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1 Introduction

1.1 Mortality Forecasts for Several Populations

Aside from the obvious interest in life expectancies in the myriad of sociological or med-

ical studies, mortality projections have always been an important feature in actuarial

science. Valid mortality forecasts are fundamental for pension funds or life insurers,

among many other financial institutions, to correctly price annuities, pension plans or

life insurances, and to hedge against losses due to longevity risk. Usage of population-

specific mortality rates through life tables for the calculation of annuities can be traced

back to the 17th century. Several deterministic mortality laws, which are still popular

to this day, were established during the 19th and 20th centuries, in particular the promi-

nent Gompertz law for the force of mortality by Gompertz (1825). The late 20th century

introduced stochasticity in mortality projection models to account for the general un-

certainty associated with systematic and unsystematic risks, i.e. the possibility of errors

due to the random nature of mortality events, sampling of historical mortality data,

assumptions on continuous mortality measures, modelling approaches, estimation and,

in particular, the forecasting techniques and uncertainty about future developments. In

this context, the Lee-Carter (LC) model by Lee and Carter (1992) has without doubt

evolved into one of the state-of-the-art models and motivated several other approaches

comprising stochastic mortality projections. The opportunity of measuring uncertainty

in longevity through quantiles and confidence intervals are vital features in actuarial

applications.

Due to fast-paced and progressively increasing globalisation, mortality patterns for dif-

ferent populations in the Western world have been observed to assimilate over the last

decades; see the discussion by Wilson (2001) for instance. Economic development, med-

ical innovations, and international migration cause mortality rates of formerly more
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isolated populations of developed countries to converge. As a consequence, such mortal-

ity patterns are by far not independent and it has become increasingly clear that even

mortality forecasts for individual populations should be modelled based on all available

data that contain necessary information. Joint mortality projections shall eliminate bi-

ological implausibilities, such as divergent behaviour resulting from individual mortality

forecasts, and, due to the increase in available data, improve their statistical properties,

particularly for the estimates of uncertainty. It is noteworthy, however, that sudden

short-term discrepancies between similar populations are not uncommon as observed in

Europe during the early 1990s. Findings in this work further suggest that the assimila-

tion process is less pronounced than commonly stated. Despite their popularity in recent

literature, prior convergence hypotheses in design stages of projection models seem to

underestimate this complexity.

In addition to the direct effects of globalisation on supra-national mortality patterns,

there has been a growing interest in learning about the particular dependencies between

populations. Life insurers, pension funds, and other investors are stakeholders in globally

organised financial markets. For example, life insurance portfolios may consist of con-

tracts negotiated in different countries, which are priced individually based on national

mortality data. From the global risk management point of view, however, worst-case

scenarios require mortality projections which take into account the joint movement of

mortality rates and, notably, the risk associated with universal shocks on longevity. Sim-

ilar arguments apply to the common task of modelling mortality in a specified portfolio

of populations in possibly different lines of business, which may substantially differ from

macro-economic mortality data for the entire population due to adverse selection. In

these instances, data quality may be substantially lower than what is observed for the

parent population. Again, borrowing the strength from data of other populations in-

corporates quantification of dependence and improves the statistical properties of the

forecasts.

1.2 A Brief Literature Overview

Current literature on actuarial mortality forecasting for developed countries, specifically

since the mid 2000s, has shifted its focus on multi-population mortality projection mod-
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els due to the aforementioned reasons. Their principal aims are an unbiased measure-

ment of expected mortality and its associated uncertainty. The latter should quantify

biologically plausible assimilation of longevity, dependencies between the individual pop-

ulations, and the statistical improvements due to the increase in available data. Several

contributions to this specific problem have been made, already leading to a variety of

model approaches, most of which seek to extend successfully proven stochastic single-

population models.

Mortality forecasting for single populations under inclusion of stochasticity finds its ori-

gin in the seminal paper by Lee and Carter (1992), who model logarithmic mortality rates

through an additive model. Besides a deterministic basic pattern for the log-mortality

over all ages under consideration, a bilinear term accounts for changes in this pattern

over time, weighted differently for distinct ages. Uncertainty about the randomness in

mortality is introduced through addition of homoskedastic random noise components

with expectation zero, independent for each pair of age and time. The time-dependent

changes in mortality patterns are forecast with time series models to construct confi-

dence boundaries for future outcomes in the log-mortality. Much work on the LC model

has been done ever since. Several authors postulate a Poisson distribution for the num-

ber of deaths to establish maximum-likelihood (ML) estimation, thereby allowing the

random errors to be heteroskedastic, see Brouhns et al. (2002) for instance. Under dif-

ferent distribution assumptions, Czado et al. (2005) and Pedroza (2006) use Bayesian

statistics for parameter estimation to avoid incoherence within the two-step calibration

of the baseline model and the time series forecasts. Other important extensions are the

inclusion of cohort effects by Renshaw and Haberman (2006) or overdispersion by, e.g.,

Delwarde et al. (2007).

The Cairns-Blake-Dowd (CBD) model by Cairns et al. (2006) contributes the main al-

ternative to the LC approach in general stochastic mortality forecasting. Motivated by

linear patterns in plots of the logits of observed mortality rates for older people versus

age, a Binomial regression with parameters for the intercept and slope is applied with

the mortality rates for each calendar year. In a similar manner as before, the bivariate

time series of intercept and slope coefficients is forecast into the future. The evolution

of the intercept describes general improvements in mortality rates, whereas the change

in the slope determines differences in the benefits for distinct age groups. The flexibility
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of adjustments in the linear predictor and the well-understood behaviour of generalised

linear models has lead to further modifications of this approach, too, such as inclusion

of effects for cohorts or quadratic patterns in the mortality logit profiles. A comparison

of a wide range of different CBD models and the LC approach is provided by Cairns

et al. (2009).

Multi-population mortality forecasting in the stochastic framework dates back to the

seminal work by Li and Lee (2005). Their augmented common factor model is an exten-

sion of the LC model for several countries with country-specific baseline patterns and

additional bilinear terms for each country, which describe individual deviations from

the main evolution. Jarner and Kryger (2011), Dowd et al. (2011), and Cairns et al.

(2011b) consider models with only two populations, in which time series forecasts are re-

alised w.r.t. the differences in the mortality trends between a population of interest and

a larger reference population to ensure a non-divergent behaviour. Zhou et al. (2012)

apply multivariate time series models to the bivariate time series of model parameters

for two general populations, which is extended to the case of an arbitrary number of

populations by Ntamjokouen et al. (2014). Inclusion of country-specific covariates as

explanatory variables is considered by Reichmuth and Sarferaz (2008). Other models do

not build upon the LC framework. For example, Biatat and Currie (2010) use P-splines

to model differences in mortality, but do not project mortality rates into the future, and

Ahc̆an et al. (2014) replicate a population of interest by mixing other populations. It is

noteworthy that the literature in actuarial science has seen further approaches that focus

on projections of insured amounts rather than the number of deaths, and death-specific

models have been in the focus of medical research.

However, despite all possible advances in the works outlined above, a general framework

that addresses all problems with mortality projection, as outlined in Section 1.1, has not

yet been developed. Such models are generally restricted to a certain maximum number

of populations or their nested structures, and are not always as flexible as necessary to

be sufficiently practicable.
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1.3 Objectives

This work provides contribution to the scientific area of multi-population mortality pro-

jection through a model proposal, which addresses the challenge of biologically plausible

joint forecasts of dependent populations in a globalised world. After an extensive litera-

ture review on stochastic mortality prediction models for single and multiple populations,

the proposed model is derived, defined, and applied. In light of benefits and limitations

of the reviewed models, the approach is based on a flexible augmented version of the CBD

model for higher ages in an arbitrary number of populations. It comprises a hierarchical

set-up, in which the model parameters of the CBD model are forecast using a Vector

Error Correction Model (VECM), a specific representation of the multivariate Vector

Autoregressive (VAR) model. Dependencies between different parameters, and hence

between different populations, and biological plausibility in future mortality forces are

accounted for not only by cross-correlation terms, but also by additional quantification

of cointegration, i.e. common stable trends in the long-run. Application of the universal

VECM further removes restrictions on the type of populations that can be analysed.

Along with the model formulation, further attention is devoted to parameter estima-

tion given historical data and incorporation of the different types of uncertainty risks

in the model. In addition to the model design, which already accounts for the random

nature in mortality, the measurement of other sources of risks in the future develop-

ments of mortality is a main objective, and a Bayesian approach is established. The

corresponding philosophy of postulating randomness for the unknown parameters leads

to quantification of the future predictions via probabilistic distributions, which imme-

diately yield Bayesian credibility regions for mortality forecasts. Moreover, by its very

nature, Bayesian statistics aims to detect the characterising properties of such underly-

ing distributions rather than determination of each individual parameter value. Since

for any but the smallest number of populations, frequentist estimation methods such as

ML lead to singularities in the estimating equations, the Bayesian approach is indeed

necessary in this high-dimensional framework to forecast the mortality of an arbitrary

and desired number of populations. Further advantages of the Bayesian approach are

the reduction of inconsistency in parameter estimation between both levels in the hier-

archical set-up and an implicit smoothing of mortality rates.
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To keep the model both parsimonious and flexible, extra parameters for cohort effects

will not be included. The Bayesian approach to this model is outlined in detail and a

Markov Chain Monte Carlo (MCMC) algorithm for numerical estimation is derived. A

corresponding routine in the statistical programme language R is made available. Nec-

essary mathematical and probabilistic preliminaries, especially on Bayesian statistics,

MCMC theory and multivariate time series analysis, are provided. The model is cali-

brated with data of different European countries to assess the quality of mortality pre-

dictions. Statistical diagnostic tools and comparisons with univariate projections from

individual models and frequentist estimation are conducted in the course of two case

studies. Core interest lies in careful discussions on how the model performs regarding

the desired properties in stochastic mortality forecasting.

1.4 Outline

The work is outlined as follows. Chapter 2 gives a detailed introduction into stochastic

mortality forecasting for multiple populations by first introducing standard terminology

on mortality and the general framework of stochastic models even for single populations.

By explaining existing models in more detail, this chapter motivates both the general

need for new multi-population projection models to address the required objectives and

the particular modelling choices in the remainder of the work. In Chapter 3, the model

is carefully established and the Bayesian estimation procedure is derived, along with a

numerical MCMC algorithm and the computation of mortality forecasts based on these

results. The model is applied with several European countries via two case studies in

Chapter 4. The model fit and the convergence of the MCMC algorithm are analysed

and results are compared to univariate and frequentist mortality forecasting procedures.

Chapter 5 concludes with a discussion. The Appendix gives background information for

a general understanding of Bayesian statistics, MCMC techniques, and the VECM, as

well as further technical details where necessary. It further introduces the R package to

run the MCMC algorithm along with numerical details.
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Modelling

Dating back to the first life tables in the 17th century or the first laws of mortality pro-

posed by de Moivre (1725) and Gompertz (1825), the analysis of mortality has always

been in the focus of researchers from diverse scientific fields such as medicine, sociology,

and economics. In particular, mortality forecasts are of great importance as they heav-

ily influence socio-economic decisions. Any calculations w.r.t. public pension and health

care systems build upon projected mortality rates. A broad literature has emerged dur-

ing the last decades in which various models and projection tools have been suggested.

Since the beginning of the 21st century, multi-population as well as Bayesian models

have been proposed by several authors. This chapter gives an overview of the stochastic

models from recent years, which have evolved into benchmark models in modern mor-

tality forecasting, and a deep insight into simultaneous analysis of several populations

and Bayesian approaches to mortality estimation. After defining central measures of

mortality in Section 2.1, the subsequent section describes the milestones in stochastic

mortality projections and their extensions in detail. Section 2.3 provides descriptions

for multi-population models, and Section 2.4 finally introduces the different applications

using the Bayesian paradigm.

2.1 Definitions of Mortality

When it comes to studies on mortality, a variety of quantities exists whose notation and

terminology are not always consistent throughout the literature. Besides minor changes

in subscripts, this work uses the same standardised notation as in the comparison of

several stochastic models by Cairns et al. (2009). It is worth mentioning that variables

in any other cited literature should be read carefully in order to avoid confusion with def-
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initions. The interested reader is referred to Pitacco et al. (2009) for a general overview

of mortality measures.

In terms of estimating and forecasting mortality in a certain population, the central

quantity of interest is the force of mortality, denoted by µxt, where x ≥ 0 is some real-

valued age and t ≥ 0 is a point in time. For fixed x and t, it expresses the instantaneous

probability of immediate death for an individual aged exactly x at time t, and as a

function in age it contains all information of mortality behaviour in the sample under

consideration at time t. The force of mortality corresponds to the hazard function known

from survival analysis when x and t increase at the same pace given an initial age x0 at

starting point t0. Typically, µxt is not directly observable, since mortality data are not

recorded on a continuous scale.

In contrast, another important measure of mortality, the central death rate, accounts for

deaths during a time frame rather than at an exact point in time. It is defined as

mxt :=
Expected number of deaths during calendar year t aged ⌊x⌋ last birthday

Average population during calendar year t aged ⌊x⌋ last birthday
,

where ⌊x⌋ is the greatest integer not exceeding x ≥ 0 and the calendar year t ∈ N is

meant to be the time interval [t, t+ 1). The average population size in the denomina-

tor is usually estimated by the population size in the middle of the calendar year or,

to be more precise, the total time lived in calendar year t by people aged ⌊x⌋ at their

last birthday. The latter estimate is often referred to as the exposure-to-risk Ext. The

expected number of deaths is naturally approximated by the observed number of deaths

Dxt in the population under consideration. The resulting estimate Dxt/Ext for the cen-

tral death rate mxt is called the crude death rate for x in t.

Finally, a third quantity is the so-called mortality rate qxt, which is the probability of

dying within calendar year t for an individual aged exactly x at the point in time t.

In order to obtain results for the force of mortality from discrete observations, it is

common to impose the assumption that µxt remains constant over each year of integer
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age and over each calendar year, i.e.

µxt = µx+∆x,t+∆t

for all 0 ≤ ∆x < 1 and 0 ≤ ∆t < 1, see, e.g., Cairns et al. (2009) or Pitacco et al.

(2009). They derive that the force of mortality equals the corresponding central death

rate and, indeed, the ML estimate for µxt is then the crude death rate. Further, it is

shown that the relationship

qxt = 1− exp (−mxt) (2.1)

holds for any integer-valued x and t, what they regard an accurate approximation for

the mortality rate. This work adopts the assumption of a constant force of mortality

and its implications.

2.2 Stochastic Models for Mortality Projection

Besides a variety of deterministic models which extrapolate historical mortality trends

into the future (see, e.g., Pitacco et al. (2009)), stochastic models have become popular

for mortality forecasting purposes since the early 1990s. Such approaches share the

advantage of including the random nature of mortality through underlying probability

assumptions. As a consequence, not only point estimates but also confidence intervals

for mortality forecasts can be established. Furthermore, these approaches are designed

to fulfil standard criteria in mortality modelling such as consistency with historical data,

biologically reasonable long-run dynamics or robustness, as outlined in detail by Cairns

et al. (2008). This section describes the two main models within this framework and

a selection of extensions to these. For a thorough comparison of stochastic mortality

models, the reader is referred to the papers by Booth and Tickle (2008), Cairns et al.

(2009) and Haberman and Renshaw (2011).

2.2.1 The Lee-Carter Model

In recent years, the LC model, first introduced by Lee and Carter (1992), has evolved

into the main approach for mortality estimation and forecasting. This stochastic model
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describes the central death rate mxt at some age x by the log-bilinear form

log (mxt) = αx + βxκt + εxt (2.2)

with parameters αx, βx, κt and error terms εxt. As a function in age only, αx describes the

basic pattern of mxt averaged over time. Conversely, κt is a function in t and expresses

the overall evolution of mortality over time. These changes to the underlying mortality

scheme are weighted for the different ages through the profile in βx. Lee and Carter

(1992) set up the constraints
∑

x βx = 1 and
∑

t κt = 0 in order to achieve uniqueness

in the bilinear term. They finally assume the random fluctuations εxt to be independent

with zero mean and variance σ2
ε > 0. For annual mortality data, Lee and Carter (1992)

estimate the parameters by least-squares, using the first-rank approximation from a

singular value decomposition of a suitable matrix to deal with the non-linearity in the

parameters. Denoting the estimates by α̂x, β̂x, κ̂t, typically improvements in mortality

are detected in that the function κ̂t exhibits a negative trend. Stochastic forecasts for

the development in mortality are obtained by applying time series models with these

estimates. Lee and Carter (1992) propose a random walk with drift for modelling κ̂t.

Point estimates and confidence intervals are then obtained for the future evolution in

mortality by using Box-Jenkins approaches (see, e.g., Box et al. (2013)). As a conse-

quence, substituting the remaining parameter estimates in (2.2) and setting the error

terms to zero leads to point and interval projections for the expected log-scaled central

death rate in the future.

Since the influential work by Lee and Carter (1992), several extensions to the model

in (2.2) have been discussed, one of which is an ML estimation procedure suggested

by Wilmoth (1993) and Alho (2000). Due to findings by Brillinger (1986), they argue

that for some age x and time t, the according number of deaths Dxt is independent and

approximately Poisson distributed with mean mxtExt, i.e.

Dxt ∼ Poi (mxtExt)

for all x and t. Then ML estimation becomes possible for αx, βx, κt using the relation

log (mxt) = αx + βxκt, i.e. the LC approach as in (2.2) but dropping the additive error

term. Due to the work by Brouhns et al. (2002), who apply this technique to Belgian
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mortality data, the approach is usually referred to as the Poisson log-bilinear model. By

excluding εxt from the model equation, random fluctuations around the logarithm of the

central death rate are no longer assumed homoskedastic. This is regarded advantageous

since the variance in observed log (mxt) differs between younger and older ages, where

relative variability w.r.t. the exposure-to-risk is the highest for old ages due to low sam-

ple sizes. Delwarde et al. (2007) generalise the ML approach by replacing the Poisson

distribution with the two-parametric Negative Binomial distribution to account for pos-

sible overdispersion in the number of deaths, as do Renshaw and Haberman (2003b,c,

2006) through an overdispersed Poisson formulation.

Another major extension of the LC model is the inclusion of cohort effects as suggested

by Renshaw and Haberman (2006). It was discovered that the pure LC model is not

able to successfully fit certain datasets such as mortality data from England and Wales,

see Renshaw and Haberman (2003a). The goodness-of-fit can be significantly increased

when for integer-valued age x and calendar year t the cohort effect of the corresponding

birth year t− x is taken into account through an additive term γt−x, i.e.

log (mxt) = αx + β(1)
x κt + β(2)

x γt−x

with some distribution assumption on the log-death rates and additional constraints

to the new parameters. The resulting model is sometimes referred to as the Renshaw-

Haberman model, particularly when comparing to simple age-period-cohort effect models

of the form log (mxt) = αx+κt+ γt−x. Many further modifications of the LC model can

be found in the literature – see, e.g., Lee (2000) or de Jong and Tickle (2006) –, but will

not be discussed here.

Despite its overall success, the LC framework has also been criticised taking into consid-

eration the model criteria by Cairns et al. (2008). For example, as Cairns et al. (2009,

2011a) point out, the quantification of mortality improvements through only one factor

κt implies perfect correlation among the changes of central death rates for all ages, and

the profile βx may not be smooth. The correlation structure remains simple even for the

Renshaw-Haberman model, for which additional problems with robustness are detected.

The shortcomings in the LC model and its extensions have therefore ultimately led to

various other attempts to project mortality or death rates.
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2.2.2 The Cairns-Blake-Dowd Model

With their study on mortality data of the United Kingdom, Cairns et al. (2006) con-

tribute another major approach to stochastic mortality forecasting in addition to the

LC model. Based on empirical findings, in this two-factor model, named CBD model

after its inventors, the core assumption is that for some fixed time t ≥ 0 and sufficiently

high ages x, the logits of the probabilities qxt increase approximately linearly in age.

Therefore, they adapt a Binomial generalised linear regression1 for each t, i.e.

log

(
qxt

1− qxt

)
= κ

(1)
t + κ

(2)
t x, x ≥ x0 (2.3)

with x0 being a lower bound for the ages under consideration. The identifiable param-

eters κ
(1)
t and κ

(2)
t are estimated via standard ML methods. Then, similar to the LC

approach, the estimates κ̂
(1)
t and κ̂

(2)
t are regarded as a bivariate stochastic process, which

is again modelled using time series techniques. The first marginal time series, κ̂
(1)
t , gives

the intercepts in all regression equations, thereby describing the general development

in mortality for all ages. As before, this time series usually declines. The second time

series, κ̂
(2)
t , measures changes in the slopes. When some age groups benefit more than

others from improvement in mortality rates, this affects the slope. For example, κ̂
(2)
t ex-

hibits an increasing trend if younger age groups show faster reduction in mortality than

the older age groups do. Hence, the two-factor approach in (2.3) allows for imperfect

correlation in changes of mortality rates as distinct from the LC model. This is also

advantageous as the CBD model is able to smooth not only the mortality development

over time but also the age profile, which is often neglected in standard LC models. On

the other side, forecasting the bivariate time series
(
κ̂
(1)
t , κ̂

(2)
t

)
, which finally leads to pro-

jections in the logit of mortality rates, becomes more complex than in the univariate case.

For mortality data of the United States, Cairns et al. (2009) find that the plot of es-

timated log (qxt/ (1− qxt)) against age x reveals some curvature. In such cases they

suggest to incorporate a quadratic term in (2.3) along with an own set of parameters

1Note that the CBD model is not necessarily a logistic regression model as the successes and failures
describing the mortality rates qxt might not be directly observable. In particular, in this work only
the number of deaths Dxt (successes) and exposure-to-risk Ext (number of trials) will be available
such that qxt must be further linked to the underlying data through (2.1). The resulting link
function mxt 7→ log (exp(mxt)− 1) differs from the logit link so that the more general terminology
of Binomial generalised linear regression is used.
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κ
(3)
t . Pitacco et al. (2009), however, point out that the behaviour of the third time series

may not be clear and modelling becomes complicated. Nonetheless, the flexible set-up of

the CBD model indeed allows for further modifications such as additional cohort effects,

see Cairns et al. (2009) for a thorough comparison of different designs. The CBD model

is generally found to be more adjustable with a solid fit, but is only appropriate for the

analysis of high ages.

