing implications

Table 5.13 and Table 5.14 show the premiums of various health and longevity risk products

using the three state and five state models, respectively. Life annuities premiums are lower

for males than females due to a higher mortality experience. Long term care is more

expensive for females than males due to females spending more time disabled than males.

Premiums using trend models are always higher due to improvements in mortality rates

over time. However, these differences are not as magnified as those reported in Sherris &

Wei (2021). As observed in other studies, purchasing a life care annuity is cheaper than

buying stand alone life annuities or long term care insurance (J. Brown & Warshawsky,

2013; Spillman et al., 2003). Table 5.14 also shows that life annuities are cheaper for

individuals who are multimorbid and functionally disabled than for individuals in the

healthy state. Long term care is cheaper for the healthy state and more expensive for

individuals who are multimorbid.

Table 5.13: Premiums for insurance products using three state model of functional
disability for males and females at age 65

Males Females

State Static Trend Static Trend

Life annuity

Healthy $131,586 $132,392 $151,488 $153,926

Difference from static 0.61% 1.61%

Long term care

Healthy $47,488 $49,524 $77,344 $82,179

Difference from static 4.29% 6.25%

Life care annuity

Healthy $163,245 $165,408 $203,051 $208,712

Difference from static 1.33% 2.79%
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Table 5.14: Premiums for insurance products using five state model of multimorbidity
and functional disability for males and females at age 65

Males Females

State Static Trend Static Trend

Life annuity

Healthy 151,555 154,540 170,619 175,091

Multimorbid and not functionally disabled 133,878 134,977 152,603 155,336

Long term care

Healthy 48,576 51,278 78,750 84,870

Multimorbid and not functionally disabled 61,165 64,010 101,471 108,212

Life care annuity

Healthy 187,344 192,352 228,806 237,872

Multimorbid and not functionally disabled 179,751 182,984 228,706 236,494

Table 5.15 shows the comparison of premiums for insurance products using the three

state and five state model. We find that premiums for life annuities, long term care

insurance and life care annuities from the five state model are always higher than the

three state model premiums for both static and trend models irrespective of gender. For

life annuities, what is deemed healthy in the three state model is much closer to the

multimorbid and not functionally disabled state than it is to the healthy state. For long

term care insurance, healthy individuals have a similar risk of functional disability to

those in the three state model. However, those who are multimorbid and not functionally

disabled have exorbitantly higher premiums (28.80%). For life care annuities, healthy

individuals pay more than those who are multimorbid and not functionally disabled.

This suggests that the costs of the life annuity portion of the life care annuity outweighs

the costs of the long term care in a combined product.
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Table 5.15: Comparison of premiums for insurance products using three state model
and five state model for males and females at age 65

Males Females

State Static Trend Static Trend

Difference from healthy state for life annuity

Healthy 15.18% 16.73% 12.63% 13.75%

Multimorbid and not functionally disabled 1.74% 1.95% 0.74% 0.92%

Difference from healthy state for long term care

Healthy 2.29% 3.54% 1.82% 3.27%

Multimorbid and not functionally disabled 28.80% 29.25% 31.19% 31.68%

Difference from healthy state for life care annuity

Healthy 14.76% 16.29% 12.68% 13.97%

Multimorbid and not functionally disabled 10.11% 10.63% 12.63% 13.31%

a All premiums compared to healthy state in three state model

5.5 Discussion

5.5.1 Contributions

In this chapter we compare two methods of integrating multimorbidity in multiple state

health modelling. We observe that conclusions reached on life expectancy and pricing

are very sensitive to the selected multimorbidity model. In particular, we find that there

is some weak evidence of morbidity expansion with the three state functional disability

model. However, the use of a more nuanced approach such as the proposed five state

model of multimorbidity and functional disability provides strong evidence that gains in

life expectancy are being lost to increasing multimorbidity which supports the theory

of morbidity expansion. These results concur with similar studies on the expansion of