2.3 Simultaneous Mortality Projections for Several

Populations

So far, accuracy of the aforementioned stochastic models and their modifications have

been assessed for a wide range of mostly developed countries, commonly stratified for

both genders. However, models are usually fitted separately to distinct populations and

forecasts from each individual model are finally compared – see, e.g., Macdonald et al.

(1998), Tuljapurkar et al. (2000) or Booth et al. (2006). Li and Lee (2005) argue that

information provided by the interaction within a group of countries is lost when the

mortality of one of these countries is modelled individually. Basic patterns in mortality

are expected to be consistent among similar countries, and due to globalisation effects

differences should vanish over time. Incorporation of such transnational influences should

lead to improvements in projections compared to individual studies. Similar arguments

are quoted when males and females are separately modelled, or subpopulations, e.g.

members of a pension fund in a certain country, shall be compared to the corresponding

parent population. This section summarises contribution in recent literature to the topic

of joint analyses of more than one population. It should be noted that there also exist

various models for simultaneous estimation of other mortality-related quantities such as

life expectancy, see Oeppen and Vaupel (2002) for instance.

2.3.1 The Augmented Common Factor Model

Li and Lee (2005) suggest a three-step procedure to mutually model several populations

that builds on the LC approach. First, the ordinary model in (2.2) is run for the entire

sample comprising all, say, countries. The parameters κt and βx determine the over-

all development of mortality and according profile of age-specific weights, respectively.
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In a second step, the averaged transnational death rate patterns, given by αx, are re-

placed by individual patterns αxp for each country p. Estimates for these profiles are

the country-specific logarithms of central death rates averaged over time. Finally, the

remaining residuals are described by a second bilinear term βxpκpt, which now depends

on the population via the subscript p and enters the model as an additive term. For

fixed p, the corresponding κpt reveals differences in mortality evolution w.r.t. the overall

development, and βxp gives population-specific weights for ages concerning these devia-

tions. By analogy to the standard estimation in the LC model, Li and Lee (2005) apply

a singular value decomposition to find least-squares estimates. Summarising, the final

model, which they call the augmented common factor model, is given by

log (mxpt) = αxp + βxκt + βxpκpt + εxpt

with independent and homoskedastic error terms εxpt. The authors restrict the model

to those countries, whose differences from the overall mortality tend towards a constant

level in the long-run. When the estimates for κpt cannot be satisfactorily modelled by a

random walk without drift or an autoregressive (AR) model, they exclude population p

from the analysis. Although it is crucial to avoid divergent behaviour in death rates that

does not seem plausible, ignoring certain countries may violate the statistical validity of

the model, comparable to omitting unwanted observations such as outliers in statistical

models in general. The augmented common factor model is even more inappropriate

for modelling a group of countries which show some uncommon death rate patterns.

For example, Li and Lee (2005) are not able to capture the observations from Bulgaria,

Hungary, and Russia, which is debatable because similar countries like the Czech Re-

public or Lithuania fit to the approach. Since the estimates κ̂pt must be inspected for

each population p separately, the augmented common factor model does not serve as a

practical framework for a large number of populations.

2.3.2 Models for Two Populations

Based on findings by Booth et al. (2006) that countries with small population sizes

appear more difficult to forecast, Jarner and Kryger (2011) propose analyses of small

samples along with large, so-called reference populations containing the small sample as

a subpopulation. In their model, which they call the spread adjusted international trend
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model due to application in an international context, they use time series methods to

forecast both mortality trends of the reference population and deviations from the overall

trend in the subpopulation. These deviations, referred to as the spread, are modelled in

a regression equation, where explanatory variables comprise linear and quadratic effects

of age. The time series of parameter estimates are assumed stationary in order to avoid

divergent behaviour in mortality evolution and, in particular, a multivariate first-order

VAR model with zero mean is used. In their application to mortality data of 19 devel-

oped countries with Denmark serving as subpopulation, Jarner and Kryger (2011) show

that the assumption of stationarity is indeed fulfilled, implying that Danish mortality

rates converge to those of the reference population in the long-run. However, the authors

also note that there is no guarantee for this assumption to hold and there may be need

for more suitable models when data suggest permanent variability in differences. In

light of the previous section, it is not clear whether the model would lead to satisfactory

results when countries like Bulgaria, which cannot be adequately captured in Li and Lee

(2005), were included into the analysis. Even if the spread adjusted international trend

model can be extended to allow for more than one subpopulation, it may not be a good

framework for an analysis of a wider range of countries.

The gravity model by Dowd et al. (2011) contributes an approach rather similar to the

spread adjusted international trend model. The authors also focus on the case where

one population significantly exceeds another in size, and it is assumed that interest lies

in modelling the smaller population. This is done with the help of the larger population,

because both are again believed to behave similarly for biological and socio-economic

reasons and statistical properties gain from the increased sample size. By setting up

age-period-cohort models for both populations, respectively, the common trend is ob-

tained via a bivariate time series model for the time-dependent parameters governing

the mortality evolution for each population over time. In the equation for the small

population’s innovations in mortality evolution, the process features an additive term to

quantify the difference between the parameters of both populations. The corresponding

coefficient measures the effect of this difference in a way that in case of large deviations,

the time series for the small population is forced to move to the level of the time series

for the large population. This mean reversion for the small population becomes stronger

the more the levels of the univariate series differ. The effect is comparable to gravity

between a planet and its orbit, thereby giving the model its name. As before, this ap-
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proach excludes divergence between the two populations in the design stage and benefits

from statistical properties through a larger sample for the originally small population

of interest, but – again – particular interest lies in one, say, country only and the time

series models need to be assessed carefully. It is noteworthy that this approach implic-

itly postulates a cointegration relationship between the two univariate processes with

a predetermined cointegration vector and a loading factor for the submissive population.

Cairns et al. (2011b) set up a mortality projection model for two populations in which

parameters are estimated via Bayesian methods. This framework is also designed for

modelling a subpopulation with mean-reverting spreads relative to a dominant reference

population. This model is described in more detail in the next section, which is entirely

devoted to Bayesian models in mortality projections. Zhou et al. (2012) show that it

is not always clear which of the small and large populations is the dominant one. Mo-

tivated by the above studies, they extend the two-population approach via application

of VAR models in plain and VECM form to include symmetric rather than one-sided

cross-correlations into the model equations. Hence, as an advantage over the previous

models, there is no specific need for a distinction between dominant and submissive

populations. As before, non-divergence conditions are incorporated into the VAR model

through parameter constraints and into the VECM through the cointegration term with

a pre-specified cointegration relationship. Estimation is conducted via ML and compar-

ison of goodness-of-fit checks indicates that the VECM gives the most reasonable results.

Another approach, which makes use of larger datasets to improve the fit for small pop-

ulations of interest, is given by Plat (2009). Using a reference population, the model is

designed for the specific problem of forecasting the insured amount rather than the pure

number of deaths in a portfolio of, say, pension funds, and is therefore not considered. In

the context of hedging such insurance portfolios, Li and Hardy (2011) compare several

extensions of the LC model for two populations, one of which allows for cointegration

in a bivariate time series model for κt. Several other two-population models, e.g. by Lin

et al. (2013) and Zhou et al. (2013), have been suggested in an actuarial context, but

are not discussed in detail here. A general alternative to bivariate mortality projection

models is proposed by Ahc̆an et al. (2014). Here the main motivation is that the small

population has an insufficient sample size for statistical analyses. A pool of larger refer-

ence populations is mixed in an optimal way to replicate the population of interest, and
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this sufficiently large counterpart is then projected via standard models as described in

Section 2.2. All the models in this section have in common that only two populations

can be forecast and, as seen with most of the applications in the respective studies,

their use is restricted to cases where interest lies in a single subpopulation rather than

dependencies between several populations.

2.3.3 Further Models

Some other contributions on joint analyses of mortality in several populations have been

made. Building upon the work by Zhou et al. (2012), Ntamjokouen et al. (2014) apply

the VAR model and the VECM to more than two populations. Their application with

both genders in nine Canadian provinces give mixed results in that the VECM seems

the most appropriate model, but lacks goodness-of-fit notably for males. Due to the

brevity of their discussion, the analysis, however, must be considered insufficient for

general conclusions on the appropriateness of the VECM. Biatat and Currie (2010)

use P-splines to detect similarities and differences between mortality rates of different

countries or between males and females. Their analysis, however, is not dedicated to

mortality projections into the future and therefore not described in detail here. In

comparison, Börger and Aleksic (2011) do make projections on future mortality trends

using a stochastic model on mortality improvements rather than rates. It is assumed

that the logarithm of annual changes in mortality rates is given by an additive set

of parameters for the variables age, period, and cohort. For distinct populations, the

parameters are estimated individually and, for projection purposes, different techniques

must be applied to the estimates. The principal component of this approach is the

forecast of the period parameters, and since a direct methodology does not seem obvious,

Börger and Aleksic (2011) derive future values for these parameters by forecasting the

life expectancies of the populations under consideration. The authors argue that such a

forecast is generally easier than immediate predictions of the mortality improvements,

but this method in turn requires a couple of assumptions on the development of life

expectancy, which depend on the populations under consideration and raise difficulties

on their own. The model is thus applied to Western European countries with large

population sizes only, thereby inhibiting this approach from being a general framework

for joint analyses of a wide range of countries.
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2.4 Bayesian Models for Mortality Forecasting

The models in the previous sections have in common that they principally build upon a

two-level hierarchical structure. First, the main model equation expresses the quantity

of interest, i.e. a transformation of the mortality rate, in terms of parameters. Then

the estimated parameters in this equation are forecast into the future by standard time

series models. Since in each of the discussed approaches both submodels are estimated

separately, the link between the response variable and the model’s underlying dynamic

processes may become spurious. Czado et al. (2005) warn against incoherence that

these two-step procedures may account for. Moreover, forecasts based on the frequentist

Box-Jenkins approaches in the second model stage typically exhibit elliptical confidence

boundaries with stable long-term confidence regions, which appears to be unrealistic

given the naturally increasing uncertainty about future developments in medicine, econ-

omy, and sociology.

In order to avoid such shortcomings, Cairns et al. (2011b) propose to combine both

steps into one estimation procedure, which improves consistency within the set of pa-

rameters. They indicate that a likelihood-based single-step estimation method could be

applied. However, due to its natural inclusion of uncertainty in the parameters, Cairns

et al. (2011b) and also Czado et al. (2005) prefer Bayesian inference over frequentist

estimation. As stated by Czado et al. (2005), another reason is that the prior belief

of mortality rates behaving smooth across ages and time can be integrated into the

model framework. When data support this assumption, estimated mortality rates will

be smooth, too, thereby making crucial smoothing methods obsolete. The remainder of

this section outlines the literature on Bayesian models in mortality forecasting.

2.4.1 Bayesian Approaches to the Lee-Carter Framework

Czado et al. (2005) are the first authors who apply Bayesian statistics to the frame-

work of the LC model. The underlying model is the Poisson log-bilinear model from

Section 2.2.1 first introduced by Brouhns et al. (2002). The authors combine the two

stages in the LC approach, i.e. the estimation of period effects along with their age

profiles and the calibration of an underlying dynamic model for the period effects, into

one single step. Contrary to the general model, they assume a first-order AR model
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rather than a random walk with drift for κt. As mentioned earlier, in combination with

the Bayesian methodology this allows for the advantage of smoothing the data within

the estimation procedure. Finally, standard priors are used for the unknown hyper-

parameters in the AR(1) model. In their application to data of French males, Czado

et al. (2005) show that their mortality projections are somewhat more pessimistic, but

in general they closely agree with frequentist forecasts. Parameter uncertainty for future

forecasts leads to wider credibility bands, which always include the frequentist estimates.

Similar conclusions can be found for the example of US-American males in Pedroza

(2006). Here, the Bayesian paradigm is directly applied with the original LC model, i.e.

with normally distributed error terms and a random walk with drift for the dynamics

process. The findings of wider credibility intervals in both studies suggest that predic-

tion errors in the frequentist version of the LC model are not able to cover all sources of

uncertainty. Lee and Carter (1992) themselves suppose in their original work that the

fluctuation in the dynamics process accounts for most uncertainty in the final confidence

bands. Hence, due to Pedroza (2006), Bayesian models are more suitable in mortality

projection as they include all different sources of estimation and prediction errors. Fi-

nally, Kogure et al. (2009) compare both models by Czado et al. (2005) and Pedroza

(2006) and some variations via application to data of Japanese males. They conclude

that in each model framework, a time series with stochastic trend for κt performs best,

whereas no appropriate results for the differences between the normality and Poisson

assumptions can be drawn.

Reichmuth and Sarferaz (2008) provide another Bayesian mortality projection model.

Also building on the LC approach, they modify the original model extensively in that

they allow for several covariates, e.g. macroeconomic quantities, in addition to the la-

tent variables κt. Furthermore, they employ time series models not only for the time-

dependent parameters but also for the age parameters to achieve smoothness across

ages. With their application to mortality for males in the United States, they conclude

that covariates can improve forecasts. As seen in the previous studies, Reichmuth and

Sarferaz (2008) also stress the Bayesian property of incorporating all different sources

of prediction error. Likewise, the model by Girosi and King (2008) is worth mentioning

as it also includes covariates in a Bayesian model. However, the methodology strongly

differs from what Lee and Carter (1992) propose, and mortality rates are analysed by
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cause of death. Therefore, this model as well as other approaches with cause-specific

parameters in medical contexts, see e.g. Bray (2002), are not discussed in detail here.

2.4.2 The Bayesian Mortality Model for Two Populations

The Bayesian mortality model for two populations by Cairns et al. (2011b) is the first

approach that combines both Bayesian methodology and simultaneous estimation pro-

cedures for more than one population. The model is restricted to two populations, which

may be distinct or nested. The authors make use of a simple age-period-cohort model,

i.e. an additive model with own parameters for each of the age, period, and cohort ef-

fects, to keep the focus on the Bayesian approach. Similar to Jarner and Kryger (2011)

and Dowd et al. (2011), there is a reference population which is modelled first, where

for the other population the spread in central death rates is analysed. The desired be-

haviour of non-divergence in the long-run between both populations is accounted for by

using mean-reverting processes for the underlying dynamics. The set of such models

ranges from random walks to AR models of up to second order. Note that the effect on

sudden shocks or short-term estrangements has not become clear yet when, instead of

data-driven techniques, convergence is postulated in the model’s design stage, as done

in this and other previously mentioned approaches.

Even if Cairns et al. (2011b) apply mostly non-informative priors, the large number of

parameters requires various distribution families, including the Inverse Wishart, Beta,

Gamma, and Gumbel distributions. According to the authors, the model therefore re-

mains sensitive towards the assumptions in the prior distributions and results must be

treated carefully. Apart from this, Cairns et al. (2011b), however, show that the Bayesian

methodology strongly helps in estimating different populations jointly, smoothing the

fitted data, and being consistent in the projections. This underlines the appropriateness

of Bayesian approaches in mortality forecasting of more than one population.

Up to this point, as far as I am aware, there is no Bayesian approach for more than two

populations in the framework of stochastic mortality models described in this chapter. It

is worth noticing that Raftery et al. (2013) introduce Bayesian estimation in a stochastic

extension of the so far deterministic mortality projection model by the United Nations.

Using a hierarchical model on innovations in life expectancy, parameters are country-
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specific but follow a common distribution with global hyperparameters, i.e. inference is

based on the aggregate of all information. The Bayesian hierarchy guarantees a certain

degree of coherence, but this approach is far less concerned about common trends or

dependencies between countries because forecasts are still made individually without

any quantification of correlation.
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3 The Bayesian Multi-Population

Mortality Projection Model

As seen in the previous chapter, many achievements have been made in multi-population

mortality projection modelling within the last years. As a consequence, different models

allow for a rich set of possibilities in mortality forecasting. Nonetheless, the discussion

has revealed that, in practice, each model has its own limitations. In order to overcome

these shortcomings, a new model is proposed in this chapter. Based on findings in the

literature review in Chapter 2, it features the Bayesian paradigm to capture both pa-

rameter uncertainty and all sources of prediction errors. Furthermore, the focus is laid

on a flexible framework using the CBD model, allowing for an arbitrary number and

an arbitrary selection of populations. Accordingly, in the remainder of this thesis, the

suggested model is referred to as the Bayesian Multi-Population Mortality Projection

(BMPMP) model. It should be stressed that – as far as I am aware – no such model

approach is found in literature, i.e. the work in this thesis provides substantial contri-

bution to stochastic mortality forecasting. In particular, for the first time, the CBD

model is applied in the multi-population framework, and the Bayesian paradigm has not

yet been used for the CBD model or a mortality model with more than two popula-

tions either. This chapter describes the BMPMP model in full detail and is organised

as follows. The first section addresses the targets for the new model, motivated by a

summary of shortcomings in established approaches. The actual model itself is defined

and explained in detail in Section 3.2. Next, Bayesian estimation and forecasting of the

model are presented in Sections 3.3 and 3.4, respectively. Section 3.5 summarises the

BMPMP model.
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3.1 Model Targets

The main objective of the BMPMP model is to stochastically forecast mortality rates for

high ages of an arbitrary number of populations. It must provide biologically plausible

joint predictions for flexible selections of populations. Uncertainty of future mortality

rates and their inter-dependencies shall be coherently quantified through probability

distributions. The BMPMP model addresses its main targets through a combination of

different approaches in model design, estimation, and forecasting.

3.1.1 Limitations in Existing Models

To fulfil these targets, a new model is necessary. Clearly, both the LC and CBD frame-

works as well as age-period-cohort models have been successfully proven to be state-

of-the-art in stochastic mortality forecasting. While the first two approaches bring the

advantage of interaction between time-dependent improvements in mortality and their

age-dependent weights – and, hence, a principally better fit to historical data over age-

period-cohort models –, it is not necessarily clear which one of the LC and CBD models

is more suitable. A major disadvantage in the LC methodology is a possible lack in

the model fit through an implicit perfect correlation in mortality improvements among

different ages. Additionally, the lack of smoothness in the age profiles and their non-

identifiability w.r.t. time-dependent quantities may cause undesired results. The CBD

model addresses all these issues through its formulation as a generalised linear regression,

but is only applicable with ages above a minimum threshold of at least 40 years. Prob-

lems with a possible lack of fit in CBD models can be reduced by including a quadratic

age effect on mortality rates. The necessity of forecasting the additional coefficient time

series will not be an extra burden in an already multivariate model, when several pop-

ulations need to be analysed. If the modeller is interested in high ages only, which is a

reasonable assumption in the context of many life insurance or other financial products,

the CBD model serves as solid foundation in stochastic mortality projections.

Up to this point, the discussion has focussed on the fundamental properties of the

aforementioned mortality projection models w.r.t. the performance in their intended

scope of application: forecasting a single population. However, the introduction of

this work stressed the increasing necessity to jointly forecast different populations to
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capture common trends and dependencies. Chapter 2 reviewed the extensions of the

LC framework and other approaches to address this task of multi-population forecasts.

However, it turned out that joint prediction models are far less elaborate. Indeed,

existing models for projections of several populations are limited by at least one of the

following:

• The model is only applicable to a limited number of populations.

• The model design requires determination of dominant and sub-populations.

• Its assumptions exclude certain populations or combinations of populations, e.g.

due to unwanted interaction behaviour in the long-run or the need for a parent

population for at least one of the other populations.

• Underlying dynamics processes must be analysed individually, preventing the frame-

work from universal usage.

• Model forecasts have stable long-run confidence boundaries, which are unreason-

able considering the increase in uncertainty and risks of regime changes in the

future.

• Desired biological plausibility in forecasts is hypothesised in the model design and

does not necessarily stem from historical data.

• Populations to be modelled must have a high quality in mortality data and the

model may require further explanatory covariates.

• The model requires forecasts of other mortality quantities, which are themselves

not easy to handle with.

• The model is not designed for mortality projections.

Based on these points, no such sophisticated tool as in the univariate case to forecast

an arbitrary number of possibly heterogeneous populations exists. Consequently, this

motivates the BMPMP model. The subsequent section is then devoted to how the model

is designed to provide the desired framework in multi-population forecasting, which shall

overcome the aforementioned shortcomings.

24



3 The Bayesian Multi-Population Mortality Projection Model

3.1.2 Benefits of the New Model

Through the flexibility of a generalised linear regression design known from the CBD

framework, the BMPMP model allows to jointly forecast an arbitrary number of more

than two populations at once. Differences between the distinct populations are accounted

for by specific main and interaction effects in the linear predictor. This distinguishes

the new approach from the vast majority of projection models, as they are designed

to project the spread between only two populations. The Binomial generalised linear

regression further allows for simple interpretation and adjustments of the main model

equation. The model is only applicable with ages exceeding a minimum threshold of 40

or so years, but has the advantage of immediate smoothing across ages. For an improved

model fit, the numbers of deaths are assumed to follow a Poisson distribution.

It is somewhat difficult to collect consistent explanatory variables on all populations,

particularly when they are not national but portfolio-specific. It is further non-trivial to

project such covariates into the future, which means that such approach cannot be con-

sidered universal frameworks. Similar arguments apply to models for which forecasts of

other mortality quantities have to be made. By contrast, the BMPMP model is flexible

regarding the requirements w.r.t. the available data. For any population to be included

in the model, it suffices to have data on the observed number of deaths and estimates

for the exposure-to-risk for all ages and calendar years under consideration.

The BMPMP model further employs a VECM for the projection of the underlying

dynamics processes. Through its cross-correlation, cointegration, and AR terms, this

data-driven time series model is designed to capture dependencies even between less

connected populations. In contrast to the augmented common factor model by Li and

Lee (2005), which too allows for an unlimited number of populations, the BMPMP model

intends to overcome the problems seen for certain Eastern European countries, whose

long-run behaviour could not be reasonably forecast into the future. Not only must Li

and Lee (2005) exclude certain countries from their analysis, but they further need to

specifically investigate the marginal time series for all individual countries. The VECM

is more suitable for mortality projection of multiple arbitrary populations, because the

multivariate set-up makes such individual analyses obsolete.
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Following the arguments in many of the cited studies concerning multi-population fore-

casting, unwanted long-run interactions are given when mortality rates of different popu-

lations diverge over time. However, even if it is biologically plausible that mortality rates

converge or keep constant differences over time, some divergent behaviour, at least in the

short-run, has been observed for several countries in recent years, e.g. in Eastern Europe

in the early 1990s. Furthermore, diseases, natural catastrophes, and wars on the one

hand, as well as medical innovations and improvement on the other, have always caused

random shocks with long-term effects on mortality in certain populations. The multi-

variate VECM approach allows for random shocks via Gaussian noise while maintaining

a non-divergent long-run behaviour through inclusion of an error correction term. This

accounts for cointegration between the univariate time series, i.e. linear combinations of

several populations forming stationary processes, whose information is lost in less data-

driven techniques. Notably, with a deterministic non-divergence hypothesis, as used in

other cited approaches, random shocks might be systematically discounted. Estimation

of the error correction term is driven by the data without formulating any restrictive

hypotheses in order to achieve biological plausibility. Finally, the VECM is also moti-

vated by Zhou et al. (2012), as it avoids any pre-determination of dominant populations.

Motivated by the studies described in Section 2.4, which have proved successful in captur-

ing a variety of systematic and unsystematic risks, e.g. the purely random nature as well

as parameter and prediction uncertainty, the BMPMP model is estimated via Bayesian

statistics. This technique as such makes the approach less sensitive towards deviations

from the Poisson assumption on the number of deaths through possible overdispersion or

omission of cohort effects. A likelihood-based frequentist procedure would again require

a two-step estimation method, where the CBD model is estimated first, and then the

VECM is applied with the resulting parameters. This study refrains from this approach,

because frequentist parameter estimates are expected less coherent.

The quantification of future uncertainty in the frequentist LC and CBD frameworks

can additionally be criticised for their typically elliptical behaviour, meaning that after

a short time of increasing variability, the confidence boundaries remain stable around

the best estimates. These characteristics are not desirable, as uncertainty w.r.t. future

projection should naturally increase continuously with time to express the diminishing

impact of today’s and past developments on the far-away future. It will be apparent
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from the case studies in Chapter 4 that the cointegration term in the BMPMP model

introduces more reasonable credibility bands of linearly increasing uncertainty.

As a final note, a principal advantage of Bayesian estimation is its ability to handle large

datasets and to deliver solid distributions on global parameters if models are not parsi-

monious or even over-parametrised. Due to the high-dimensionality in multi-population

mortality modelling, the BMPMP model would be restricted to a very small and hence

undesired number of populations with frequentist approaches, even for a relatively large

history of observed mortality data.

3.2 Model Specification

By analogy to other stochastic mortality prediction models, the BMPMP model con-

sists of two hierarchical submodels. First, for each calendar year, the state variable is

modelled, which in this instance is done via the CBD approach. Following, the second

step is the projection of obtained model parameters into the future via the VECM. This

section fully describes and motivates both specifications in the model.

3.2.1 The Cairns-Blake-Dowd Approach

In order to employ the CBDmodel on the underlying state variables in a multi-population

context, the linear predictor in the regression equation of the original approach must be

amended. To begin with, the CBD model with quadratic term for the age effect and

minimum age x0 is considered, i.e.

log

(
qxt

1− qxt

)
= κ1

t + κ2
t (x− x̄) + κ3

t ((x− x̄)2 − σ̂2), x ≥ x0, (3.1)

where Cairns et al. (2009) motivate the quadratic pattern by findings on U.S. data.

Here, the age x is centred by the average x̄ = n−1
a

∑
i xi, where na is the total number

of different ages xi under consideration. Similarly, σ̂2 = n−1
a

∑
i(xi − x̄)2 is the variance

of the ages. It is worth mentioning that for the sake of simplicity and flexibility, the

model does not include additional parameters for, say, cohort effects as proposed by

Cairns et al. (2009). If deviations caused by cohort effects systematically exceed the

pure random noise and cannot be captured by the quantification of different sources of
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uncertainty in the Bayesian methodology, an extension of the model, which does include

explicit cohort parameters, is of course possible. Regarding the minimum age x0, this

value should generally not fall below the age of 40. For lower age groups, the linearity

assumption on the logits of mortality rates does generally not hold. In particular, the

CBD approach is not designed to fit the so-called accident bump. However, for many

applications in insurance science, the analysis of mortality rates for people aged 40 or

more is sufficient, since life or health insurance contracts are usually concluded just be-

fore that age. The CBD framework is often applied with values like x0 = 50 or x0 = 60

for a better performance, see Cairns et al. (2009) for instance.

So far, for a fixed calendar year t, the according mortality rate only depends on age

through a linear and quadratic term. The BMPMP model additionally assumes that

both the intercept and age effects vary between different populations. Mathematically,

these amendments are integrated into the Binomial regression via main effects on the

one, and interactions with the age terms on the other hand. Let np ∈ N be the number

of different populations for which mortality projections shall be derived. Taking into

consideration the model targets, one assumes without loss of generality (w.l.o.g.) that

np > 1. For some population p with specific mortality rate qxpt in calendar years t,

model (3.1) is then extended as follows:

log

(
qxpt

1− qxpt

)
= κ0

t + κp
t + (κx

t + κxp
t ) (x− x̄)

+
(
κx2

t + κx2p
t

) (
(x− x̄)2 − σ̂2

)
, x ≥ x0. (3.2)

Notation has slightly changed in order to achieve consistent subscripts for the param-

eters. As x refers to age in this study, the former parameters κ1
t , κ

2
t , κ

3
t are denoted κ0

t

for the intercept and κx
t , κ

x2

t for the linear and quadratic age terms, respectively. The

new population parameters are consistently referred to through the subscript p. The

main effect for population p is κp
t , and κxp

t , κx2p
t are the interactions with the linear and

quadratic terms for age, respectively.

Since there are parameters for each population, a reference population is needed to

avoid identifiability problems. Typically, in most statistical models, one certain pop-

ulation acts as reference by setting the according parameters to zero. Similar to the
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LC approach, one can also set some constraints, e.g.
∑np

p=1 κ
p
t = 0 for all t. However,

note that this formula implies that all populations are equally weighted, while parame-

ters should be weighted according to population sizes when realistic weights are desired.

As an alternative, the BMPMP model uses the overall sample p∗, inferred from the

individual populations by simple addition of death and exposure counts, as reference

population. Consequently, the population parameters measure the differences from av-

erage mortality. The BMPMP model then becomes easily interpretable and, for a large

number of populations, generally more robust due to the borrowing-strength principle.

With the reference population being the overall sample, the number of parameters in-

creases to 3 (np + 1). It is worth mentioning that the CBD equation can be interpreted

hierarchically. For the reference population p∗, it holds that

log

(
qxp∗t

1− qxp∗t

)
= κ0

t + κx
t (x− x̄) + κx2

t

(
(x− x̄)2 − σ̂2

)
, x ≥ x0, (3.3)

and, therefore, the intercept and age parameters can be estimated directly from the

sum of all populations. In a second step, equation (3.2) is applied with each individual

population, given the parameters from (3.3). Throughout this work, the model is set up

by this hierarchical structure.

Model (3.2) is a general framework for np different populations that do not overlap. Even

if the model could be applied with populations that are nested, one should then adjust

the linear predictor to avoid incoherence through collinearity. A typical example, which

is discussed in the case studies in Chapter 4, is the comparison of males and females in

several countries. Denoting by p a particular country, for which the term population is

adopted, the new dimension of two genders must be integrated separately, e.g. through

a subscript g. When a main effect and first-order interactions with both the age and

country effects are included, the model becomes

log

(
qxpgt

1− qxpgt

)
= κ0

t + κp
t + κg

t + κpg
t + (κx

t + κxp
t + κxg

t ) (x− x̄)

+
(
κx2

t + κx2p
t + κx2g

t

) (
(x− x̄)2 − σ̂2

)
, x ≥ x0, (3.4)

where new parameters are labelled by g and their interpretation is straightforward.

With subgroups, the overall samples of both genders are considered first, i.e. the main
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gender and gender-age interaction effects are estimated from the reference population.

Consequently, interactions of gender with individual populations follow in the second

step along with the population-specific main and age effects. With np populations,

the number of parameters is then 4np + 6. For a general number of subgroups within

the populations or an alternative consideration of interaction effects, the well-known

generalised linear regression approach allows for easy adjustments.

3.2.2 The Vector Error Correction Model

The aim of the second stage in the BMPMP model is to forecast the parameters from

the CBD model w.r.t. time. In the standard version of the CBD model as in (3.1),

one obtains a three-dimensional time series, in which univariate time series contain the

intercepts and both linear and quadratic age effects. The model is usually forecast via

Box-Jenkins approaches, e.g. by applying VAR models or, for the sake of convenience,

univariate time series models to each marginal parameter type. However, due to the

extensively increased number of parameters in the BMPMP model, special care must be

devoted to the choice of the time series model for forecasts. The general framework of

standard Vector Autoregressive Moving Average (VARMA) models in the Box-Jenkins

methodology still remains one of the most reasonable choices due to Wold’s Decomposi-

tion Theorem, as reviewed in Appendix C.1.

Based on findings of mortality forecast models in the literature, it can be expected

that the intercept and main age effects show a trend-stationary behaviour over time.

Assuming that all other population- or subgroup-specific parameters are not of higher

integration order, it seems plausible to concentrate on multivariate time series models for

the first differences. Motivated by fundamental results in multivariate time series given

in Appendix C, under regular conditions such as non-explosive behaviour, a finite VAR

representation without moving average (MA) terms is a reasonable approach. However,

first-order differencing in VAR models is substantially different from what is known from

the univariate case of AR models. Starting with a VAR model of lag order k, which

includes non-stationary time series, the reverse characteristic polynomial for unit root

detection is now a matrix-valued function. Whereas in the univariate case, the number

of unit roots reveals the order of integration, the multivariate case allows the marginal

time series to have integration order strictly less than the number of unit roots. In this
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case, the unsophisticated technique of marginally differencing the univariate time series

of the CBD parameters can distort possible stationarity of long-run relationships among

the marginals. As explained in Appendix C.2 in more detail, marginal time series may

not be stationary, although linear combinations of them can still be. Such time series are

said to be cointegrated. In particular, combinations of the intercept and the main effect

for females or between different populations-specific parameters are expected to have

a stable equilibrium. In Appendix C.3, it is shown that information on cointegration

in a VAR model carries over to a singular matrix, which is obtained by evaluation of

the characteristic polynomial at 1. It is derived how differencing the vector-valued time

series indeed leaves this matrix – which will later be denoted as Π – as an additional pa-

rameter in the equation for first differences, in contrast to loosing this information when

marginally differencing the individual time series. The resulting model of correct first

differences is the VECM, and starting with this representation of a VAR model is always

a valuable approach, as described in Appendix C.3. The analysis of cointegrated VAR

models goes back to a series of pioneering papers, starting with the work by Granger

(1981), and further exploration by Engle and Granger (1987) with much contribution

from several authors in the years thereafter. Most notably, Johansen (1988, 1991) and

Johansen and Juselius (1990, 1992) develop an ML estimation framework, referred to

as the Johansen procedure, which is widely used nowadays. A thorough overview on

the VECM can be found in Johansen (1995) and Lütkepohl (2007), for instance. Ap-

pendix C reviews all necessary preliminaries.

Mathematically, the VECM can be defined in different but equivalent formulations. In

the following, the transitory version of the cointegrated VAR is described, where for the

alternative long-run specification, the reader is referred to the appendix or the literature

cited above. Let K be the multivariate time series of all unknown parameters with values

κt = (κ0
t , κ

x
t , κ

p1
t , κp2

t , . . . ) for t = 1, . . . , T , with T being the number of calendar years

for which CBD models are run. With m ∈ N one denotes the dimension of the time

series, which automatically coincides with the number of parameters in each CBD model

from the previous section. The according time series of first-order differences κt − κt−1

is of length T − 1 and denoted by ∆κt. The VECM of order k ∈ N with initial values

31



3 The Bayesian Multi-Population Mortality Projection Model

κ1, . . . , κk is

∆κt = φDt +
k−1∑

i=1

Γi∆κt−i + αβ′κt−1 + εt, t = k + 1, . . . , T, (3.5)

or, equivalently,

κt = φDt +
k−1∑

i=1

Γi∆κt−i + (Im + αβ′)κt−1 + εt, t = k + 1, . . . , T, (3.6)

with Im being the m×m identity matrix. The error terms εt are independent and iden-

tically distributed (iid) multivariate normal distributed with zero mean and covariance

matrix Ω ∈ R
m×m. A vector of time-varying constants Dt with some fixed dimension

d ∈ N enables the user to include deterministic, e.g. linear or seasonal, trends. This

influence is measured by the according parameter matrix φ ∈ R
m×d. For the BMPMP

model, the VECM with time-consistent Dt = 1 and d = 1 is applied. Further parameters

are the k − 1 AR coefficient matrices Γi ∈ R
m×m, which describe the impact of recent

changes in κ on the current difference. Adjustment of k obviously leads to different

time horizons, and, in particular, the VECM of order 2 is second-order Markovian and

excludes any history before the previous change in the time series. Finally, the cointegra-

tion term is of special interest, as the current change ∆κt also depends on the according

starting point κt−1 through the parameter matrix Π := αβ′ ∈ R
m×m, which is assumed

to have rank r ∈ {0, 1, . . . ,m}. The matrix Π is decomposed into the matrices α and

β, which are both of dimension m × r with full rank r. For β, the upper r × r block

matrix is assumed to be the identity matrix such that a unique representation of Π is

obtained. The decomposition of Π allows for the following interpretations. First, β′κt−1

represents a new r-dimensional time series containing different linear combinations of

the univariate time series in κ. The VECM assumes that these univariate time series are

stationary; therefore, the original time series is said to be cointegrated of rank r. Second,

the parameters in α then explain to what extent these derivations of the current level

in κ govern ∆κt. It is worth mentioning that, similar to the order k, the cointegration

rank r is generally not known and must be additionally estimated.
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It is convenient to formulate the model in (3.5) with Dt = 1 and d = 1 in the compact

matrix form

∆K = Φ+ ΓK2 + αβ′K1 + ε (3.7)

with m×T −k matrices Φ = (φ, . . . , φ), ∆K = (∆κk+1, . . . ,∆κT ), K1 = (κk, . . . , κT−1),

ε = (εk+1, . . . , εT ), an m× (k− 1)m matrix Γ = (Γ1, . . . ,Γk−1), and a (k− 1)m× T − k

matrix

K2 =
(
(∆κ′

k, . . . ,∆κ′
2)

′
,
(
∆κ′

k+1, . . . ,∆κ′
3

)′
, . . . ,

(
∆κ′

T−1, . . . ,∆κ′
T−k+1

)′)
.

In this representation, the t-th columns of both matrices on the left- and right-hand side

belong to the vectorised form of the VECM at time t. Model equation (3.7) is less in-

terpretable than the previous one; however, it is more useful w.r.t. theoretical results in

Bayesian statistics. The set of underlying hyperparameters {φ,Γ, α, β,Ω} is abbreviated

by H for convenience. The decomposition of β is written as β = (Ir, β
′
l)

′ with the lower

block matrix βl ∈ R
(m−r)×r. Under this so-called linear normalisation, one can write

β = c+ c⊥βl with c = (Ir, 0r×m−r)
′ ∈ R

m×r and c⊥ = (0m−r×r, Im−r)
′ ∈ R

m×(m−r).

Summarising, models (3.4) and (3.5) establish the BMPMP approach introduced in this

study. Bayesian methods are used to estimate all parameters in both models; they

will be explained in the following section. The only exceptions are the lag order and the

cointegration rank, which are assumed to be known beforehand. The according variables

k and r are left open such that the analyst can specify the quality fit through two single

adjustment parameters.

3.3 Bayesian Estimation

Similar to other approaches in mortality forecasting, the BMPMP model consists of two

model equations. In the first stage, mortality data are modelled separately for each

calendar year, where the second stage introduces the time dimension in that parame-

ters are regarded realisations from stochastic processes. Whereas ML methods usually

estimate the parameters subsequently, the Bayesian approach allows for a one-step esti-

mation method, which has positive impact on coherence between parameters. Different
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sources of risk, due to pure randomness, estimation errors, or future regime changes, are

specifically accounted for by the likelihood, prior distributions, and posterior predictive

methods, respectively. This section describes the Bayesian estimation procedure for the

BMPMP model in detail. First, the likelihood for the underlying mortality data as well

as the prior distributions for all parameters of the previous section are determined. Then

the posterior distributions with according simulation algorithms are derived. For this

section, the reader is expected to bring a broad understanding of principals in Bayesian

methodology. Otherwise, Appendix A provides a sufficient introduction to this topic

based on the standard textbook by Gelman et al. (2013).

3.3.1 Likelihood for the Underlying Data

Following Appendix A, Bayes’ Theorem plays a central role in Bayesian estimation.

Prior distributions for model parameters are updated to posterior distributions through

information of the underlying observations, which in this context are the number of

deaths and according exposure-to-risk for all ages, populations, and calendar years under

consideration. The typical notation from the previous chapter is expanded w.r.t. the

additional population dimension, i.e. as Dxpt and Expt are denoted the number of deaths

and the exposure-to-risk for age x, population p, and calendar year t. Due to the common

assumption of a constant force of mortality as in Cairns et al. (2009), it is then assumed

that

Dxpt ∼ Poi (mxptExpt) ,

thereby following the arguments of Czado et al. (2005) that a Poisson distribution best

expresses the natural mortality behaviour. From (2.1) it follows that

Dxpt ∼ Poi (− log (1− qxpt)Expt) . (3.8)

As usual, the numbers of deaths are furthermore assumed independent between different

ages, populations, and calendar years. It is worth mentioning that (3.8) is additionally

assumed to hold for the reference population p∗ with some sample mortality rate qxp∗t,

number of deaths Dxp∗t =
∑

p 6=p∗ Dxpt and exposure-to-risk Exp∗t =
∑

p 6=p∗ Expt. Inde-

pendence is still assumed to hold for different ages and calendar years; however, there is

clearly a strong dependence on the individual subpopulations. The mortality rate qxpt
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is the response variable in the CBD model, and some algebra gives that

qxpt =
exp (ηxpt)

1 + exp (ηxpt)
,

where ηxpt denotes the linear predictor, i.e. the right-hand side of equation (3.2). Sub-

stituting this expression into (3.8) reveals

Dxpt ∼ Poi (log (1 + exp(ηxpt))Expt)

and leads to the likelihood

L (K | Dxpt, Expt)

= P (Dxpt | K, Expt)

=
1

Dxpt!
(mxptExpt)

Dxpt exp (−mxptExpt)

=
E

Dxpt

xpt

Dxpt!
[log (1 + exp(ηxpt))]

Dxpt exp (− log (1 + exp(ηxpt))Expt)

∝ [log (1 + exp(ηxpt))]
Dxpt (1 + exp (ηxpt))

−Expt ,

where L indeed depends on K through the linear predictor ηxpt. Let now

D = {Dxpt ∀ x, p, t, p 6= p∗},
E = {Expt ∀ x, p, t, p 6= p∗}

be the sets of all individually observed data for the numbers of deaths and exposure-to-

risk, respectively. Since all Dxpt in D are mutually independent, one can also write more

compactly

L (K | D, E)
= P (D | K, E)
=
∏

x

∏

p

∏

t

P (Dxpt | K, Expt)

∝
∏

x

∏

p

∏

t

(
[log (1 + exp(ηxpt))]

Dxpt (1 + exp (ηxpt))
−Expt

)
.
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3.3.2 Prior Distributions

Apart from the first k calendar years, prior distributions for the parameters K in the

CBD equations are iteratively given by the dynamics process, i.e.

κt | κt−k, . . . , κt−1,H, k, r ∼ Nm

(
φ+

k−1∑

i=1

Γi∆κt−i + (Im + αβ′)κt−1,Ω

)

for t = k + 1, . . . , T , where Nm denotes the m-variate normal distribution. The pa-

rameters κ1, . . . , κk require own prior distributions, as there are not sufficiently many

preceding values available for the AR part. For all values but the first, a possible choice

would be the above normal prior based on the VECM representation restricted to the

available history. However, the missing information on history in these cases alter the

conditional assumptions and interpretation, which may introduce bias. To avoid such

problems, for the first k values, anm-variate normal distribution with fixed mean vectors

µt and m×m covariance matrices Σt, respectively, i.e.

κt | k ∼ Nm (µt,Σt) , t = 1, . . . , k, (3.9)

is suggested. Ideally, these moments are determined based on prior beliefs or experience.

If this is not possible, mean and variance can be estimated from the underlying data.

Due to similar magnitudes in variability, it is reasonable to use one constant covariance

matrix Σ = Σ1 = · · · = Σk. However, even if such a so-called empirical Bayes approach

is practicable, it should be noted that, in general, data should not influence the prior

assumptions on the distributions of parameters due to the Bayesian paradigm.