multimorbidity albeit with data from different countries (Kingston et al., 2018; Tetzlaff

et al., 2017). The five state model of multimorbidity and functional disability is better

able to capture the dynamics of how multimorbidity and functional disability evolve over

time. This allows us to estimate more realistic values of life expectancy and prices of

insurance products. Consequently, beyond the health policy implications, there are pricing
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implications that actuaries need to consider when pricing or reserving longevity and health

linked insurance products. While the three state functional disability model correctly

shows that there are distinct life expectancy and healthy life expectancy patterns between

morbid and non–morbid groups; the five state model of multimorbidity and functional

disability improves this model by showing that providers can expect to makes significant

losses on life annuities, long term care and lifecare annuities due to mispricing of mortality

and functional disability risks. In particular, healthy individuals who are free of functional

disability or multimorbidity, can cause losses of up to 15.18% for annnuities, 2.29% for

long term care and 14.76% for life care annuities when priced using the static model as

shown in Table 5.15. Likewise, multimorbid and not functionally disabled individuals can

cause losses of up to 1.74% for annnuities, 28.80% for long term care and 10.11% for life

care annuities. These losses are even higher with the trend model. This highlights the

serious modelling pitfalls and challenges that come with incorporating multimorbidity in

long term care pricing.

5.5.2 Limitations

Prior studies in the epidemiology literature have relied on much larger datasets with more

than 100, 000 individuals particularly in the UK. We did not have access to such a large

dataset but are able to make robust conclusions given that the HRS is a nationally rep-

resentative study of older adults in the United States. However, for insurance processes,

this dataset is quite rich in comparison to the datasets most insurance companies have

access to. Secondly, the estimation of mortality at old ages is not robust due to fewer

observations at older ages which affects the pricing and life expectancy implications. Mod-

els which are more sensitive to mortality at older ages can be considered and adapted.

Female mortality might be underestimated by the three state health and functional dis-

ability model. Future work will consider adding an interaction term between sex and

age to improve the fit. It would also be interesting to see what factors are driving the

differences between multimorbid and not–multimorbid groups.

171



Chapter 5. Multimorbidity: Implications for life annuities and long–term care insurance

5.6 Conclusion

It is imperative the actuaries account for multimorbidity in long term care due to the

increasing prevalence of multimorbidity across the world and its impact on life expectancy.

Multimorbidity increases health care costs and reduces quality of life during older age.

For the more appropriate design and pricing of actuarially fair products, we need to know

how best to incorporate multimorbidity in multiple health state modelling. This has the

potential to increase demand for annuities and other health linked longevity products.

We compare two methods of multistate methods with recovery from functional disability.

We develop a five state model of multimorbidity and functional disability and extend

the three state model with functional disability by adding a multimorbidity predictor.

We find that the five state multimorbidity and functional disability model is able to

capture the dynamics of health over time more accurately than the three state health and

functional disability model. The results from the later model strongly suggest morbidity

expansion. Our five state model of multimorbidity and functional disability improves the

three state models by showing that life annuities, stand alone long term care products and

life care annuities are grossly mispriced which can lead to significant losses for annuity

and insurance providers.
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Appendix

5.A Data cleaning

Removed
2, 386 participants

209, 359 observations

HRS
42, 052 participants
420, 520 observations

Removed
7, 541 participants
10, 549 observations

39, 666 participants
211, 161 observations

32, 125 participants
200, 612 observations

Removed
20, 689 participants
352, 002 observations

32, 125 participants
363, 438 observations

Added
209, 359 observations

11, 436 participants
11, 436 observations

Removed
8, 060 observations

32, 125 participants
374, 874 observations

32, 125 participants
366, 814 observations

Removed
162, 826 observations

32, 125 participants
741, 688 observations

Added 374, 874
observations

Removed
13, 457 observations

32, 125 participants
578, 862 observations

Removed
14, 749 observations

32, 125 participants
565, 495 observations

Removed
159 participants

1, 576 observations

32, 125 participants
550, 845 observations

32, 125 participants
563, 824 observations

31, 966 participants
562, 248 observations

Removed
3 participants

355, 942 observations

32, 122 participants
189, 164 observations

Removed
1 participant

32, 121 participants
189, 164 observations

Removed
24, 431 participants
176, 185 observations

7, 690 participants
12, 979 observations

Figure 5.18: Sample selection for HRS dataset using procedure outlined in Appendix
5.B
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5.B Sample selection procedure