Regarding the hyperparameters φ,Γ, α, β,Ω of the underlying dynamics process, priors

for the VECM are needed. Since the cointegration parameters α and β multiplicatively

affect one another, Bayesian analysis is not straightforward. Several approaches have

been suggested since the 1990s, which aim to overcome possible problems with inconsis-

tency as well as local and global identification issues. Particular attention must be given

to the choice of the prior for the cointegration term, as supposedly non-informative priors

turn out to distribute probability mass in an unreasonable way in the so-called cointegra-

tion space, i.e. the space spanned by the columns of β. However, a well-defined uniform

prior over this space is introduced via the Grassman approach due to Villani (2005). The
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BMPMP model incorporates the prior by Warne (2006), a slightly generalised version of

the standard Grassman prior by Villani (2005). The remainder of this section is devoted

to the specific formulation of this prior and its marginal distributions in the context of

the BMPMP model. Appendix C.5 provides a detailed discussion of Bayesian techniques

and their challenges in the context of the VECM. It particularly motivates the Grassman

approach through a discussion of theoretical background on cointegration spaces. For

an even more general overview on different Bayesian approaches to cointegration and

the Grassman approach, the reader is referred to Koop et al. (2006) and Villani (2005),

respectively.

The general reference prior due to Warne (2006) is

f (φ,Γ, α, β,Ω | k, r)

= cr |Ω|−(m+q+r+1)/2 exp

(
−1

2
tr

[
Ω−1

(
A+

1

λ2
α

αβ′βα′

)])
f (Γ | Ω, k) (3.10)

with constants λα > 0, q ≥ m, and a positive definite matrix A ∈ R
m×m, and applies

to the hyperparameters given that the lag order k and cointegration rank r are fixed.

Here, tr (M) denotes the trace of a quadratic matrix M , i.e. the sum over all diagonal

elements. The normalising constant cr is

cr = |A|q/2 Γr (m)

Γm (q)Γr (r)

2−qm/2π−m(m−1)/4

(2πλ2
α)

mr/2 π(m−r)r/2
,

where Γb (a) for a, b ∈ N0 with a ≥ b is a generalised form of the Gamma function as

defined in Definition D.1. It is worth mentioning that f is an improper density function,

as it remains constant for different values for φ. When the marginal prior for Γ | Ω, k is

chosen to be constant, too, (3.10) yields the original reference prior by Villani (2005).

This work adopts the generalisation by Warne (2006), who defines a proper distribution

for f (Γ | Ω, k) in a similar manner as the classical Minnesota prior for AR terms in

VAR models. For constants λb, λl > 0, define the diagonal m(k − 1)×m(k − 1) matrix

ΩΓ = diag
(
ΩΓ1 , . . . ,ΩΓk−1

)
through the k − 1 block matrices

ΩΓi
=

λ2
b

i2λl
Im, i = 1, . . . , k − 1,
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of dimension m × m, respectively. Then Warne (2006) lets Γ | Ω be Matrix-Normal

distributed with

Γ | Ω, k ∼ MNm(k−1)×m (0,ΩΓ,Ω) , (3.11)

see Definition D.4. As outlined in the appendix, it holds for the vectorisation of Γ | Ω
that

vec (Γ) | Ω, k ∼ Nm2(k−1) (0,Ω⊗ ΩΓ) ,

where vec(·) and ⊗ are the vectorisation and Kronecker matrix product operators defined

in Appendix D.2. Obviously, Γ is conditionally independent of α, β, φ given Ω, r, k. The

generalisation by Warne (2006) hence does not distort the results by Villani (2005) for

f (Γ | Ω) = 1 and, consequently, for the marginal distribution of Ω, it follows that

Ω ∼ IWm (A, q) ,

where IWm denotes the Inverse Wishart distribution, see Definition D.7. In Bayesian

methodology, it is common to formulate probabilistic statements about variance param-

eters by their inverse, the so-called precision, i.e. Ω−1 has the conjugate m-dimensional

Wishart prior from Definition D.6 with parameters A and q. Moreover, for the profile

matrix α, the conditionally marginal prior is Matrix-normal with

α | β,Ω, r ∼ MNm×r

(
0, λ2

aΩ, (β
′β)

−1
)

or, equivalently,

vec (α) | β,Ω, r ∼ Nmr

(
0, (β′β)

−1 ⊗ λ2
αΩ
)
.

For the lower block matrix βl of β = (Ir, β
′
l)

′, it further holds that

βl | r ∼ Mt(m−r)×r (0, Im−r, Ir, 0) ,

where Mt denotes the Matrix-t distribution as in Definition D.5. In addition to these

marginal results derived by Villani (2005), it is shown by Warne (2006) that the marginal
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prior for Γ is also Matrix-t distributed with

Γ ∼ Mtm×m(k−1)

(
0, A−1,ΩΓ, q −m

)
.

The marginal distributions show that the constants A and q determine the prior for

Ω and α. For q ≥ m + 2, Villani (2005) shows that E (Ω) = (1/ (q −m− 1))A, and

hence, for given A, the uncertainty about unexplained variability in the model decreases

in q, because the expected error covariance matrix converges to the zero matrix. The

constant λα affects the uncertainty of α, since its columns have zero mean and covari-

ance matrices λ2
α E (Ω). A larger value therefore implies larger uncertainty. Since the

magnitude of this covariance matrix depends on the expected value of Ω, Villani (2005)

suggests to determine A and q first and to adjust λα in a second step. For the prior

assumptions on Ω, the analyst needs to quantify the expected variances and, to be more

informative, also covariances for the latent time series a priori, which will generally be

hard to conceive. It is hence practicable to use an empirical Bayes approach based on

an ML estimate such as A = fA(Ω̂), where fA is a tuning function for the modeller, and

Ω̂ can be the empirical covariance matrix of the time series in levels or, if there is too

much variability, the corresponding covariance matrix for the time series in differences.

A particular choice could be fA(M) = (λ2
Am

2
ij)ij for a square matrix M = (mij)ij with

some tuning factor λA > 0. In either case, one should use the minimum value q = m+2

for maximum uncertainty in order to reduce the effect of such an improper data-driven

technique. Another choice for the first two constants, found in the literature, is A = 0

and q = 0, which yields an uninformative diffuse marginal prior for Ω. In light of

the Minnesota prior for AR coefficients, the remaining constants λb and λl determine

the uncertainty in the parameters Γ1, . . . ,Γk−1, because Warne (2006) shows that it is

E(Γ) = 0 for q ≥ m + 1 and Cov(vec(Γ)) = ΩΓ ⊗ E(Ω) for q ≥ m + 2. The uncertainty

in Γ is hence driven by ΩΓi
for i = 1, . . . , k− 1, whose overall magnitude is given by the

baseline constant λb for given E(Ω), whereas the lag constant λl measures the shrinkage

towards the zero covariance matrix and, hence, to more certainty about vanishing AR

coefficients with increasing order. Due to the dependence on the expected value of Ω,

these two constants should be determined along with λα. For parsimony in the model,

the chosen prior for Γ | Ω implies conditional independence between the different Γi, but

through inclusion of further constants, the prior could be even more generalised to allow

for dependence between the AR matrices. The above prior and its parametrisation are
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motivated and interpreted in more detail by Villani (2005) and Warne (2006).

As a final note, the prior for H has so far been conditional on fixed values for k and

r. As outlined in Appendix C.4, it is common to determine these values in a first

step using, e.g., information criteria or subsequent hypothesis tests. In a Bayesian

framework, k and r should also be considered random and chosen based on a posterior

distribution that is driven by the data and prior beliefs. Since both constants affect

the number of hyperparameters in H, direct evaluation of these values along with all

other hyperparameters is difficult. Villani (2005) assumes that the lag order k is either

known or determined via fore-run Bayesian approaches – see the paper for references.

The cointegration rank r can also be pre-determined through an individual Bayesian

analysis, but Villani (2005) shows how to compute posterior probabilities for r replacing

the prior in (3.10) by

f (φ,Γ, α, β,Ω | k) = f (φ,Γ, α, β,Ω | k, r) f (r | k)

with a prior f (r | k) over all possible cointegration ranks r = 0, 1, . . . ,m. The approach

requires computation of the marginal likelihoods P (D | E , r) for all r = 0, . . . ,m, and

apart from the cases r = 0 and r = m, these distributions can only be approximated via

the MCMC results under corresponding specification of r. Using a joint prior f(k, r)

instead of f (r | k), Warne (2006) extends this approach to posterior evaluation of all

possible pairs (k, r), which additionally requires numerical evaluation of the marginal

likelihoods P (D | E , k, r). Due to the high-dimensionality of the time series under

consideration, such approaches are not yet feasible in reasonable time. In fact, possible

values for k are principally restricted to 0 or 1, since operations regarding the matrix Γ

become intractable. For simplicity, the value of r will also be assumed known, although

a posterior analysis as outlined in the above references is possible when the model is

estimated parallel for different r.

3.3.3 Posterior Distributions

The aim of the Bayesian estimation procedure for the BMPMP model is to identify joint

posterior distributions for the parameters K and the hyperparameters H. Due to the

complexity in both the prior distributions and likelihood, no closed-form results on joint
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posterior distributions can be derived. However, MCMC methods are applied in the

context of the BMPMP model in order to approximate the distribution. As described

in Appendix B in more detail, the general idea is to run sampling algorithms, which it-

eratively simulate new realisations of the posterior distribution for the parameters. For

the BMPMP model, both the Gibbs and Metropolis-Hastings algorithms from Appen-

dices B.2 and B.3 are used. Due to the high-dimensional complexity in the BMPMP

model, emphasis must be given to a careful empirical diagnosis of convergence to the

desired limiting distribution in the Markov chain, see Appendix B.4 for details.

First, simulation of the hyperparameters in H is examined. In the Bayesian VECM esti-

mation via the Grassman approach by Villani (2005) and its extension by Warne (2006),

it is possible to derive marginal posterior distributions for each hyperparameter given

all other parameters. The existence of full conditional distributions therefore allows for

applying the Gibbs sampler. In each step i, one has to simulate from the following

distributions given the current realisations for the other parameters. Beginning with the

outcomes from the last step i − 1, denoted by the respective superscripts, each hyper-

parameter is visited individually, and a new realisation with superscript i is simulated.

For hyperparameters that have already been visited, the new state of the chain is used

in the successive simulations of other hyperparameters. For theoretical and practical

details of Gibbs sampling, the reader is referred to Appendix B.2.

To begin with, the new realisation Ω(i) for Ω is drawn from the marginal posterior

distribution

Ω | φ(i−1),Γ(i−1), α(i−1), β(i−1),K(i−1), k, r ∼ IWm

(
S
(i)
Ω , nΩ

)
,

where

S
(i)
Ω = ε(i−1)ε(i−1)′ + A+

(
1/λ2

α

)
α(i−1)β(i−1)′β(i−1)α(i−1)′ + Γ(i−1)Ω−1

Γ Γ(i−1)′,

nΩ = T − k + q + r +m(k − 1),

ε(i−1) = (∆K)(i−1) − Φ(i−1) − Γ(i−1)K
(i−1)
2 − α(i−1)β(i−1)′K

(i−1)
1 .
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Next, φ(i) is drawn through simulation of

φ | Ω(i),Γ(i−1), α(i−1), β(i−1),K(i−1), k, r ∼ Nm

(
µ
(i)
φ ,Ω(i)

)
,

where

µ
(i)
φ =

T∑

t=k+1

(
∆κ

(i−1)
t −

k−1∑

j=1

Γ
(i−1)
j ∆κ

(i−1)
t−j − α(i−1)β(i−1)′κ

(i−1)
t−1

)

is the vector resulting from row-wise summation over the matrix

(∆K)(i−1) − Γ(i−1)K
(i−1)
2 − α(i−1)β(i−1)′K

(i−1)
1 .

The i-th realisation for Γ is simulated from a Matrix-normal distribution, which can be

expressed through the vectorisation operator in terms of a multivariate normal distribu-

tion. In particular,

vec (Γ) | Ω(i), φ(i), α(i−1), β(i−1),K(i−1), k, r ∼ Nm2(k−1)

(
µ
(i)
Γ ,Σ

(i)
Γ

)
,

where

µ
(i)
Γ = vec

[(
(∆K)(i−1) − Φ(i) − α(i−1)β(i−1)′K

(i−1)
1

)
K

(i−1)′
2

×
(
K

(i−1)
2 K

(i−1)′
2 + Ω−1

Γ

)−1
]

and

Σ
(i)
Γ =

(
K

(i−1)
2 K

(i−1)′
2 + Ω−1

Γ

)−1

⊗ Ω(i).

The new value for α is obtained through its vectorised form via

vec (α) | Ω(i), φ(i),Γ(i), β(i−1),K(i−1), k, r ∼ Nmr

(
µ(i)
α ,Σ(i)

α

)
,
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where

µ(i)
α = vec

[(
(∆K)(i−1) − Φ(i) − Γ(i)K

(i−1)
2

)
K

(i−1)′
1 β(i−1)

×
[
β(i−1)′

(
K

(i−1)
1 K

(i−1)′
1 +

1

λ2
α

Im

)
β(i−1)

]−1
]

and

Σ(i)
α =

[
β(i−1)′

(
K

(i−1)
1 K

(i−1)′
1 +

1

λ2
α

Im

)
β(i−1)

]−1

⊗ Ω(i).

Finally, the vectorised lower block matrix vec (βl) has the conditional posterior distri-

bution

vec (βl) | Ω(i), φ(i),Γ(i), α(i),K(i−1), k, r ∼ Nr(m−r)

(
µ
(i)
βl
,Σ

(i)
βl

)
,

where

µ
(i)
βl

= Σ
(i)
βl

(Ir ⊗ c⊥)
′
(
Σ

(i)
β

)−1 (
µ
(i)
β − vec (c)

)
,

Σ
(i)
βl

=

[
(Ir ⊗ c⊥)

′
(
Σ

(i)
β

)−1

(Ir ⊗ c⊥)

]−1

,

µ
(i)
β = Σ

(i)
β vec

[
K

(i−1)
1

(
(∆K)(i−1) − Φ(i) − Γ(i)K

(i−1)
2

)′ (
Ω(i)
)−1

α(i)

]
,

Σ
(i)
β =

[(
α(i)′

(
Ω(i)
)−1

α(i)
)
⊗
(
K

(i−1)
1 K

(i−1)′
1 +

1

λ2
α

Im

)]−1

.

Now all five hyperparameters are updated, where for Γ, α, and β, the stacked vectors

must be rearranged into matrix format again. The conditional posteriors require sim-

ulations from the Inverse Wishart and the multivariate Normal distributions, both of

which are easily available in statistical standard software.
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With the new states for the hyperparameters at hand, in the second step, the old reali-

sations for the parameters in K(i−1) must be replaced. Due to the dependencies between

different κt resulting from the underlying dynamics process, full conditionals cannot be

derived for these parameters, making the Gibbs sampler intractable. Consequently, the

Metropolis-Hastings algorithm is applied with the parameters from the CBD model. The

remainder of this section derives the particular algorithm in the context of the BMPMP

model, where general theoretical and practical details on Metropolis-Hastings sampling

are reviewed in Appendix B.3. For a fixed calendar year t ∈ {1, . . . , T}, let

K−t = {κ1, . . . , κt−1, κt+1, . . . , κT} ,
Dt = {Dxpt ∀ x, p, p 6= p∗} ,
Et = {Expt ∀ x, p, p 6= p∗} .

From Bayes’ Theorem it then follows that

f (κt | D, E ,H,K−t, k, r) ∝ f (D | E ,K, k, r) f (κt | H,K−t, k, r) .

Due to (3.8), the underlying data Dt for one calendar year t depend on the mortality

rate qxpt only, which itself is purely described by κt. Using the mutual independence of

the numbers of deaths among different calendar years, it holds for the likelihood – when

interpreted as a function in κt – that

f (D | E ,K, k, r)

∝ f (Dt | Et,Kt, k, r)

∝
∏

x

∏

p

[log (1 + exp(ηxpt))]
Dxpt (1 + exp (ηxpt))

−Expt ,

where dependence on κt is captured by ηxpt. For the conditional distribution of κt |
H,K−t, k, r, it follows from the VECM representation that κt with t > k depends only

on the k preceding values through κt = φ + (Im + αβ′)κt−1 +
∑k−1

i=1 Γi∆κt−i + εt. Of

course, no preceding values but marginal priors are given for κ1, . . . , κk. The conditional
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distribution for any κt can be most generally written as

f (κt | H,K−t, k, r)

=
f (K,H, k, r)

f (K−t,H, k, r)

∝ f (K,H, k, r)

∝ f (K | H, k, r)

= f (κT | K−T ,H, k, r) f (K−T ,H, k, r)

= f (κT | K−T ,H, k, r) f (κT−1 | κ1, . . . , κT−2,H, k, r) f (κ1, . . . , κT−2,H, k, r)

= . . .

=
T∏

s=k+1

f (κs | κ1, . . . , κs−1,H, k, r) f (κ1, . . . , κk,H, k, r)

∝
T∏

s=k+1

f (κs | κs−k, . . . , κs−1,H, k, r)
k∏

s=1

f (κs) .

Using the residuals εs = κs−φ− (Im + αβ′)κs−1−
∑k−1

i=1 Γi∆κs−i, s = k+1, . . . , T , from

this general result it follows

f (κt | H,K−t, k, r) ∝
k+t∏

s=k+1

f (κs | κs−k, . . . , κs−1,H, k, r) f (κt)

∝ exp

(
−1

2

(
k+t∑

s=k+1

ε′sΩ
−1εs + (κt − µt)

′ Σ−1
t (κt − µt)

))

for t = 1, . . . , k,

f (κt | H,K−t, k, r) ∝
k+t∏

s=t

f (κs | κs−k, . . . , κs−1,H, k, r)

∝ exp

(
−1

2

k+t∑

s=t

ε′sΩ
−1εs

)
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for t = k + 1, . . . , T − k, and

f (κt | H,K−t, k, r) ∝
T∏

s=t

f (κs | κs−k, . . . , κs−1,H, k, r)

∝ exp

(
−1

2

T∑

s=t

ε′sΩ
−1εs

)

for t = T − k + 1, . . . , T . Combining the results for the likelihood and the conditional

distribution finally leads to

f (κt | D, E ,H,K−t, k, r)

∝ exp

[∑

x

∑

p

[Dxpt log (log (1 + exp(ηxpt)))− Expt log (1 + exp(ηxpt))]

]

×





exp

(
−1

2

(
k+t∑

s=k+1

ε′sΩ
−1εs + (κt − µt)

′ Σ−1
t (κt − µt)

))
, t ≤ k

exp

(
−1

2

k+t∑

s=t

ε′sΩ
−1εs

)
, k < t ≤ T − k

exp

(
−1

2

T∑

s=t

ε′sΩ
−1εs

)
, t > T − k

.

As mentioned earlier, the constants Σ1, . . . ,Σk may equal one constant covariance matrix

Σ. Direct sampling from this distribution is not straightforward, hence the Gibbs sampler

is not available for updating the CBD parameters. Instead, the Metropolis-Hastings

sampling is applied, where at step i, the algorithm walks through all calendar years t as

follows.

• Generate a candidate

κ∗
t ∼ Nm

(
κ
(i−1)
t ,ΣMH

)
(3.12)

with positive definite covariance matrix ΣMH, which is known beforehand or de-

termined within the burn-in period of the MCMC algorithm.
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• Compute the acceptance probability

a
(
κ
(i−1)
t , κ∗

t

)
= min



1,

f
(
κ∗
t | D, E ,H(i),K(i−1/i)

−t , k, r
)

f
(
κ
(i−1)
t | D, E ,H(i),K(i−1/i)

−t , k, r
)



 .

Note that the fraction is computable since the unknown proportionality factors

cancel out. The updates are made conditional on

K(i−1/i)
−t =

{
κ
(i)
1 , . . . , κ

(i)
t−1, κ

(i−1)
t+1 , . . . , κ

(i−1)
T

}

of all other parameter realisations from the last or, if already updated in step

i, from the current iteration, as well as conditional on the fresh values H(i) ={
φ(i), α(i), β(i),Γ(i),Ω(i)

}
for the hyperparameters. Details are provided in Ap-

pendix E.2.

• Generate a random probability u ∼ U ([0, 1)). If u ≤ a
(
κ
(i−1)
t , κ∗

t

)
then set

κ
(i)
t = κ∗

t , otherwise let κ
(i)
t = κ

(i−1)
t .

If m is large, the Metropolis-Hastings algorithm may work inefficiently due to poor

multivariate proposals κ∗
t , which result in low acceptance rates. In order to increase

the number of movements in the Markov chain, it is suggested to split the parameters

κ∗
t into single or groups of elements, for which the algorithm is then applied individ-

ually. This simplification is known as single-component Metropolis-Hastings algorithm,

see Gilks (2005) for instance. In addition, as discussed in Appendix E.3, it is numeri-

cally advantageous. The covariance matrix ΣMH for the proposal distribution may be

chosen as a diagonal matrix with one unique entry or, due to different magnitudes in the

univariate time series, may depend on the different parameters. A well-working choice

is to set ΣMH = cMHA, for which the different magnitudes are captured by the constant

A, and tuning of the acceptance rates is further achieved through manipulation of the

factor cMH. The single-component Metropolis-Hastings algorithm simply extracts the

diagonal entries as marginal variances.

Initial values for K in the MCMC algorithm are their corresponding ML estimates from

the CBD model, such that convergence can be expected to be reached faster with a much

shorter burn-in period. Note that the CBD model is a Binomial generalised linear re-
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gression with Dxpt events out of Expt trials and link function mxpt 7→ log (exp(mxpt)− 1),

comprising the logit link for qxpt as in (3.2) and the relation between qxpt and mxpt given

by (2.1). For the hyperparameters, reasonable starting values are A for Ω as well as the

m× r matrix (Ir, 0r×m−r)
′ for β. Furthermore, it is set Γ(0) = 0 ∈ R

m×(k−1)m, α(0) = 0 ∈
R

m×r and φ(0) = 0 ∈ R
m.

As a summary, an MCMC method, which combines both the Gibbs and the Metropolis-

Hastings algorithms, is applied with Bayesian parameter estimation in the BMPMP

model. Implementation is straightforward, whereas this procedure may be time-con-

suming when the number of populations becomes large. Following Geweke (1996), the

Gibbs sampling technique for the hyperparameters of the VECM, based on the reference

prior by Villani (2005), meets the minimum conditions to guarantee theoretical conver-

gence. Due to the normality assumption in the VECM and the normality of the proposal

values for the parameters K, ergodicity can further be established for the Metropolis-

Hastings algorithm using statements on sufficient conditions as in Robert and Casella

(2004). Despite the theoretical results, whether or not practical convergence has hap-

pened must be assessed by the results from the procedure as outlined in Appendix B.4.

An example follows in the next chapter.

3.3.4 Weighted Posterior

In case of large values for the time horizon T or the number of populations np, a very large

amount of observations is supposed to be fitted by a comparably easy model framework.

Low magnitudes for both the likelihood and priors for the time series parameters cause

the posterior distribution for K to be almost degenerate, i.e. probability mass for some

κt is highly concentrated around one point with vanishing variance. This result stems

from the simplifying model assumptions, e.g. Poisson distributed numbers of deaths and

the VECM structure for the time series, which do not allow for flexibility in case of

overdispersion, model misspecification, and data anomalies. Considering posterior pre-

dictive forecasting based on the marginal posterior distribution for the hyperparameters,

as described in the next section, a degenerated posterior for K is not of major concern.

Therefore, in the course of the case studies conducted in Chapter 4, the amendments

proposed in this section will not be of further interest. However, in case a valid ap-

proximation of this posterior is desired for the calibration window, several techniques
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are available in the literature, for example the inclusion of independent and Gamma

distributed nuisance parameters θxpt with mean 1, such that Dxpt ∼ Poi(Exptqxptθxpt).

This results in a simple Poisson-Gamma two-stage model, in which the random factors

measure unexplained variability not covered by the systematic part Exptqxpt. Such ap-

proaches are well-known in different statistical applications, for instance see Wakefield

(2007) for a review on random effects models in spatial data analysis.

A disadvantage of two-stage models in this Bayesian framework is the large number

of additional parameters that have to be estimated. Motivated by work on weighted

likelihood approaches in Bayesian inference, see Agostinelli and Greco (2012) or Newton

and Raftery (1994), one can down-weight the posteriors by an exponent w ∈ (0, 1] chosen

by the modeller, i.e. instead of f (κt | D, E ,H,K−t, k, r) sample from

cwf (κt | D, E ,H,K−t, k, r)
w ∝ f (D | E ,K, k, r)w f (κt | H,K−t, k, r)

w (3.13)

with normalising constant cw, which only depends on w and need not be known, as

it cancels out in the Metropolis-Hastings algorithm. This naturally leads to higher

variability in the posterior distribution, because large values for f are down-weighted

and values smaller than 1 are increased. Thereby, variances larger than what is observed

by the pure model and likelihood specification, can be accommodated. A motivating

example is a nominal normal posterior with mean µ and variance σ2. It is easy to

see that taking the density to power w ∈ (0, 1] leads again to the normal distribution

with same mean and variance σ2/w ≥ σ2. One can think of w as a weight for both

the likelihood and the prior: it expresses the certainty w.r.t. these model specifications

compared to a uniform distribution for the data Dxpt over the range of, say, [0, Expt],

and a non-informative prior for κt, because the posterior is proportional to the product

of the term on the right-hand side of (3.13) and (
∏

x,p,t E
−1
xpt)

1−w · 11−w. The result of

incorporating w is an easy way to introduce flexibility to the model framework, which

allows for a wide enough parameter space for the time series parameters K. Only one

additional parameter must be pre-selected by the analyst, capturing the prior belief

about certainty w.r.t. model assumptions and, hence, following the Bayesian paradigm.

Finally, it is easy to see that for the BMPMP model, the modification of the posterior
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carries through all calculations and leads to the acceptance probability

a
(
κ
(i−1)
t , κ∗

t

)
= min



1, exp(w)

f
(
κ∗
t | D, E ,H(i),K(i−1/i)

−t , k, r
)

f
(
κ
(i−1)
t | D, E ,H(i),K(i−1/i)

−t , k, r
)



 .

3.4 Bayesian Forecasting

Once a sufficiently large sample of the posterior distribution is simulated, the estimated

parameters are used to forecast the mortality rates of the underlying populations into the

future. In many real-life examples, the mortality and crude death rates exhibit certain

random noise, which makes a precise short-term prediction rather difficult. However, the

incorporation of first-order AR components and the cointegration terms is expected to

lead to global estimation of the dependency structure between the marginal time series.

This allows for comparably sophisticated forecasts in the long-run as will be seen in the

application of the BMPMP model in the subsequent chapter. Due to the complexity

of the parameters and their joint distribution, forecasts are based on simulation rather

than analytical computations.

Besides the prediction of future values, i.e. the main goal of this model, the following

forecast procedure can also be applied for model validation. In the latter case, following

Appendix A.3, the posterior distribution of the hyperparameters is used to predict the

time series over the calendar years, whose observations were used as the training dataset.

For a good model fit, the probabilistic behaviour of the resulting forecast should natu-

rally coincide with what was observed from the original data. Of course, this procedure

tends to overfit the data, since the model parameters are estimated to exactly fit the

particularly observed paths. More sophisticated model validation tools can be applied,

such as division of the observed data into two independent training and test sets, to

reduce the impact of overfitting.

Mortality rates are forecast via prediction of the VECM model parameters K into the

future and final computation of qxpt via the corresponding CBD equation from Sec-

tion 3.2.1. Although one specific calendar year serves as starting point, no exact initial

value for the VECM is given. First, crude death rates are subject to random noise due

to measurement errors and natural fluctuations, and second – and even more important
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– the time series representation in K is latent and must be estimated. For the purpose

of easy model forecasts, one could simply use the ML estimate for the parameters in the

CBD model of the corresponding calendar year, i.e. κT when predictions start with the

last observed mortality data. In light of the entire Bayesian philosophy, however, it is

preferred to use the already realised posterior sample for the corresponding parameter

κT as a distribution for the starting value. The uncertainty in both death rates and

latent time series representation is then inherently integrated. Particular improvement

in expressing uncertainty is seen for the very first years of predictions due to the auto-

correlation in K.

For any realised starting value of the time series, a set of all different hyperparameters

is drawn from the joint posterior distribution. Following the normal assumption of the

VECM, the entire time series can be successively generated through realisations of the

m-dimensional normal distribution, where mean and covariance matrix are determined

by the previous step and the hyperparameters. Simulation of the hyperparameters is

easily done by random sampling from the corresponding joint MCMC sample, given that

the Markov chain has converged and a pseudo-independent sample is obtained, eventu-

ally after deleting a sufficiently large burn-in period. Due to the Ergodic Theorem, the

simplest way to do so is to walk through the entire path of the realised Markov chain and

to use the hyperparameter values H(i) =
{
φ(i), α(i), β(i),Γ(i),Ω(i)

}
at each stage i for the

time series simulation. As the number of MCMC steps is already large, one simulation

of the time series for each set of hyperparameters naturally leads to a sample size for

the predicted values of the same size, but several simulations of the VECM per realised

set of hyperparameters are of course possible, too.

Having obtained the forecasts over a pre-determined time span, particular interest with

this model then lies in the joint distributions of the estimated mortality rates. In com-

parison to marginal or low-dimensional mortality forecast models, the BMPMP model

has its specific strength in detection of future dependencies between different popu-

lations. Furthermore, due to the normal assumption in the VECM, simulation is even

straightforward when certain scenarios for some of the marginal time series are assumed.

If there is a strong prior assumption of the, say, overall development of mortality, an

according deterministic sample path for the intercept can be postulated. Such assump-

tions are reasonable when other scientific studies forecast a general trend much better

51



3 The Bayesian Multi-Population Mortality Projection Model

than the BMPMP approach based on biological and social factors. The BMPMP model

can then be used to predict the marginal influences of the global development on the

individual populations. Since the multivariate normal distribution in the VECM im-

plies normal conditional distributions, simulation of the remaining time series is done

in the same manner as before, and the resulting effects on the mortality rates can be

interpreted w.r.t. the given assumptions on the global mortality progression. In par-

ticular, if κt = (κ
(1)′
t , κ

(2)′
t )′ is divided into an m1-dimensional sub-vector κ

(1)
t and an

m2-dimensional κ
(2)
t with m = m1 +m2, one makes use of the fact that κ

(1)
t | κ(2)

t = k
(2)
t

is m2-variate normal distributed with mean

φ(1) +
(
(Im1 , 0) + α(1)β′

)
κt−1 +

k−1∑

i=1

Γ
(1)
i ∆κt−i

+ Ω12Ω
−1
22

(
k
(2)
t − φ(2) −

(
(0, Im2) + α(2)β′

)
κt−1 −

k−1∑

i=1

Γ
(2)
i ∆κt−i

)

and variance

Ω11 − Ω12Ω
−1
22 Ω21,

where (Im1 , 0) ∈ R
m1×m, (0, Im2) ∈ R

m2×m, φ = (φ(1)′, φ(2)′)′ with φ(1) ∈ R
m1 , φ(2) ∈

R
m2 , α = (α(1)′, α(2)′)′ with α(1) ∈ R

m1×r, α(2) ∈ R
m2×r, Γi = (Γ

(1)′
i ,Γ

(2)′
i )′ with Γ

(1)
i ∈

R
m1×m,Γ

(2)
i ∈ R

m2×m for all i = 1, . . . , k − 1, and

Ω =

(
Ω11 Ω12

Ω21 Ω22

)

with Ω11 ∈ R
m1×m1 ,Ω12 = Ω′

21 ∈ R
m1×m2 ,Ω22 ∈ R

m2×m2 . Note that a scenario-

dependent forecast will not be further discussed in this work.

3.5 Model Summary

Figure 3.1 summarises the BMPMP model.
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Figure 3.1: The Bayesian Multi-Population Mortality Projection Model

Data

Observed number of deaths: D = {Dxpt ∀ x, p, t, p 6= p∗}

Exposure-to-risk: E = {Expt ∀ x, p, t, p 6= p∗}

Likelihood

Dxpt ∼ Poi (− log (1− qxpt)Expt)

Cairns-Blake-Dowd Model

log

(

qxpt

1− qxpt

)

= κ0

t + κ
p
t + (κx

t + κ
xp
t ) (x− x̄) +

(

κx2

t + κ
x2p
t

)

(

(x− x̄)2 − σ̂2
)

, x ≥ x0, t = 1, . . . , T

Parameters

K = {κ1, . . . , κT} with κt =
(

κ0

t , κ
x
t , κ

p1
t , κ

p2
t , . . .

)

Vector Error Correction Model

∆κt = φDt +
k−1
∑

i=1

Γi∆κt−i + αβ′κt−1 + εt, t = k + 1, . . . , T

Prior for κ1, . . . , κk

κt | k ∼ Nm (µt,Σt)

µt, t = 1, . . . , k Σt, t = 1, . . . , k

Σ

Prior for κk+1, . . . , κT

κt | κt−k, . . . , κt−1, φ,Γ, α, β,Ω, k, r

∼ Nm

(

φ+
k−1
∑

i=1

Γi∆κt−i + (Im + αβ′)κt−1,Ω

)

Hyperparameters

H = {φ,Γ, α, β,Ω}

Prior

f (φ,Γ, α, β,Ω | k, r) as in (3.10)

A

λA fA

q λα λb λl

k r

ΣMH

cMH

x0 T

Prior Set-up

Prior Set-up

Calibration

Model Specification

Tuning
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The Bayesian estimation algorithm at iteration i is summarised a follows.

• Gibbs sampler for the hyperparameters: Simulate from

Ω | φ(i−1),Γ(i−1), α(i−1), β(i−1),K(i−1), k, r ∼ IWm

(
S
(i)
Ω , nΩ

)
,

φ | Ω(i),Γ(i−1), α(i−1), β(i−1),K(i−1), k, r ∼ Nm

(
µ
(i)
φ ,Ω(i)

)
,

vec (Γ) | Ω(i), φ(i), α(i−1), β(i−1),K(i−1), k, r ∼ Nm2(k−1)

(
µ
(i)
Γ ,Σ

(i)
Γ

)
,

vec (α) | Ω(i), φ(i),Γ(i), β(i−1),K(i−1), k, r ∼ Nmr

(
µ(i)
α ,Σ(i)

α

)
,

vec (βl) | Ω(i), φ(i),Γ(i), α(i),K(i−1), k, r ∼ Nr(m−r)

(
µ
(i)
βl
,Σ

(i)
βl

)
,

with parameters as given in Section 3.3.3.

• Metropolis-Hastings sampler for the parameter κt:

– Simulate κ∗
t ∼ Nm

(
κ
(i−1)
t ,ΣMH

)
.

– Compute

a
(
κ
(i−1)
t , κ∗

t

)
= min



1, exp(w)

f
(
κ∗
t | D, E ,H(i),K(i−1/i)

−t , k, r
)

f
(
κ
(i−1)
t | D, E ,H(i),K(i−1/i)

−t , k, r
)



 .

– Generate u ∼ U ([0, 1)). If u ≤ a
(
κ
(i−1)
t , κ∗

t

)
then set κ

(i)
t = κ∗

t , otherwise let

κ
(i)
t = κ

(i−1)
t .
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4 Case Studies in European Mortality

Forecasting

In this chapter, the BMPMP model is calibrated with mortality data of different Eu-

ropean countries to assess the model’s ability to fulfil the desired targets outlined in

Section 3.1. Particular attention is devoted to investigate the flexibility to model an ar-

bitrary number of arbitrary populations. In both sections of this chapter, the BMPMP

model is applied with gender-specific mortality rates of five European countries, respec-

tively. This number clearly exceeds the restriction of only two populations for most of

the existing multi-population mortality projection models, but remains small enough for

illustration purposes. While Section 4.1 comprises a standard example with data from

commonly investigated Western European countries, a selection of Central European

countries, which could not be satisfactorily modelled in the augmented common factor

model by Li and Lee (2005), is included in Section 4.2. Besides discussion of the choice

of priors, convergence diagnostics of the MCMC algorithm, and general goodness-of-fit

analyses, the main focus lies on diagnostic assessment and interpretation of the output

taking into consideration the multi-population context, including a comparison of the

joint forecast with results from univariate Bayesian CBD models for each country. Fur-

thermore, the second distinct feature of the BMPMP model, the Bayesian paradigm, is

compared to its frequentist counterpart where possible, i.e. only for such model specifi-

cations, for which the high-dimensional maximisation problem is non-singular.

All data in this chapter are obtained through the Human Mortality Database (2014),

available at http://www.mortality.org, from the underlying data sources referenced

therein. The Human Mortality Database provides a rich set of mortality-related figures

for a wide range of mostly developed countries. Original data are collected from the na-

tional statistical bureaus or institutes. For each country, the observed number of deaths

Dxgt and the corresponding exposure-to-risk Exgt are available for both genders g = m, f ,
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where m and f denote male and female, respectively, for all ages x = 0, 1, . . . , 109 and

all remaining ages, denoted by 110+. All data will be taken as provided by the Hu-

man Mortality Database (2014) and considered absolutely comparable. In particular,

differences in data quality and methodologies of how the data were derived or handling

changes of territorial claims will not be discussed in this work – the interested reader is

referred to the list of all considered countries in the preface of this work for details on

the territorial coverage and the documentation in the Human Mortality Database (2014)

for further information. The time horizon for t is country-specific and varies between

a decade and hundreds of years. For most countries, the post-war period is sufficiently

covered such that the BMPMPmodel can be at least calibrated for the last 60 or so years.

For all the following case studies, numerical results are obtained through the author’s

bmpmp package in the freely available statistical programming software R. It is designed

for flexible and efficient estimation and output of the BMPMP model for joint forecasts

of different countries with distinction of both genders. The routines in the package

allow the modeller to create required datasets using the data from the Human Mortality

Database (2014), to calibrate and to forecast the BMPMP model, and to automatically

obtain important graphical output for the analysis. Further tools, such as ML estimation,

are available for comparison purposes. The bmpmp package is available upon request to

the author and described in detail in Appendix F.

4.1 Case Study 1: The Big Five

In this section, the BMPMP model is calibrated with gender-specific data on the so-

called Big Five, i.e. the five largest countries in Western Europe: France, Germany,

Italy, Spain, and the United Kingdom. See Figure 4.1 for a map. Due to different pat-

terns in mortality because of differences in social, economic, and medical circumstances

in a divided Germany until re-unification and even thereafter, the data for Germany

are restricted to the population of West Germany (i.e. the then Federal Republic of

Germany) until 1990 and the corresponding territory (i.e. the old states within the re-

unified Federal Republic of Germany) since then, but referred to simply as Germany

for convenience. For all other countries, see the information in the preface on details of

territorial coverage. In order to interpret country-specific parameters as deviations from
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Figure 4.1: Map of the Big Five

Shown in green are the so-called Big Five, i.e. the five largest countries in Western Europe: France (FR), Germany (DE,
data only for West Germany in this case study), Italy (IT), Spain (ES), and the United Kingdom (UK), within Europe.

For details on territorial coverage for these five countries, see the list of countries in the preface.

DE

FR

ES
IT

UK
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the average mortality in all considered countries, the overall sample is used as reference

and sometimes loosely called European population. The ages under consideration are

restricted to the interval [40, 100]. Data availability differs for the countries under con-

sideration. The combined sample of all countries is available from 1956 to 2009. The

model is calibrated w.r.t. the time horizon from 1956 to 1995. The remaining data are

used for external out-of-sample validation. Due to regime changes within this calibration

period, in the latter course of this case study, the model is estimated based on data from

1981–2009 and forecast until the year of 2100.

4.1.1 Model Equations

Following the gender-specific equation in (3.4), the CBD equation in the BMPMP model

for this case study is set up as follows:

log

(
qxpgt

1− qxpgt

)
= κ0

t + κp
t + κg

t + κpg
t + (κx

t + κxp
t + κxg

t ) (x− x0)

+
(
κx2

t + κx2p
t + κx2g

t

)
(x− x0)

2, x ≥ x0, (4.1)

with t = 1, . . . , 40 representing the years 1956, . . . , 1995, x = 40, . . . , 100, g = m, f ,

and p ∈ P = {DE,ES,FR, IT,UK,EU}, where the countries are abbreviated by their

Internet top-level domains1, and p∗ = EU stands for the overall sample of all countries.

In contrast to the common equations in Section 3.2.1, this case study centres the age

variables at x0 = 40 instead of the average x̄ and uses σ̂2 = 0, i.e. the reference for the

quadratic age parameters is the absolute squared differences w.r.t. the age of 40 rather

than the excess of the empirical variance in age. For uniqueness in parametrisation, it

is assumed that κEU
t = κm

t = κEU,m
t = κx,EU

t = κx2,EU
t = κx,m

t = κx2,m
t = 0 for all t. There

are five populations with 61 age groups for both genders in each of the 40 calendar years,

i.e. the dataset consists of 24,400 entries. On the other hand, for each calendar year, the

CBD equation adds one intercept, one main effect for gender, two main effects for age

(for the linear and quadratic terms, respectively), and five main effects for the countries.

In addition, second-order interactions between age, gender, and population include fur-

ther 17 parameters. Therefore, one ends up with 26 parameters in each CBD equation,

1ISO 3166-1 alpha-2 codes with specific replacement of GB by UK for the United Kingdom: DE –
Germany (restricted to the territory of former West Germany), ES – Spain, FR – France, IT – Italy,
UK – United Kingdom.
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i.e. 1,040 parameters in total. The CBD stage in the BMPMP model in this example

is indeed parsimonious with a parameter-to-data quota of 4.3%. Note that individual

CBD models for all ten populations, comprised of all five countries and both genders,

would actually require 1,200 parameters.

The VECM equation is then given as outlined in Section 3.2.2 with the linear normali-

sation for β. The lag order is chosen to be k = 2 to allow for one AR parameter in the

VECM representation. For numerical efficiency, the lag order is not further increased, as

any additional AR coefficient matrix introduces 262 = 676 additional parameters. For

the cointegration rank, the choice of r = 5 corresponds to the prior belief of at most five

stationary linear combinations of the marginal time series, respectively. The number of

parameters in the VECM becomes 26 for φ, 130 for α and 105 for β, 676 for Γ1, and

26(26+1)/2 = 351 for Ω due to symmetry, i.e. 1,104 in total. The number of parameters

in both stages of the BMPMP model is of similar magnitude, and the VECM param-

eters may even exceed the CBD parameters. Hence, frequentist estimation becomes

problematic or, as seen with this example, impossible. The alternative of independent

models would see a much lower number of parameters, but neglect any quantification

of dependencies. Although the remainder of this case study mainly focuses on this par-

ticular specification of the model with k = 2 and r = 5, due to the difficulty of even

presenting such high-dimensional results for one model estimation, comments on other

model specifications will be made w.r.t. results from calibration of model set-ups by all

combinations of k = 1, 2 and r = 0, 1, 5 in Section 4.1.9.

4.1.2 Choice of Priors

Starting with the constants for the hyperparameters in the VECM, the values for

A, q, λα, λb are set as follows. For the expected covariance matrix, the empirical Bayes

approach with A = fA(Ω̂) is applied. Here, Ω̂ is the empirical covariance matrix of the

time series in differences, which is tuned by fA(M) = (λ2
Am

2
ij)ij for M = (mij)ij with

λA =
√
10. If this choice of A becomes numerically singular, its off-diagonal elements

are set to zero. The choice of q = m + 2 for maximum uncertainty is made to reduce

the impact of the empirical Bayes approach. The value for λα is chosen to be one such

that α has covariance matrix E(Ω). Finally, it is λb = 5 to increase uncertainty in Γ1.