1. Step 1

a) Exclude observations from individuals who provide inappropriate responses

and do respond (except for those that are non–respondent and died this wave)

in any wave.

b) Exclude participants without consecutive interview dates

c) Fill in missing calendar years between interview dates

d) Use date of death as interview date for people who are non-respondent and

died this wave

e) Save file with interviews and filled in calendar years as “~/mydata/interviews.dta”

f) Save file with death events only as “~/mydata/deathdays.dta”

2. Step 2

a) Combine interviews with deathdays

b) Remove duplicates in calendar years

c) Create Event: “Birthday” in each calendar year including year of death and

year of first interview

d) Save file as “~/mydata/birthdays.dta”

3. Step 3

a) Combine birthdays with deaths and interviews

b) Remove individuals with missing dates

c) Remove birthdays occurring before first interview

d) Remove events after death

e) Save as “~/mydata/allexceptmidpoints.dta”

4. Step 4

a) Keep interview information

b) Keep individuals who are alive and either healthy or functionally disabled

c) Create midpoint date for transitions between healthy and disabled states

d) Extract individuals who have transitioned and save as “~/mydata/midpoints.dta”

5. Step 5
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a) Combine file with midpoints with the file with all interviews, birthdays and

death days

b) Remove individuals who haven’t reached age 45 (using RxAGE) by the end of

wave 13, that is, 31/12/2017
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5.C Future lifetime statistics for three state health

and functional disability model

Table 5.16: Future lifetime statistics for 75–year old healthy individuals using three
state static models

Overall Multimorbid Not multimorbid

Female Male Female Male Female Male

Life expectancy

Mean 12.609 10.380 11.520 9.273 17.893 15.023

Standard error 0.070 0.062 0.067 0.058 0.088 0.081

Standard deviation 6.994 6.178 6.728 5.809 8.780 8.062

Healthy life expectancy

Mean 10.256 9.099 9.042 7.922 15.868 13.902

Standard error 0.064 0.059 0.060 0.054 0.086 0.080

Standard deviation 6.400 5.871 6.001 5.410 8.580 7.946

Disabled life expectancy

Mean 2.353 1.281 2.479 1.351 2.025 1.121

Standard error 0.037 0.026 0.038 0.026 0.035 0.025

Standard deviation 3.657 2.576 3.749 2.641 3.506 2.500

Healthy life expectancy over life expectancy

Mean 0.832 0.889 0.811 0.874 0.889 0.926

Standard error 0.002 0.002 0.003 0.002 0.002 0.002

Standard deviation 0.241 0.211 0.259 0.228 0.190 0.164

Age at onset of disability conditional on becoming disabled

Mean 84.362 83.599 83.368 82.605 88.379 86.990

Standard error 0.086 0.098 0.079 0.085 0.124 0.137

Standard deviation 5.934 5.552 5.511 4.919 8.020 7.255

* Overall represents the model without multimorbidity predictor;
† Maximal age is 110 years.
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Table 5.17: Future lifetime statistics for healthy 75–year old individuals in 1998 using
three state trend models