For the case k = 1, this parameter is not required, and for any choice of k, there is at
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most only one lag for Γ, so that in this case study no determination of λl as shrinkage

factor is required.

The CBD parameters for the first two calendar years, which are not immediately mod-

elled through the VECM, require additional priors for their marginal distributions.

Again, an empirical Bayes approach is used, in which µ1 and µ2 equal the ML esti-

mates of the CBD parameters of the first two years in levels. The covariance matrices

Σ1 and Σ2 are set equal to A. For the models with k = 1, the prior choices are only

made for µ1 and Σ1.

4.1.3 Initialisation of the Algorithm and Starting Values

In this example, the single-component version of the Metropolis-Hastings algorithm is

applied. The proposal covariance matrix is set to be ΣMH = cMHA with tuning factor

cMH = 10 to achieve higher acceptance rates by increasing the innovation steps. The

single-component algorithm only requires the diagonal entries of ΣMH for the marginal

proposals. Finally, initial values for the CBD parameters are the respective ML es-

timates on the Binomial generalised linear regression with events Dxpgt out of Expgt

trials and link function mxpgt 7→ log (exp(mxpgt)− 1), and the starting values for the

hyperparameters are chosen as outlined in Section 3.3.3. The MCMC algorithm is run

for a total of N = 1,000,000 iterations subject to thinning by a factor of 100, i.e. only

every 100-th iteration is stored to reduce memory space for the high-dimensional output.

The starting values for K are plotted in Figure 4.2 for a general understanding in model

interpretation. The upper six plots show the ML estimates of the intercept and all

gender- and age-related main and interaction effects as time series for t = 1, . . . , 40.

The remaining lower plots show the main effects of the distinct populations as well as

their interactions with gender and age. Since the values of each of the latter types of

parameters are directly comparable with each other, as they represent deviations from

the overall reference population, the plots for each parameter category contain the ac-

cording time series for all populations p.

The intercept, which is to be interpreted as the logit mortality rate of a 40-year-old male

in the reference population, clearly exhibits the negative trend known from studies on
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Figure 4.2: Starting values for K

Shown are the ML estimates κ
(0)
t of the CBD parameters as time series in t for 1956, . . . , 1995.
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mortality in developed countries cited in Chapter 2. Moreover, the increased pace of

mortality improvements seen for the second half of the calibration period is consistent

with applications of the standard CBD model, see Cairns et al. (2006) for instance, and

suggests that model calibration may be eventually improved by shifting the beginning

of the time horizon to the late 1970s. The negative values in the time series for the

effect of females reflect the biological fact of lower mortality among women, where the

exact values have to be interpreted for females aged 40 in the reference population on

the logit scale. The 1970s clearly mark a time of even further improvements in mortality

for females in this age group on top of the general pattern given by the intercept.

While identifying a regime change for the age-related parameters around the year of

1970 with opposite movements beforehand, since then the linear age effect declines, and

the quadratic effect becomes stronger. The interactions with gender remain merely sta-

ble over time since 1970, so that above effects are apparent for both genders with a

constantly more quadratic curve for females. The linear and quadratic age effects are

multiplied by values between 0–60 and 0–3600, respectively, and thus the magnitudes

of the time series must be interpreted accordingly. Furthermore, interpretation of these

parameters must be done simultaneously, indicating that in addition to the general im-

provement via the intercept, the linearity in the logits of mortality rates gets lost over

time in favour of a quadratic curve. As a result, the middle age groups experience a

larger extent of mortality improvement compared to low age groups around 40 years

and high age groups around 100 years. Quadratic effects were found to be significant

with data from males of the United States by Cairns et al. (2006), but an important

consequence of this finding for European data is that quadratic patterns in the logits of

mortality rates seem to be present for other populations in the developed world. Since

the effect of quadratic age patterns seems to become more important over time, this

suggests that mortality prediction models in the CBD framework with only linear age

effects may be too simplistic in the description of age-dependent mortality improvements.

Finally, the country-specific plots describe their deviations from the overall population.

For each country, its four specific time series adjust the intercept κ
0(0)
t and the main

effects for gender and age, i.e. κ
f(0)
t , κ

x(0)
t , κ

x2(0)
t . Vanishingly small values for Germany,

which is the largest country in terms of population among all five, indicate that it is

well-represented by the reference population. In contrast, for 40-year-old males, French
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mortality is constantly higher, while Spanish mortality uses to be lower until 1990. Rel-

ative improvements for Italy and the United Kingdom emerge towards the end of the

calibration window. Effects for females are opposite, i.e. compared to the overall refer-

ence, there is a constantly larger gap between French men and women and a historically

smaller gap for Germany, Italy, and Spain. For the United Kingdom, the specific trend of

men catching up with women is outstanding. The two last plots reveal that French mor-

tality data exhibit the strongest quadratic pattern throughout the time horizon among

all five countries, while the logits of mortality rates for the United Kingdom are still

linear. Interestingly, the country-specific deviations from the reference population do

not seem to converge over the calibration period. Hypotheses of convergence stated a

priori, as known from other models, are questioned by the BMPMP model in favour of

this data-driven approach.

The marginal time series in Figure 4.2 are obviously non-stationary, but can be justified

to be trend-stationary when analysing plots of their first differences (not shown). Direct

comparison of the main linear and quadratic age effects or comparison of such time series

with their respective interactions with gender – just to name a few – reveal a strong

correlation among many of the marginal time series. It is evident that a joint time series

approach, which in the BMPMP model is given by the VECM, is vital and suggests that

estimation of the covariance matrix Ω is of major importance. Even more, the strong

correlation further motivates the choice of this model, because linear combinations of

different marginal time series in levels, e.g. κ
x(0)
t − κ

x2(0)
t or κ

xf(0)
t − κ

x2f(0)
t , seem to be

indeed stationary.

4.1.4 Convergence Diagnostics

Before performing any type of statistical inference, the BMPMP model and the out-

put of its MCMC algorithm must be diagnosed for validity. The aim of the MCMC

procedure is to approximate the posterior distribution of the model parameters by an

extensive sample of pseudo-independent realisations. Although theoretical ergodicity

could be established for the BMPMP model, it must be verified that the Markov chain

indeed converged to this limiting distribution within the given iterations, and that the

sample is sufficiently large for the Ergodic Theorem to make autocorrelation negligible.

Failure in obtaining the correct posterior distribution falsifies results from the statistical
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analysis. However, as far as the purpose of mortality forecasts with the BMPMP model

is concerned, primary focus must be devoted to the marginal posterior distribution of

the set of hyperparameters. Bayesian forecasting is equivalent to obtaining the posterior

predictive distribution of future values of the CBD parameters through posterior sam-

pling of the hyperparameters only, rather than sampling from the posterior distribution

of the given CBD parameters.

While referring to Appendix B.4 for a general introduction to different concepts of con-

vergence diagnostics in the MCMC framework, the convergence analysis in this case

study is mainly based on graphical assessment of the marginal parameter distributions.

Two of the most important tools, plots of the paths of marginal parameters w.r.t. the

MCMC iterations as well as plots of the current ergodic means versus the iteration in-

dex, will be displayed in detail. However, convergence of the marginal distribution can

only indicate that the joint distribution of all parameters and hyperparameters might

have reached its equilibrium. The total number of more than 2,000 parameters and

hyperparameters makes the Markov chain such high-dimensional that convergence of

the joint distribution is practically impossible to verify. Moreover, this high number

allows the discussion of only selected convergence diagnostics plots as an explanatory

representation of the full set of parameters. As mentioned earlier, results in this section

are presented for the model with k = 2 and r = 5, noting that plots for the five other

model set-ups, which cannot be shown in this work, generally display the same behaviour.

The following seven figures, i.e. Figures 4.3 to 4.9, show paths of every 100-th iteration for

selected marginal hyperparameters and parameters (left panels) and the corresponding

evaluation of ergodic means (right panels). As typical in Bayesian analysis, convergence

for the covariance matrix Ω, analysed in Figure 4.3, is additionally diagnosed for the

precision Ω−1 in order to better assess the stability of equilibriums, see Figure 4.4. For

the analysis of convergence in the cointegration space, immediate parameters of the

matrix Π = αβ′ instead of entries in both sub-parameters are plotted in Figure 4.5.

Remaining plots are given for the hyperparameters φ and Γ = Γ1 in Figures 4.6 and 4.7,

respectively. On the first hierarchy level, i.e. for the CBD parameters K, Figures 4.8

and 4.9 depict convergence diagnoses for selected entries of κ20 (i.e. the time series at

calendar year 1975) and κ40 (i.e. the time series at calendar year 1995), respectively.
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Figure 4.3: Convergence diagnostics for Ω

Left panel: Realised marginal paths of selected entries of Ω after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
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Figure 4.4: Convergence diagnostics for Ω−1

Left panel: Realised marginal paths of selected entries of Ω−1 after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t .
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Figure 4.5: Convergence diagnostics for Π = αβ′

Left panel: Realised marginal paths of selected entries of Π after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t .
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Figure 4.6: Convergence diagnostics for φ

Left panel: Realised marginal paths of selected entries of φ after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t , 17 – κx,DE

t .
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Figure 4.7: Convergence diagnostics for Γ = Γ1

Left panel: Realised marginal paths of selected entries of Γ after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t .
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Figure 4.8: Convergence diagnostics for κ20

Left panel: Realised marginal paths of selected entries of κ20 after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.
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Figure 4.9: Convergence diagnostics for κ40

Left panel: Realised marginal paths of selected entries of κ40 after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.
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The graphical assessment of convergence among the hyperparameters starts with the

plots shown in Figures 4.5 to 4.7. The left panels in each of the figures indicate that all

marginal time series start within the range of the eventual posterior distributions, and

no serial autocorrelation or changes in variability seem to be present after thinning. Due

to the large amount of noise, the right panels are evaluated for a better understanding

of stability and determination of burn-in periods. In general, all marginal hyperparam-

eters seem to have sufficiently converged, see for example Π77, or nearly converged as

for, e.g., Γ21, where a slow upward movement of the ergodic mean seems to be still

ongoing. A sample of the Markov chain after a burn-in period of, say, 500,000 values

would already give a promisingly good approximation of the marginal posterior distri-

butions. The length of such a sample can further be expected to yield a reasonably valid

approximation of the joint posterior distribution; however, a longer run of the MCMC

algorithm would naturally be favourable. Plots of selected entries in Ω, as shown in Fig-

ure 4.3, draw a similar picture, but with increasing concern regarding insufficient length

of the Markov chain to exhibit undoubted convergence. In particular, corresponding

plots for Ω−1 in Figure 4.4 such as for, e.g., Ω−1
44 reveal the necessity for more iterations

to establish full convergence and larger samples to compensate the higher magnitudes of

serial autocorrelation and changes in variability. With the purpose of illustrating several

examples in this work, this MCMC algorithm is not further conducted, and a burn-in

period of 750,000 values will be used in the later course of this case study to obtain

rough approximations of the posterior distribution of all hyperparameters. However,

the MCMC estimation should be run far longer to obtain precise results in any real-life

application, since joint convergence in this high-dimensional set-up intuitively requires

even more time to be reached. Plots for various other selected marginal hyperparameters

and parameters for all choices of k and r were also analysed by the author supporting

previous conclusions, but cannot be discussed here in detail.

With the choice of a burn-in period of 750,000 iterations, in addition to the previously

discussed graphical output for each hyperparameter, the pivotal comparison of ergodic

means

t̄a − t̄b√
V̂ar(t̄a − t̄b)
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is computed as explained in Appendix B.4, where t̄a and t̄b denote the sample means at

the iterations 750,000–850,000 and 900,000–1,000,000 after thinning, respectively. Based

on plots of the autocorrelation functions (not shown), the thinned samples of the hyper-

parameters are satisfactorily pseudo-independent such that the variance of the difference

in sample means is estimated via the sum of variance estimators for iid sample means.

The more hyperparameters have already converged, the lower are the rejection rates

under the approximate standard normal distribution. The null hypothesis of conver-

gence is rejected for 46.4% of the entries of Ω, 69.2% for Ω−1, 0.6% for Π, 15.4% for φ,

and 5.9% for Γ on a nominal confidence level of α∗ = 2.47 · 10−5, chosen such that the

Bonferroni method yields a global type I error rate of α = 0.05. These numbers support

previous findings in that a longer MCMC run is required for the Markov chain to reach

an equilibrium for all entries in the covariance matrix and, to some extent, φ. Rejection

rates for the hyperparameters Π and Γ do not lead to evidence against convergence.

The hierarchical structure of the BMPMP model naturally requires an extensively long

duration for the posterior sample to yield a sufficient sample for the parameters in the

CBD model. Hence, turning to the convergence plots for K in Figures 4.8 and 4.9,

it is not surprising to see less satisfying results than what was observed for the hy-

perparameters. Obvious ongoing trends indicate that the Markov chain has not yet

converged for the majority of parameters. This is supported by a rejection of the null

hypothesis of convergence for 89.3% of parameters in K when applying above test with

α∗ = 4.93 · 10−5. The plots for κf
20 further warn against false conclusions from the pos-

sibility of long-lasting metastability. In addition, the dependence in the simultaneous

Bayesian estimation of the VECM let starting values be out of range and lead to higher

autocorrelation. Altogether, the analysis of these and similar plots for other parameters

and model set-ups clearly shows that the full posterior distribution for the joint set of

H and K is not yet available. In conclusion, the marginal posterior distribution of the

set of hyperparameters may be affected through the simultaneousness of the estimation

procedure. However, previous results regarding H remain fruitful in that this study can

work with a rough approximation. More importantly, a sufficiently large sample ob-

tained in a reasonably long run of the MCMC algorithm can at least give a true sample

of the marginal posterior distribution for the set of hyperparameters. Indeed, for the

desired purpose of the BMPMP model, namely forecasting mortality trends into the

future, the hierarchical design of the model only requires the posterior distribution of
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H to be able to simulate the posterior predictive distribution of K for future calendar

years. By way of contrast, the immediate marginal posterior distribution of κ1, . . . , κ40,

on which the model is calibrated, need not be known in Bayesian hierarchical modelling.

Non-convergence of the CBD parameters and, even more, the fact that convergence may

not be reached in computationally feasible time is hence negligible, as long as conver-

gence for the hyperparameters can be well-justified, which in turn appears viable.

Note that the convergence diagnostics for K already show that the posterior distribution

will not include its starting values, i.e. the ML estimates of the CBD model. This is in

line with findings by Czado et al. (2005) on their Bayesian modelling approach of the LC

model and results from the different estimation methodologies: whereas the hierarchical

framework is estimated simultaneously in Bayesian statistics, the frequentist estimates

stem from a sequential procedure with the potential risk of incoherent results.

4.1.5 Posterior Predictive Checking

Under the conclusion that the MCMC algorithm yields at least a rough, if not good,

approximation of the hyperparameters in H, the BMPMP model itself must now be

checked for the general ability to fit the observed data in D and E well. If there is

evidence of lack of fit, estimators for model parameters are biased, and any inference,

particularly forecasts of mortality into the future, is invalid. Diagnostics of goodness-of-

fit in this Bayesian framework is done via posterior predictive checking, which comprises

comparison of the observed quantities and the posterior distribution of replicated values

through graphical tools or computation of Bayesian discrepancy tests and corresponding

p-values. A general overview on diagnostic quantification techniques in Bayesian statis-

tics is given in Appendix A.4.

As the Bayesian version of standard internal prediction validation, the hyperparameters

H are first simulated from their posterior distribution, i.e. values are sampled from

the MCMC output after discarding the burn-in period. In the following, the entity

of all 2,500 thinned realisations after the burn-in period is used. Then, starting with

analogously sampled realisations from the posterior of κ1 and κ2, for each realisation of

H, the parameters in K are simulated via the VECM, thereby giving a sample of the

posterior predictive distribution of the CBD parameters over the calibration period.
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Figure 4.10: Posterior predictive checking for K
Shown are fancharts of selected marginal posterior predictive distributions for κt as time series in t for 1956, . . . , 1995

based on the MCMC output with N = 1,000,000, burn-in length of 750,000, and thinning factor 100. The
country-specific parameters are illustrated for the example of Spain. 90%, 95%, 99%, and 100% credibility intervals are

given by solid, dashed, dotted, and limiting lines, respectively. Red lines denote ML estimates (starting values).
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Figure 4.11: Posterior predictive checking for ηxpgt for the age of 60

Shown are fancharts of marginal posterior predictive distributions for ηxpgt with x = 60 for all countries p (by rows) and
both genders g (by columns) as time series in t for 1956, . . . , 1995 based on the MCMC output with N = 1,000,000,
burn-in length of 750,000, and thinning factor 100. 90%, 95%, 99%, and 100% credibility intervals are given by solid,

dashed, dotted, and limiting lines, respectively. Green lines denote crude estimates from observed data.
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Figure 4.12: Posterior predictive checking for ηxpgt for the age of 80

Shown are fancharts of marginal posterior predictive distributions for ηxpgt with x = 80 for all countries p (by rows) and
both genders g (by columns) as time series in t for 1956, . . . , 1995 based on the MCMC output with N = 1,000,000,
burn-in length of 750,000, and thinning factor 100. 90%, 95%, 99%, and 100% credibility intervals are given by solid,

dashed, dotted, and limiting lines, respectively. Green lines denote crude estimates from observed data.
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Figure 4.10 shows the evaluation of selected marginal time series in K. Since these

parameters are latent, their posterior predictive distribution is checked for inclusion of

the ML estimates, i.e. their starting values, which is the case on high credibility lev-

els. In Figures 4.11 and 4.12, the resulting linear predictors ηxpgt as time series in t

are compared to their crude estimates from the raw data for each combination of all

five countries and both genders for the fixed values of x = 60 and x = 80, i.e. the

ages 60 and 80. The graphical output clearly shows a very close agreement between

the observed data and the medians of the posterior distributions. A major deviation

can only be detected for British 60-year-old females, where the observed data are still

found to lie within the pointwise 90% credibility interval. In fact, as the nominal credi-

bility intervals for the posterior distribution appear to be wider than what they should

be, based on the comparison with the crude estimates, these results exhibit a notice-

able magnitude of optimism, which is commonly observed in internal validation analyses.

Although in the literature on other Bayesian mortality prediction models, the analysis

of model fit is restricted to the assessment of graphical and tabular MCMC output, it

is good statistical practice to conduct quantitative goodness-of-fit tests to assess the

appropriateness of the chosen model. For example, since the sum of all mutually inde-

pendent Dxpgt is again Poisson distributed with the mean being the sum of all individual

means, the standardised residual for the overall death count, i.e.

T (D, E ,K) =

∑100
x=40

∑
p∈P

∑
g∈{m,f}

∑40
t=1 (Dxpgt − log (1 + exp(ηxpgt))Expgt)√∑100

x=40

∑
p∈P

∑
g∈{m,f}

∑40
t=1 log (1 + exp(ηxpgt))Expgt

,

is used as a summary test statistic. For each set of posterior predictive values K, it is

evaluated at the observed number of deaths and exposure-to-risk. The reference distribu-

tion is the posterior distribution of this test statistic obtained by replacing the observed

Dxpgt by their posterior predictive realisations Drep
xpgt. The Bayesian posterior predictive

p-value corresponds to the posterior probability of observing more extreme outcomes

for the replicated than for the historical data, i.e. P (T (Drep, E ,K) ≥ T (D, E ,K) | D, E).
Indeed, the p-value is computed to be 0.41 and, hence, not close to either extreme value

0 or 1. On the other hand, conducting this test with the immediate posterior values

for K leads to a p-value of 0.95, indicating lack of fit when the model’s main goal was

estimation of historical values. In fact, Czado et al. (2005) point out that any type of –
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what they call – “robust”, i.e. hierarchical and parsimonious, mortality projection model

generally shows a poor fit. Due to the large sample size of 5 · 2 · 61 · 40 = 24,400 death

counts, it is not surprising to see statistical tests leading to rejection of the comparably

simplistic two-level hierarchical BMPMP model with its simplifying Poisson assump-

tion. For further illustration, the general omnibus test from (A.1) in Appendix A.4 is

computed, which in this case study becomes

T (D, E ,K) =
100∑

x=40

∑

p∈P

∑

g∈{m,f}

40∑

t=1

(Dxpgt − E(Dxpgt | Expgt,K))2

Var(Dxpgt | Expgt,K)

=
100∑

x=40

∑

p∈P

∑

g∈{m,f}

40∑

t=1

(Dxpgt − log (1 + exp(ηxpgt))Expgt)
2

log (1 + exp(ηxpgt))Expgt

,

using the properties of the Poisson distribution. Plugging in the posterior predictive or

immediate posterior values K, this classical goodness-of-fit test statistic is evaluated at

the observed number of deaths and, to obtain the reference distribution, at the poste-

rior predictive realisations for Dxpgt. The Bayesian p-value corresponds to the posterior

excess probability of T (Drep, E ,K) compared to T (D, E ,K) and turns out to be zero for

either choice of K, i.e. the omnibus test yields the strongest evidence possible against

the BMPMP model. However, based on the previously discussed graphical output, by

similarity to other models in mortality forecasting, it is concluded that the statistical

evidence against the model should not be used to rule out its obvious ability to produce

realistic stochastic mortality forecasts.

The previous discussion yields a Bayesian posterior check for the entity of the BMPMP

model. Since the marginal posterior distribution of the parameters K was used in par-

ticular cases, it can be further understood as a specific check of the CBD model. It

may be of additional interest to the analyst how the VECM, i.e. the second stage in

the two-level hierarchy, performs on its own. However, model diagnostics, in light of

the well-understood techniques described in Appendix A.4 for the separate VECM, can-

not be performed, since the underlying data are the latent parameters from the CBD

model and subject to change. Classical statistical tests on residual autocovariance or

the normality of the white noise, such as the Portmanteau, Lagrange-Multiplier, and

Lomnicki-Jarque-Bera tests described in Appendix C.6, are hence not available for pos-

terior predictive checking, as the data do not remain fixed. However, to get some insight
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in the performance of the VECM, the joint posterior distribution for the residual auto-

and cross-correlation matrix is derived from the full joint distribution on both H and

K. A good model fit would lead to posterior residual autocorrelations scattering around

zero, but the analysis (not shown) reveals that marginal posterior distributions for these

values usually do not contain zero. This indication of lack of fit is not regarded con-

clusive due to the latent behaviour of K, its non-convergence in the MCMC algorithm,

and the general problems with robust mortality prediction models. Details and further

investigation of the VECM is therefore omitted here.

4.1.6 External Validation

With the choice of the calibration window 1956–1995, an out-of-sample dataset with

death counts for the years 1996–2009 is available, such that the goodness of forecasting

of the BMPMP model can be assessed through the Bayesian counterpart of external

validation, thereby eliminating the optimism seen in the results from the previous sec-

tion. For illustration purposes, the forecast period is further extended until 2014. Again,

the posterior predictive distribution for the future values κt, t = 41, . . . , 59, is derived

through sampling realisations from the posterior for H and subsequent simulation of κt

using the VECM. The posterior distribution for the hyperparameters is approximated

with the same MCMC output as before. Starting values for the time series at the now

initial years 1994 and 1995 are drawn from the posterior distribution of (κ39, κ40). Fig-

ure 4.13 shows the evaluation of the marginal time series from Figure 4.10 until 2014,

along with its ML estimates over the calibration period for comparison. Figures 4.14

and 4.15 depict the resulting linear predictors ηxpgt as time series in t with the same

choices for x as before. Here, for all plots, both the historical and future crude estimates

until 2009 from the raw data are given for evaluation of the goodness of prediction.

The plots in Figure 4.13 display a generally well-behaving forecast nature for the latent

time series in K. Historical trends are found to continue over the years 1996–2014 with

linearly increasing credibility bands, i.e. a continuously growing domain for the proba-

bility mass of all parameters to account for future uncertainties. The slopes of future

realisations in plots for, e.g., the intercept (a), linear age effects (c), and the parameters

for Spain (g–j) reveal that the Bayesian estimates do not prolong the most current trend,

but rather exhibit all kinds of developments that the time series has experienced over
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the calibration period. For example, the pace of decline for the time series of κES,f
t in

(h) seems to be lower than what would be expected based on the development over the

course of the most recent twenty years. The smaller magnitude of the slope is explained

by the stable, if not increasing, pattern of the time series for the years 1956–1975. These

results signalise the apparently specific feature of the BMPMP model to be strongly

influenced by the entire calibration period. Strong sensitivity towards the calibration

period is a common concern found for most stochastic mortality projection models; see

Cairns et al. (2009) for a general survey on models in the LC and CBD frameworks. As

a consequence, the time before the regime change, discovered in the discussion regarding

the starting values in Section 4.1.3, should be excluded for an improvement in mortality

projections.

Figures 4.14 and 4.15 show that the linear predictors ηxpgt for both ages x = 60 and

x = 80 carry over the characteristics of the forecasts for the marginal time series in K.

The linearly increasing fans in all plots correspond to the desired nature of continuously

growing uncertainty in future mortality predictions. The overly optimistic credibility

bands in the internal validation have become more realistic such that their width is

indeed required to cover crude estimates in most of the cases; for instance, see the plots

for German females with a noticeable amount of noise within the 90% credibility interval.

However, except for Spain and France, mortality rates for males are overestimated for

Germany, Italy, and – most notably – the United Kingdom, where crude estimates of

the linear predictor for x = 60 lie outside the lower 90% credibility boundary. Forecast

properties of the linear predictors resemble the previous finding for the marginal time

series regarding the sensitivity towards the calibration period. The increased pace in the

decline of linear predictors seen for the aforementioned countries suggest a calibration

period that excludes the years until 1980. It is noteworthy, however, that the BMPMP

model is still capable to capture major changes in population-specific mortality trends

through its tails, an important feature for the model’s prediction quality, particularly

when future outcomes are indeed unknown.
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Figure 4.13: External validation for K
Shown are fancharts of selected marginal posterior predictive distributions for future κt as time series in t for

1996, . . . , 2014, along with ML estimates for κt for 1956, . . . , 1995 for the same MCMC output as in Figure 4.10. The
country-specific parameters are illustrated for the example of Spain. 90%, 95%, 99%, and 100% credibility intervals are

given by solid, dashed, dotted, and limiting lines, respectively.
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Figure 4.14: External validation for ηxpgt for the age of 60

Shown are fancharts of marginal posterior predictive distributions for future ηxpgt with x = 60 for all countries p (by
rows) and both genders g (by columns) as time series in t for 1996, . . . , 2014, along with crude estimates for ηxpgt for
1956, . . . , 2009 from observed data (green lines) for the same MCMC output as in Figure 4.11. 90%, 95%, 99%, and

100% credibility intervals are given by solid, dashed, dotted, and limiting lines, respectively.
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Figure 4.15: External validation for ηxpgt for the age of 80

Shown are fancharts of marginal posterior predictive distributions for future ηxpgt with x = 80 for all countries p (by
rows) and both genders g (by columns) as time series in t for 1996, . . . , 2014, along with crude estimates for ηxpgt for
1956, . . . , 2009 from observed data (green lines) for the same MCMC output as in Figure 4.12. 90%, 95%, 99%, and

100% credibility intervals are given by solid, dashed, dotted, and limiting lines, respectively.
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4.1.7 Change of Calibration Period to 1981–2009

The previous sections have shown that the MCMC algorithm has not fully converged

for the CBD parameters and, to minor extent, for the hyperparameters in H, and that

statistical tests lead to rejection of a good model fit. However, based on the posterior

predictive distribution for simulated future mortality rates, the BMPMP model with

rough posterior approximations for the hyperparameters produces good prediction re-

sults with the desired properties of quantifying a linearly increasing trend in uncertainty.

As common in stochastic mortality prediction, sensitivity towards the choice of the cal-

ibration period was discovered, such that in the particular example above, it appears

reasonable to restrict the calibration window to the years after 1980. For a sufficiently

long history and for the most current application of mortality forecasts, the calibration

window is chosen to be 1981–2009, i.e. including most recent data. Further details of the

BMPMP model’s outcome will be discussed in the course of the updated model. Prior

to this, convergence and model diagnostics will be concisely re-evaluated.

Figures 4.16 to 4.29 contain the plots from the previous discussion replicated for the

model in (4.1) with t = 1, . . . , 29, representing the calibration window 1981–2009. All

convergence plots depict the same hyperparameters from before, and for the CBD pa-

rameter level, the selected marginal MCMC output is made for κ15 and κ29. Since data

are only available up to the end of the calibration period, i.e. the calendar year 2009,

external validation cannot be performed. However, plots of forecast until the year of

2100 are provided for a qualitative assessment of the model’s future mortality predictions.

The starting values in Figure 4.16 reveal that, contrary to the previous discussion, no

global regime change took place during the years 1981–2009. A point of reverse in

the British and, to some minore extent, Spanish parameters at the early 1990s clearly

explain why, in the earlier model, mortality predictions for these countries deviated from

the best prediction given by the distribution’s mean or median. More importantly, the

quantification of population-specific deviations from the mean mortality development in

the BMPMP model reveals that a convergent behaviour cannot be claimed for the period

of 1981–2009. By contrast, differences remain rather stable or even diverge slightly.

This result is in favour of the BMPMP model, which does not state any convergence

hypotheses explicitly, but lets the data speak for themselves.
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Figure 4.16: Starting values for K

Shown are the ML estimates κ
(0)
t of the CBD parameters as time series in t for 1981, . . . , 2009.
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Figure 4.17: Convergence diagnostics for Ω

Left panel: Realised marginal paths of selected entries of Ω after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t .
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Figure 4.18: Convergence diagnostics for Ω−1

Left panel: Realised marginal paths of selected entries of Ω−1 after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t .
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Figure 4.19: Convergence diagnostics for Π = αβ′

Left panel: Realised marginal paths of selected entries of Π after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t .
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Figure 4.20: Convergence diagnostics for φ

Left panel: Realised marginal paths of selected entries of φ after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t , 17 – κx,DE

t .
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Figure 4.21: Convergence diagnostics for Γ = Γ1

Left panel: Realised marginal paths of selected entries of Γ after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.

Indices: Indices in VECM refer to the following marginal time series: 1 – κ0
t , 2 – κf

t , 4 – κx2

t , 7 – κDE
t .
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Figure 4.22: Convergence diagnostics for κ15

Left panel: Realised marginal paths of selected entries of κ15 after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.
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Figure 4.23: Convergence diagnostics for κ29

Left panel: Realised marginal paths of selected entries of κ29 after running the MCMC algorithm with N = 1,000,000
iterations subject to thinning by a factor of 100. Right panel: Corresponding evolution of the ergodic means.
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Figure 4.24: Posterior predictive checking for K
Shown are fancharts of selected marginal posterior predictive distributions for κt as time series in t for 1981, . . . , 2009

based on the MCMC output with N = 1,000,000, burn-in length of 750,000, and thinning factor 100. The
country-specific parameters are illustrated for the example of Spain. 90%, 95%, 99%, and 100% credibility intervals are

given by solid, dashed, dotted, and limiting lines, respectively. Red lines denote ML estimates (starting values).
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Figure 4.25: Posterior predictive checking for ηxpgt for the age of 60

Shown are fancharts of marginal posterior predictive distributions for ηxpgt with x = 60 for all countries p (by rows) and
both genders g (by columns) as time series in t for 1981, . . . , 2009 based on the MCMC output with N = 1,000,000,
burn-in length of 750,000, and thinning factor 100. 90%, 95%, 99%, and 100% credibility intervals are given by solid,

dashed, dotted, and limiting lines, respectively. Green lines denote crude estimates from observed data.
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Figure 4.26: Posterior predictive checking for ηxpgt for the age of 80

Shown are fancharts of marginal posterior predictive distributions for ηxpgt with x = 80 for all countries p (by rows) and
both genders g (by columns) as time series in t for 1981, . . . , 2009 based on the MCMC output with N = 1,000,000,
burn-in length of 750,000, and thinning factor 100. 90%, 95%, 99%, and 100% credibility intervals are given by solid,

dashed, dotted, and limiting lines, respectively. Green lines denote crude estimates from observed data.
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Figure 4.27: External validation for K
Shown are fancharts of selected marginal posterior predictive distributions for future κt as time series in t for

2010, . . . , 2100, along with ML estimates for κt for 1981, . . . , 2009 for the same MCMC output as in Figure 4.24. The
country-specific parameters are illustrated for the example of Spain. 90%, 95%, 99%, and 100% credibility intervals are

given by solid, dashed, dotted, and limiting lines, respectively.
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Figure 4.28: External validation for ηxpgt for the age of 60

Shown are fancharts of marginal posterior predictive distributions for future ηxpgt with x = 60 for all countries p (by
rows) and both genders g (by columns) as time series in t for 2010, . . . , 2100, along with crude estimates for ηxpgt for
1981, . . . , 2009 from observed data (green lines) for the same MCMC output as in Figure 4.25. 90%, 95%, 99%, and

100% credibility intervals are given by solid, dashed, dotted, and limiting lines, respectively.
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Figure 4.29: External validation for ηxpgt for the age of 80

Shown are fancharts of marginal posterior predictive distributions for future ηxpgt with x = 80 for all countries p (by
rows) and both genders g (by columns) as time series in t for 2010, . . . , 2100, along with crude estimates for ηxpgt for
1981, . . . , 2009 from observed data (green lines) for the same MCMC output as in Figure 4.26. 90%, 95%, 99%, and

100% credibility intervals are given by solid, dashed, dotted, and limiting lines, respectively.
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The convergence plots in Figures 4.17 to 4.21 for the hyperparameters, and in Fig-

ures 4.22 and 4.23 for the parameters, lead to the same conclusions as before. In the

first case, an approximation of the posterior distribution based on the thinned sample

after 750,000 burn-in iterations appears reasonable good, although the MCMC algo-

rithm should be run for longer to reach ultimate convergence, notably for Ω and the

undiagnosed joint distribution. Convergence to a stationary distribution has not yet

been reached for the CBD parameters.

Internal validation is performed in Figures 4.24 to 4.26. The ML estimates are included

in the 90% credibility intervals obtained from simulation of the time series over the

calibration window, and generally line up with the medians of the posterior predictive

distribution. While internal forecasts of the linear predictor at the age of 80 draw the

overly optimistic picture as before, counterparts for the age of 60 are less sophisticating.

Here, the width of the credibility intervals is rather realistic over the entire course of

simulation, as obvious from the plots for, e.g., German males and females (a–b). More

concerning, however, are results from plots of Spanish and British females, among others,

which show that the posterior predictive distribution may not include crude estimates of

ηxpgt based on observed data for the first twenty years. For these countries, changes in

the trend are detected from the plots of country-specific age parameters in Figure 4.16,

which cannot be captured by their corresponding posterior predictive medians in Fig-

ure 4.24. In fact, the bad performance is due to substantial differences between the

crude values of the initial years 1981 and 1982 and their posterior predictive values of

κ1 and κ2 with their ML estimates as prior means. An increase of the prior variance

or even a non-informative prior might improve results, but the principal reliance of the

forecasts on the posterior predictive distribution of K, which was shown to suffer from

the commonly observed lack of fit in mortality prediction models, seems to be a more

substantial problem. For now, it is concluded that the BMPMP model may lack fit

for early years of the forecasting period, and future work should be devoted to improve

starting values of mortality predictions. However, from a biological point of view, the

country-specific deviation parameters are expected to stay within some certain range.

Future regime changes of such parameters should be captured by the growing long-term

variance in the posterior predictive distribution, as indeed seen in all aforementioned

cases.
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Finally, Figures 4.24 to 4.26 depict predictions of selected marginal CBD parameters and

their corresponding linear predictors for the unknown logits of mortality rates until 2100.

The linear and symmetric increase of uncertainty over a short forecast period of only a

couple of decades turns into a quadratic and skewed pattern in the long-run, notably

after around 50 years. Based on the output in Figure 4.24, best estimates given by the

medians of posterior predictive distributions prolong linear trends in the individual CBD

parameters. For example, an ongoing linear decline of linear predictors for 40-year-old

men in the reference population, known from the period 1981–2009, is anticipated. The

difference between men and women for this age group is expected to remain constant

or to diminish slowly. The projected medians for the age-related parameters suggest

a sustainable transmission from the rather linear pattern of mortality rates versus age

towards a merely and, in fact, pure quadratic effect in the year of 2100 without major

differences between both genders. Medians for population-specific effects, exemplarily

shown for Spain, stay closely around zero with a slightly declining trend for Spain over

the entire course of the forecast period.

On the subject of the uncertainty in the parameter estimates, the posterior predictive

distribution of the intercept allows the mortality improvements for a 40-year-old male

to reduce in pace or to worsen to a level known from the early 1980s, at the year of 2100

on a credibility level of 95%. More probability mass is devoted to the lower tail of the

distribution, i.e. deviations to a faster improvement in mortality are stronger. Here, 95%

credibility intervals allow the speed in mortality improvements to increase by a factor of

up to eight. As such, the Bayesian approach with its easily quantifiable uncertainty in

long-term mortality improvements replaces the elliptical forecasts of confidence intervals

in common frequentist approaches by a wider variety of scenarios. With regards to the

rapid and sudden improvement in mortality rates observed for the 20th century, it is a

desired feature of the model’s 100-year-span prediction to cover potentially biologically

plausible changes due to unforeseen medical, social, and economic events. Interpretation

of the remaining parameters in Figure 4.24 should not be done marginally, because the

analogy of evolution in credibility bands suggests a strong correlation between future

paths such that extreme outcomes affect each other. This is additionally supported by

the consistency of individual population- and gender-specific fancharts in Figures 4.25

and 4.26, in which extreme outcomes for the parameters seem to coincide. Median fore-

casts extend the linear decline of the linear predictors over the calibration window into
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the future. Posterior predictive distributions are generally skewed to the left, making

faster improvements in mortality more likely than slower or even deteriorating changes.

The similarity in future developments, e.g. the diminishing differences between both

genders, and distributions for the year 2100, which principally cover the same range of

possible values, indicate that population-specific mortality rates wander jointly rather

than independently. A discussion of the joint distribution of future predictions is specif-

ically undertaken in the following section.

4.1.8 Joint Posterior Predictive Distribution

In this section, the ability to jointly forecast mortality rates for an arbitrary number of

populations is assessed for this case study. As outlined earlier, certain marginal time se-

ries in K show strong correlation. Hence, in Bayesian forecasting, this correlation should

be observed for the future realisations of the CBD parameters. Figures 4.30 and 4.31

visualise the correlation matrices for the posterior predictive distribution of the vector

κt for the years 2050 and 2100, respectively. Strong or almost perfect correlation exists

between the six main population-independent parameters for intercept, gender, and age

effects. For example, negative correlation is strong for the pairs intercept and gender,

linear age and quadratic age, and the linear and quadratic age interactions with gender.

Such dependencies are easily interpretable as cancellation effects, if one gender or age

group benefits from major mortality improvements only. Similar conclusions are drawn

for the many other correlations between these parameters. For the population-specific

parameters, high correlation is rather sparse, indicating that shocks within national

mortality data are connected to a limited extent. Whereas the population-specific main

and gender effects do not exhibit much correlation among themselves, the analogous

correlation structure between main and age effects is apparent. A notable feature is the

consistent joint behaviour for predicted K when going from 2050 to 2100 with a slightly

increasing magnitude in correlations, particularly for British parameters. Some other

strong covariances are scattered, whereas remaining correlation is less distinct. The

latter finding suggests that parameter matrices in the VECM could be thinned out in

future work to reduce complexity in such high-dimensional models.
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Figure 4.30: Correlation matrix for κt at the year of 2050

Shown are the bivariate correlations of all marginal posterior predictive distributions for future κt with t for 2050 for the
MCMC output with N = 1,000,000, burn-in length of 750,000, and thinning factor 100. Blue and red circles denote

positive and negative correlation, respectively. The magnitude of the absolute correlation is given by both the circle size
and colour intensity.
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Figure 4.31: Correlation matrix for κt at the year of 2100

Shown are the bivariate correlations of all marginal posterior predictive distributions for future κt with t for 2100 for the
MCMC output with N = 1,000,000, burn-in length of 750,000, and thinning factor 100. Blue and red circles denote

positive and negative correlation, respectively. The magnitude of the absolute correlation is given by both the circle size
and colour intensity.
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Figure 4.32: External validation for ηxpgt for the ages of 60 and 80 at years 2050 and
2100

Shown are the bivariate correlations of all population-specific posterior predictive distributions for future ηxpgt with
x = 60 and x = 80 (by columns) and t for 2050 and 2100 (by rows) for the MCMC output with N = 1,000,000, burn-in
length of 750,000, and thinning factor 100. Blue circles denote positive correlation, and its magnitude is given by both

the circle size and colour intensity.
Order of parameters: Male and female populations are given in two blocks, each of which ordered by DE, ES, FR, IT,

UK.
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Figure 4.33: Differences in ηxpgt for different populations p of males for the age of 80

Shown are fancharts of marginal posterior predictive distributions for future differences in ηxpgt with g = m and x = 80
for selected pairs of countries p (by rows) in both joint and individual BMPMP models (by columns) as time series in t
for 2010, . . . , 2100, along with crude estimates for the differences in ηxpgt for 1981, . . . , 2009 from observed data (green
lines) for the MCMC output with N = 1,000,000, burn-in length of 750,000, and thinning factor 100. 90%, 95%, 99%,

and 100% credibility intervals are given by solid, dashed, dotted, and limiting lines, respectively.
Left panel: The joint BMPMP model for all five countries DE, ES, IT, FR, UK with k = 2 and r = 5. Right panel:

Combined output from five individual BMPMP models for each country with the six main CBD parameters only and
k = 2 and r = 1, respectively. The MCMC algorithm is run with the same length, burn-in period, and thinning.
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Figure 4.32 shows visualisations of the correlation matrices for ηxpgt at all combinations

of fixed ages 60 and 80 and fixed years 2050 and 2100. Correlations are assessed be-

tween all ten strata composed by the five countries and both genders. Note that the

dependencies between different age groups need not be assessed due to the design of the

BMPMP model. The plots show that the model indeed exhibits the desired property

of projecting highly positive correlations between the individual populations into the

future. As expected, the magnitude is highest for both genders within the same country.

In this case study, mortality rates further appear to have a stronger correlation between

the countries for higher ages. While any combination of populations has a minimum

correlation coefficient of 0.5 for the age of 80, these dependencies may even vanish for

the age of 60; see German and Spanish females, for instance. Surprisingly, differences

between 2050 and 2100 are negligible.

Despite the discussion of the aforementioned plots, the BMPMP model’s outcome needs

to be compared to corresponding results from independent univariate projection models

in order to fully assess the distinct feature of joint mortality rate projections for an

arbitrary number of populations. If the BMPMP model is able to quantify a biologically

anticipated stability in mortality patterns, or to describe dependencies between the in-

dividual populations, then the result of the joint modelling approach should generally

differ from combined results of independent marginal models. For a fair comparison, the

principal framework of the univariate models must coincide with the BMPMP model,

apart from the change in the number of populations. Consequently, each individual pop-

ulation is modelled via the CBD approach as in (4.1) without any population-specific

effects, i.e. the linear predictor only consists of the intercept, the gender-related main

effect, and the linear and quadratic effects for age. The number of parameters decreases

to six including interaction terms. The parameters are again forecast through a VECM,

which is now far less high-dimensional than in the multi-population case. The lag order

is kept constant at k = 2, and the cointegration rank is chosen to be r = 1 for each inde-

pendent model. Apart from the latter specification, Bayesian estimation with the same

prior assumptions and MCMC approximation of the posterior distribution is applied to

avoid any other methodological differences between the univariate and multivariate cases.