Overall Multimorbid Not multimorbid

Female Male Female Male Female Male

Life expectancy

Mean 12.646 10.342 11.422 9.040 18.527 15.428

Standard error 0.072 0.063 0.071 0.060 0.095 0.088

Standard deviation 7.224 6.314 7.104 6.037 9.501 8.763

Healthy life expectancy

Mean 10.232 9.048 8.918 7.699 16.326 14.199

Standard error 0.065 0.060 0.063 0.056 0.093 0.086

Standard deviation 6.534 5.960 6.286 5.579 9.311 8.597

Disabled life expectancy

Mean 2.414 1.294 2.503 1.341 2.201 1.229

Standard error 0.038 0.026 0.038 0.027 0.039 0.028

Standard deviation 3.777 2.606 3.841 2.655 3.866 2.777

Healthy life expectancy over life expectancy

Mean 0.830 0.887 0.808 0.873 0.884 0.923

Standard error 0.002 0.002 0.003 0.002 0.002 0.002

Standard deviation 0.242 0.211 0.262 0.230 0.197 0.168

Age at onset of disability conditional on becoming disabled

Mean 84.331 83.523 83.129 82.406 88.253 87.042

Standard error 0.087 0.098 0.080 0.087 0.129 0.144

Standard deviation 6.048 5.613 5.598 4.995 8.236 7.631

* Overall represents the model without multimorbidity predictor;
† Maximal age is 110 years.
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Table 5.18: Future lifetime statistics for healthy 75–year old individuals in 2016 using
three state trend models

Overall Multimorbid Not multimorbid

Female Male Female Male Female Male

Life expectancy

Mean 13.668 11.161 13.517 10.825 20.899 17.792

Standard error 0.076 0.067 0.080 0.069 0.100 0.094

Standard deviation 7.613 6.688 7.993 6.891 9.958 9.442

Healthy life expectancy

Mean 10.749 9.610 10.552 9.268 18.472 16.410

Standard error 0.068 0.063 0.072 0.065 0.100 0.094

Standard deviation 6.851 6.284 7.240 6.504 10.034 9.432

Disabled life expectancy

Mean 2.919 1.551 2.965 1.557 2.427 1.382

Standard error 0.045 0.032 0.046 0.032 0.045 0.033

Standard deviation 4.525 3.147 4.607 3.178 4.516 3.263

Healthy life expectancy over life expectancy

Mean 0.814 0.880 0.807 0.874 0.885 0.923

Standard error 0.003 0.002 0.003 0.002 0.002 0.002

Standard deviation 0.260 0.224 0.268 0.234 0.206 0.177

Age at onset of disability conditional on becoming disabled

Mean 84.964 84.046 84.606 83.599 89.927 88.590

Standard error 0.092 0.103 0.096 0.104 0.145 0.165

Standard deviation 6.389 5.862 6.618 5.907 8.921 8.419

* Overall represents the model without multimorbidity predictor;
† Maximal age is 110 years.
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5.D Future lifetime statistics for five state multimor-

bidity and functional disability model

Table 5.19: Future lifetime statistics for healthy 75–year old individuals using five
state static and trend models

Static Trend in 1998 Trend in 2016

Female Male Female Male Female Male

Life expectancy

Mean 13.871 11.464 14.092 11.501 15.850 12.979

Standard error 0.069 0.062 0.074 0.065 0.081 0.073

Standard deviation 6.922 6.206 7.386 6.539 8.126 7.272

Healthy life expectancy

Mean 7.106 6.432 7.096 6.398 7.406 6.739

Standard error 0.055 0.050 0.056 0.051 0.059 0.053

Standard deviation 5.533 5.010 5.613 5.060 5.881 5.316

Functionally disabled and not multimorbid life expectancy

Mean 0.466 0.306 0.460 0.332 0.390 0.257

Standard error 0.017 0.013 0.017 0.014 0.016 0.012

Standard deviation 1.667 1.274 1.658 1.349 1.548 1.236

Multimorbid and not functionally disabled life expectancy

Mean 4.608 3.832 4.709 3.837 5.821 4.836

Standard error 0.055 0.049 0.057 0.051 0.068 0.061

Standard deviation 5.463 4.932 5.681 5.092 6.836 6.104

Multimorbid and functionally disabled life expectancy

Mean 1.692 0.893 1.826 0.934 2.232 1.147

Standard error 0.031 0.021 0.034 0.022 0.041 0.027

Standard deviation 3.110 2.112 3.384 2.254 4.068 2.725

Healthy life expectancy over total life expectancy

Mean 0.558 0.615 0.555 0.615 0.528 0.590

Standard error 0.003 0.003 0.003 0.003 0.003 0.003

Standard deviation 0.331 0.338 0.332 0.338 0.336 0.344

Mean time spent disabled

Mean 2.158 1.200 2.287 1.266 2.623 1.404

Standard error 0.048 0.034 0.050 0.036 0.056 0.040

Standard deviation 4.777 3.386 5.043 3.603 5.616 3.961
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Table 5.19: Future lifetime statistics for healthy 75–year old individuals using five
state static and trend models (continued)

Female Male Female Male Female Male

Mean time spent multimorbid

Mean 6.300 4.726 6.536 4.772 8.053 5.983

Standard error 0.086 0.070 0.091 0.074 0.109 0.088

Standard deviation 8.572 7.044 9.065 7.346 10.904 8.829

Multimorbidity over life expectancy

Mean 0.408 0.358 0.410 0.355 0.445 0.388

Standard error 0.003 0.003 0.003 0.003 0.003 0.004

Standard deviation 0.341 0.343 0.341 0.343 0.344 0.349

Age at onset of multimorbidity conditional on becoming multimorbid

Mean 82.516 81.745 82.558 81.760 82.783 82.032

Standard error 0.064 0.061 0.065 0.062 0.068 0.063

Standard deviation 5.117 4.593 5.185 4.667 5.432 4.813

Age at onset of disability conditional on becoming disabled

Mean 83.314 82.510 82.739 82.283 83.261 82.735

Standard error 0.160 0.166 0.154 0.162 0.180 0.206

Standard deviation 5.502 4.945 5.288 4.953 5.512 5.374

* Overall represents the model without multimorbidity predictor;
† Maximal age is 110 years.
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Conclusion

We set out to demonstrate how actuaries can merge revolutionary ideas from the dis-

parate fields of machine learning, epidemiology and statistics to improve product design

and pricing. Our main motivation is to encourage the wider adoption and coverage of

annuities and other longevity risk products by taking advantage of the existing mortality

heterogeneity in the population. The use of health trajectories from longitudinal individ-

ual level data is relatively unexplored in the actuarial literature. This thesis introduces

this concept to an actuarial audience and elucidates how we can identify risk profiles using

determinants of mortality and morbidity such as body mass index, multimorbidity and

self reported health.

In Chapter 3 we applied a k–means clustering algorithm adapted for longitudinal data to

determine risk profiles that demonstrate mortality heterogeneity. After significant trial

and error, we settled on trajectories of self reported health and body mass index. To our

knowledge, this is the first study in the actuarial literature that uses health trajectories

to determine mortality risk profiles. Earlier work used subjective determination of risk

groups or used static single variables such as education, income and deprivation indices to

determine different risk profiles. With this method, we are able to identify three clusters

that are unique across different socio–economic characteristics: a normal, stable BMI and

declining very good health (A), a normal, stable BMI and declining fair health (B) and

a high, increasing BMI and declining good health (C). The most interesting result from

this analysis is that relying on trajectories of BMI alone masks the effects of having fair

health and a normal BMI. Without considering their health status, these individuals would
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be treated as healthy and overcharged for annuities despite having the worst longevity

prospects. Estimated probabilities of death are even worse than those with increasing

BMI and good health.

Moreover, in Chapter 4 we build on our findings in Chapter 3 by using a more robust tech-

nique that enables us to estimate meaningful distances between trajectories of categorical

variables. We use hidden Markov models with covariates which are a powerful statisti-

cal tool that allows us to map each individual’s health trajectory onto a hidden Markov

model from which we can determine the likelihood of the hidden Markov model. After

establishing a distance matrix between trajectories, we are able to perform k–medoids

clustering to determine risk profiles. Using multistate models of functional disability, we

are able to demonstrate that models with clustering have a better fit to empirical data

than those without. The frailty model with clustering has the most superior performance.

The static model has no time trends and is unable to capture the changes in the composi-

tion of the data over time. Multivariate health trajectories are able to capture mortality

heterogeneity amongst different clusters. Using these clusters warrants us to offer better

insurance products that cover all risk levels and increase the demand of longevity risk

products.

A very interesting result that emanates from work in Chapters 3 and 4 is that clusters

determined from just two variables are able to show differences in other socio–economic

characteristics such as education, wealth and income across clusters. This demonstrates

the effectiveness of clustering in that you might not need all these other variables in

actuarial modelling if you have selected the right clustering variables. This is particularly

important given the usually limiting restrictions on which variables are used to price

products in the insurance industry. However, the decision of which clustering variables to

use requires significant judgement and exploratory analysis.

Finally, in Chapter 5 we compare two strategies on the incorporation of multimorbidity

in the actuarial pricing models for life annuities, long term care insurance and lifecare

annuities. Multimorbidity is common in old age and requires complex treatment which

in turn makes health care costs expensive. While there is a wealth of literature showing

morbidity expansion, increased mortality risks and socio–economic inequalities associated

with multimorbidity; it has been omitted in the actuarial pricing of longevity risk products

despite its known impact. Using our proposed five state model of multimorbidity and
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functional disability, we find that the omission of multimorbidity in pricing can cause

significant losses for insurance and annuity providers. These losses mainly stem from a

failure to distinguish between the risk profile of a healthy person (free from both functional

disability and multimorbidity) with that of a multimorbid and not functionally disabled

individual. In our extension of the three state model of functional disability by adding a

multimorbidity predictor, we find that these two risk profiles are merged into one profile

which causes providers to assume a lower risk than what is observed in reality. While our

results show morbidity expansion, this should not be taken negatively as multimorbidity

is the rule and not the exception. Increased longevity should be celebrated. Insurers

should take up this challenge and be more innovative in designing longevity and health

linked products that meet the needs of most retirees.

Overall, this thesis makes a timely contribution given the vast amounts of data, increase in

computational power and the need for fit for purpose insurance products. We acknowledge

that while some of the techniques introduced in this thesis are not necessarily new per se,

they have not been applied as demonstrated in this thesis. Therefore, this thesis provides

a solid foundation on which future work in actuarial precision analytics can be advanced.

As such, while there are multiple avenues for future work, we identify three main areas of

extension that also continue the trend of working across disciplines.

Both Chapters 3 and 4 utilise trajectories of body mass index for the generation of risk

profiles. However, recent research show the limitations of using body mass index as a

measure of obesity. Future work could consider other obesity measures that are more

robust than BMI which include waist to hip ratio and waist circumference. Since these

measures are more sensitive than BMI, we expect to see significant pricing and longevity

implications.

The estimation of hidden Markov models with covariates requires large computational

resources which are not easily available even when using high performance computing.

Therefore, more robust techniques should be employed particularly when the number of

individuals is high.

Based on the work in Chapter 5, one natural extension would be to identify the driving

factors behind the differences in life expectancy between morbid and non–morbid groups

in old age and link this with the pricing of longevity linked products. Some work has
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already demonstrated differences in life expectancy due to socio–economic inequalities,

smoking status and education and longitudinal data (Chan et al., 2019). However, pricing

implications of such analyses are rarely observed in the literature.

Actuaries have long worked in the area of mortality modelling and life insurance; making

novel and significant contributions in this field. In this thesis we continue this spirit and

encourage researchers and practitioners to work at the intersection of actuarial science,

epidemiology and machine learning to gain more insights into mortality heterogeneity.

Advances in these areas when combined can help in the achievement of the Sustainable

Development Goals, particularly Sustainable Development Goal 1 on eliminating poverty

and Sustainable Development Goal 10 on reducing inequalities.
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