Since the individual models for all five countries are independent, replicated plots as

in Figure 4.32 (not shown) only exhibit correlation between both genders within each
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nation. However, to quantify the extent to which the joint modelling approach leads to

more biological plausibility, the predictions must be analysed for convergent or divergent

behaviour rather than simple correlation. Fancharts of posterior predictive distributions

for differences in selected linear predictors for males are plotted over the forecasting

period for both the joint and the independent modelling approaches in Figure 4.33. Al-

though credibility bands remain narrow for several decades, it is noteworthy that even for

the joint modelling approach, the stochastic model design cannot prevent a considerable

spread between linear predictors of two different countries. Median predictions, however,

do forecast anticipated non-divergence of marginal mortality rates. A comparison of re-

sults from both models reveals that even the independent models do not seem principally

implausible, as their best estimates suggest a stable and non-divergent future, too. How-

ever, except for the difference between German and British males, credibility intervals

are usually much wider – up to a doubling in size. Thus, the joint modelling approach of

the newly introduced BMPMP model leads to substantial reduction in overly conserva-

tive and unreasonable credibility regions from combined single-population models. The

case study greatly supports the usage of the joint forecasts.

4.1.9 Comparison of Different Model Set-ups

In this section, the BMPMP model of mortality projections for the Big Five over the

calibration period 1981–2009 is compared for different choices in the VECM specifica-

tions. The six model set-ups under consideration are comprised of all combinations of

the values k = 1, 2 and r = 0, 1, 5 for the lag and cointegration order, respectively. Each

model’s posterior distribution is approximated by the MCMC output of N = 1,000,000

iterations subject to a thinning factor of 100, and after discarding a burn-in period

of 750,000 iterations. Convergence and model diagnostics are all analogous to previous

findings. Most notably, a rough approximation can only be achieved for the hyperparam-

eters, and convergence for the CBD parameters is not satisfying. A detailed discussion

on such diagnostic measurements is omitted here for convenience. Note that a detailed

sensitivity analysis w.r.t. the choice of priors is not provided within this discussion and

left open for future work.

A comparison of all six model specifications is conducted via qualitative assessment of

differences in posterior predictive forecasts over the window 2010–2100. Figure 4.34
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Figure 4.34: Comparison of posterior predictive ηxpgt for 60-year-old Italian males for
different choices of cointegration and lag orders

Shown are fancharts of marginal posterior predictive distributions for future ηxpgt with x = 60, p = IT, g = m for
BMPMP models specified through different cointegration orders r = 0, 1, 5 (by rows) and lag orders k = 1, 2 (by

columns) as time series in t for 2010, . . . , 2100, along with crude estimates for ηxpgt for 1981, . . . , 2009 from observed
data (green lines) for the respective MCMC outputs with N = 1,000,000, burn-in length of 750,000, and thinning factor
100. 90%, 95%, 99%, and 100% credibility intervals are given by solid, dashed, dotted, and limiting lines, respectively.
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shows posterior mortality projections at the example of 60-year-old Italian males. The

cointegration order r has the significant effect of increasing both the variability and left-

skewness in the posterior predictive distributions of the long-term forecasts for the linear

predictors. Whereas best estimates given through median values are stable throughout

all set-ups, the choice of r = 0 or r = 1 yields an elliptical uncertainty pattern, known

from standard frequentist and single-population models in the literature on stochastic

mortality predictions. Credibility intervals remain narrow and symmetric over the entire

course of the prediction window. Notably, the posterior predictive distribution at the

year of 2100 is of similar nature than what is observed for the year 2050. Therefore,

increasing uncertainty about future developments in medicine, economy, and society

over such long time spans is neglected. In contrast, the plots for r = 5 reveal that the

inclusion of more cointegrating relationships in the VECM leads to increasing variability

over time, with a shift of probability mass towards a possible slowdown and, to a larger

extent, fast-pace mortality improvements. Such results not only underline the distinct

feature of a more complex and principally more realistic uncertainty structure, but also

the analyst’s ability to express prior beliefs through the choice of r. Apart from effects

on the 1% tails when r = 0, the lag order k, however, appears to have no visible effect

on the BMPMP model’s performance, so that the joint modelling approach without AR

features appears adequate. Summarising, the robustness for r > 0 suggests the usage of

the BMPMP model with k = 1 and, implicitly, a large reduction in computation time.

4.1.10 Comparison of Bayesian and Maximum-Likelihood

Estimation

In this case study, in which mortality rates of five different countries stratified by two

genders are to be forecast based on a calibration window of around 30 years, the Bayesian

methodology is essential, when k = 2, to overcome the problem of over-parametrisation.

Flexibility in model specification is therefore strongly limited. Due to the vanishing

importance of AR terms in the VECM, as seen in the previous section, this case study

only allows a comparison of Bayesian and frequentist estimation procedures with the

choice of k = 1. Note, however, that with increasing number of populations, even the

Markovian version of the BMPMP model becomes over-parametrised and frequentist

approaches cannot be established.
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Figure 4.35: Comparison of Bayesian posterior predictive and maximum-likelihood esti-
mates for ηxpgt for 60-year-old Italian males

Shown are fancharts of marginal posterior predictive distributions for future ηxpgt with x = 60, p = IT, g = m for
BMPMP models with lag order k = 1 and both cointegration ranks r = 1, 5 as time series in t for 2010, . . . , 2100, along
with ML forecasts (red lines) and crude estimates for ηxpgt for 1981, . . . , 2009 from observed data (green lines) for the

respective MCMC outputs with N = 1,000,000, burn-in length of 750,000, and thinning factor 100. 90%, 95%, 99%, and
100% credibility intervals for the Bayesian estimates are given by solid, dashed, dotted, and limiting lines, respectively.

Analogous line types are used for the 90%, 95%, and 99% confidence intervals for the frequentist estimates.
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In the following, frequentist forecasts are computed via subsequent ML estimation of

the CBD model, i.e. the previously used starting values, and the VECM with Gaussian

white noise, as outlined in Appendix C.4. Least-squares estimation, which is addition-

ally described in the appendix, will not be considered here. Figure 4.35 shows the

forecasts for the BMPMP models with k = 1 and r = 1, 5, known from Figure 4.34,

with superimposed confidence intervals from ML estimation. Obviously, the frequentist

approach fails for the model with five cointegration relationships in that the time series

and, consequently, the linear predictors ηxpgt explode for all populations. A natural ex-

planation is that with 612 VECM parameters for 728 latent observations, ML estimation

– although mathematically possible – becomes highly unstable with an ill-conditioned

maximisation problem. Valid ML results for the case of r = 1 and for other case studies

(not shown) support this theory. As also discovered for other examples, the first plot

shows that when frequentist estimation is doable and well-conditioned, best estimates

are close to the median values of the posterior predictive distributions from Bayesian

estimation. Confidence intervals are narrower than their credibility counterparts and

closest for the choice of r = 0. In general, they are completely contained in the cor-

responding credibility bands and less sophisticating than the Bayesian outcome w.r.t.

uncertainty patterns. In conclusion, ML estimation is not available for the BMPMP

model in most but the smallest applications, and, if it is, problems with its robustness

and plausibility still speak for the Bayesian approach.

4.2 Case Study 2: Central European Countries

This case study applies the gender-specific model in (4.1) for the age interval [40,100]

and calibration window of 1981–2009 to the five Central European countries of Austria

(AT), the Czech Republic (CZ), Germany2 (DE), Hungary (HU), and Poland (PL), as

shown in Figure 4.36. These countries are selected to combine populations which in

the augmented common factor model by Li and Lee (2005) could either be modelled –

both as members of the so-called low-mortality group (i.e. Austria and Germany) or as

members of the remaining out-of-group sample (i.e. the Czech Republic) – or had to

be abandoned due to an explosive behaviour in the marginal first-order AR time series

model (i.e. Hungary). The remaining country Poland was not analysed in this study.

2As before, German data are restricted to the territory of former West Germany for consistency
purposes.
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Figure 4.36: Map of the five Central European countries in case study 2

Shown in green are the five Central European countries of the second case study: Austria (AT), the Czech Republic
(CZ), Germany (DE, data only for West Germany in this case study), Hungary (HU), and Poland (PL), within Europe.

For details on territorial coverage for these five countries, see the list of countries in the preface.
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Figure 4.37: Starting values for K

Shown are the ML estimates κ
(0)
t of the CBD parameters as time series in t for 1981, . . . , 2009.
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Figure 4.38: Posterior predictive checking for K
Shown are fancharts of selected marginal posterior predictive distributions for κt as time series in t for 1981, . . . , 2009

based on the MCMC output with N = 1,000,000, burn-in length of 750,000, and thinning factor 100. The
country-specific parameters are illustrated for the example of Hungary. 90%, 95%, 99%, and 100% credibility intervals
are given by solid, dashed, dotted, and limiting lines, respectively. Red lines denote ML estimates (starting values).
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Figure 4.39: Posterior predictive checking for ηxpgt for the age of 60

Shown are fancharts of marginal posterior predictive distributions for ηxpgt with x = 60 for all countries p (by rows) and
both genders g (by columns) as time series in t for 1981, . . . , 2009 based on the MCMC output with N = 1,000,000,
burn-in length of 750,000, and thinning factor 100. 90%, 95%, 99%, and 100% credibility intervals are given by solid,

dashed, dotted, and limiting lines, respectively. Green lines denote crude estimates from observed data.
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Figure 4.40: Posterior predictive checking for ηxpgt for the age of 80

Shown are fancharts of marginal posterior predictive distributions for ηxpgt with x = 80 for all countries p (by rows) and
both genders g (by columns) as time series in t for 1981, . . . , 2009 based on the MCMC output with N = 1,000,000,
burn-in length of 750,000, and thinning factor 100. 90%, 95%, 99%, and 100% credibility intervals are given by solid,

dashed, dotted, and limiting lines, respectively. Green lines denote crude estimates from observed data.
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Figure 4.41: External validation for K
Shown are fancharts of selected marginal posterior predictive distributions for future κt as time series in t for

2010, . . . , 2100, along with ML estimates for κt for 1981, . . . , 2009 for the same MCMC output as in Figure 4.38. The
country-specific parameters are illustrated for the example of Hungary. 90%, 95%, 99%, and 100% credibility intervals

are given by solid, dashed, dotted, and limiting lines, respectively.
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Figure 4.42: External validation for ηxpgt for the age of 60

Shown are fancharts of marginal posterior predictive distributions for future ηxpgt with x = 60 for all countries p (by
rows) and both genders g (by columns) as time series in t for 2010, . . . , 2100, along with ML forecasts (red lines) and
crude estimates from observed data (green lines) for the same MCMC output as in Figure 4.39. 90%, 95%, 99%, and

100% credibility and confidence intervals are given by solid, dashed, dotted, and limiting lines, respectively.
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Figure 4.43: External validation for ηxpgt for the age of 80

Shown are fancharts of marginal posterior predictive distributions for future ηxpgt with x = 80 for all countries p (by
rows) and both genders g (by columns) as time series in t for 2010, . . . , 2100, along with ML forecasts (red lines) and
crude estimates from observed data (green lines) for the same MCMC output as in Figure 4.40. 90%, 95%, 99%, and

100% credibility and confidence intervals are given by solid, dashed, dotted, and limiting lines, respectively.
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With all priors chosen as in Section 4.1.2 and the algorithm run as outlined in Sec-

tion 4.1.3, different specifications for k and r are compared, and the choice of one for

both the lag and cointegration orders is concluded to yield a parsimonious and well-

fitting model. Figures 4.37 to 4.43 show the starting values and posterior predictive

distribution plots for both internal and external validation, including comparison with

ML estimation. The outcomes will be assessed in the remainder of this section. Con-

vergence plots depict a very similar behaviour as those investigated in the previous case

study, and are therefore omitted here for convenience.

The starting values in Figure 4.37 somewhat differ from the last case study, particularly

for the intercept and main gender effect. When interpreting the combined evolution,

the shift from five Western to five Central European countries leads to a negative shock

in mortality improvement for men around the year of 1990. This bump, i.e. a sudden

increase in logits of mortality rates around 1990 before turning to a fast-paced negative

trend, is observed for most Central and Eastern European countries, and is often argued

to be an effect of the fall of the Iron Curtain. While population-specific parameters

for Austria, the Czech Republic, and Germany remain merely stable, the time series for

Hungary and Poland indicate some regime changes and should hence be treated carefully.

Internal validation in Figures 4.38 to 4.40 is as satisfying as before and does not indicate

additional problems with mixing low- and high-mortality countries. ML estimates and

crude mortality rates are generally included in the plotted credibility intervals. Strong

deviations from the posterior predictive distribution for 60-year-old males of the Eastern

European countries in the first half of the calibration window were visible and discussed

in the previous case study and no unique feature in this application. Moreover, compar-

ison of forecasts for German data, which are particularly modelled in both case studies,

reveals no substantial differences in their quality and, if any, then a slight improvement.

Hence the model appears robust w.r.t. the homogeneity in underlying data.

Rather surprisingly, external validation in Figures 4.41 to 4.43 lead to narrower credibil-

ity intervals for German mortality predictions than what was previously observed. An

explanation might be that, in the first case study, German data were implicitly trained

on more similar countries and that their characteristics, e.g. in variability, were correctly

incorporated into German forecasts. The current case study combines rather different

mortality patterns and effectively leads to a minor extent of information loss. This ex-
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planation would motivate the increase in the number of population in joint forecasts

using the BMPMP model.

Apart from the comparison of German data, the external validation plots clearly show

reasonable fancharts for the country-specific forecasts. A qualitative difference exists

between Austrian, Czech, and German data on the one hand, and Hungarian and Polish

data on the other. The first-mentioned countries depict a strong negative trend, whereas

the remaining countries devote more probability mass to a slower pace or even deterio-

rating outcomes. A comparison to individual models is not conducted for this case study,

but it can be gathered from the analysis in Section 4.1 that the joint model approach is

naturally superior to isolated forecasts. What is still done, however, is the comparison

of the Bayesian forecasts with their ML counterparts, given by the superimposed red

lines in the last to figures. Frequentist confidence intervals can either be much narrower

than Bayesian credibility intervals or, what is observed in most instances, depict best

estimates that substantially differ from the posterior predictive median values by gener-

ally being too conservative, which seems far less plausible.

To summarise, the BMPMP model yields a flexible and robust approach to model even

unconventional combinations of populations in an easily interpretable way.

122



5 Conclusion

In light of modern challenges in stochastic mortality forecasting, the BMPMP model, a

Bayesian approach in the multi-population framework, was derived, defined, and applied

in this work. This concluding chapter summarises the model’s characteristics, advan-

tages, and limitations based on theoretical and empirical findings in Chapters 3 and 4

and addresses potential or even necessary future work.

5.1 Summary and Outcome

In this thesis, the BMPMP model was established to allow for mortality projections

of high ages in a globalised world with particular focus on modelling inter-population

dependencies and associated uncertainties. The detailed literature review in Chapter 2

revealed that the interest in such approaches has already led to a variety of attempts.

However, due to the complexity in high-dimensional forecasting models, an ultimate

state-of-the-art technique does not seem to have evolved yet. In fact, the literature re-

view could indeed be used to postulate an extensive list of limitations in existing models.

The BMPMP model was designed to address such problems to provide a concrete tool

for improved joint mortality forecasts and a substantial contribution to other future

work. It has a two-level hierarchical structure, which is known from most other models

and has been successfully established in modern stochastic mortality forecasting. Here,

the CBD model is used as framework for observed mortality rates and the VECM is

the data-driven technique to project today’s patterns into the future. Most notably,

the approach differs from existing model by combining such a flexible, easily applicable,

and interpretable multi-population model with the non-frequentist paradigm of Bayesian

statistics to assure a well-conditioned estimation procedure, biological plausibility, and

quantification of uncertainty – as specifically expressed via the model’s name. The key

outcomes of the BMPMP model are:
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• The BMPMP model is a flexible multi-population mortality projection model,

which is not generally restricted to a certain number or type of populations.

• Its hierarchical structure with forecasts of CBD parameters and corresponding lin-

ear predictors as immediate output lead to an easy, but also detailed, interpretation

and analysis. It can be further extended or adjusted for specific needs.

• The Bayesian approach has two important consequences. On the one hand, in con-

trast to frequentist estimation, it guarantees well-conditioned long-term mortality

projections based on comparably short calibration periods. On the other hand, it

results in posterior distributions of future model parameters and mortality rates,

which are fruitful for coherent quantification of risks and dependencies.

• The empirical analyses of the BMPMP model point towards success in biologically

plausible quantification of the interaction between different populations through

completely data-driven techniques rather than postulated convergence assump-

tions. As a consequence, unforeseen possibilities of acceleration or deceleration in

mortality improvements are intentionally included.

• Comparison of different model specifications indicated robustness of the model

w.r.t. the lag order in the VECM and the possibility of adjusting the uncertainty

in mortality predictions via the cointegration rank.

• The empirical case studies for the BMPMP model finally stressed the growing

importance of quadratic age effects and diminishing country-specific differences

between both genders in general mortality forecasting.

It can therefore be claimed that the BMPMP model generally fulfils the desired out-

comes, which initially motivated its derivation. However, the empirical case studies

could only give limited insight into the model’s characteristics. In particular, analyses of

biological plausibility and dependencies were restricted to assessment of a few graphical

outputs and cannot draw a conclusive picture. Moreover, despite the apparently valid

forecasts in both case studies, the MCMC algorithm for the Bayesian estimation of the

model parameters did not fully converge. Although approximations of the posteriors for

the hyperparameters by the marginal output yielded satisfying results in this work, they

should not be considered to be ultimately sufficient. As a drawback, full convergence
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is numerically expensive and requires unwanted computation time, but the model’s ro-

bustness w.r.t. the lag order indicates that calibration for the cost-efficient case of k = 1

suffices. It must further be kept in mind that the CBD model approach does not give the

option to model mortality rates for ages below 40. As common in stochastic mortality

forecasting, the BMPMP model was also detected to be sensitive towards the calibration

window.

However, considering all of the challenges that the model addresses, it still appears to be

a strong tool for future applications with high ages, whose flexibility possibly outperforms

many of the cited alternatives. Its universal set-up further yields a promising framework

for future extensions. The benefits through joint forecasts and the Bayesian paradigm

can be expected to be applied with other approaches to provide reasonable mortality

forecasts. Most importantly, due to the implementation in the statistical software R and

its inherent flexibility, the BMPMP model is immediately available to the interested

reader and ready for own applications.

5.2 Future Work

This work defined a completely new model and thoroughly discussed its application in

two different case studies. Although much insight could be provided, this work is limited

in what had to be analysed for a full assessment of the BMPMP model. For an improved

understanding of the model, empirical outcomes need to be studied for a larger variety

of applications and longer-lasting MCMC algorithms that have indeed fully converged.

Here, based on findings in Chapter 4, focus can be laid on model specifications with lag

order k = 1, because the model appears to be robust against the lack of AR compo-

nents while reducing its dimensionality significantly through omission of m-dimensional

parameter square matrices. Computation time decreases quadratically and might guar-

antee this framework to become more convenient.

Furthermore, no sensitivity analysis of the prior choices for the constants introduced in

Section 3.3.2 has so far been conducted. It is necessary to infer the effects of changes in

such values to further assess the model’s robustness and to get a clearer picture of how

the analyst can set-up the model a priori based on their needs. Similarly, a discussion of

125



5 Conclusion

the performance with given deterministic scenarios as outlined in Section 3.4 would give

deeper insight into the model’s advantages. The qualitative assessment of the model’s

ability to project plausible results in a globalised world needs to be extended to a more

quantitative and general analysis. The sensitivity towards the calibration period can

be addressed specifically and used for future development of this approach. Based on

the findings in the empirical case studies, future work can further be undertaken to

widen the model’s short-term credibility bands and to reduce its high-dimensionality by

thinning out unnecessary parameters in the parameter matrices. Of course, to bend the

bow to the very introduction to this work, an application of the mortality outcomes in

an actuarial context, as common in the cited literature, needs to be done for assessment

of the model’s applicability to quantify benefits of the improved knowledge of risks and

dependencies when pricing of life insurances and pension funds. Summarising, with the

positive results in this work, the analysis of the BMPMP model has just begun.
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A Bayesian Statistics

Through substantial growth in computer efficiency during the last decades, computer-

intensive numerical techniques have become more and more popular. Bayesian statistics,

named after Thomas Bayes (1702–1761), is a prominent example among these methods

and provides a notable alternative to standard methodologies in statistical data analy-

sis. In the presence of Bayesian statistics, the well-established approaches for drawing

conclusions about unknown quantities from numerical data, which build upon hypoth-

esis testing and confidence intervals, are commonly referred to as frequentist inference.

It emphasises the interpretation of results as probabilistic statements about infinite se-

quences of the experiment under consideration. Since Bayesian and frequentist inferences

differ in their basic philosophies, the core features of both paradigms are reviewed in

Section A.1. Details on the actual inference conducted in a Bayesian framework are

presented in Section A.2. Sections A.3 and A.4 are particularly devoted to hierarchical

approaches and model diagnostics in the Bayesian context, respectively. The discussion

in the entire section is mainly based on the excellent standard textbook on Bayesian

statistics by Gelman et al. (2013), which is recommended for a thorough review on this

topic.

A.1 Pragmatic Comparison of Frequentist and Bayesian

Statistics

Given a probabilistic model for all observed quantities in an underlying scientific prob-

lem, in frequentist estimation any unknown model parameter θ is generally assumed

constant. The rationale is that even if a parameter cannot be observed, there exists one

true value and randomness stems from natural deviations of anything unknown when

experiments are repeated. The fundamental measure of such uncertainty is captured

by probability, which in frequentist’s terms is thought of as the relative frequency of an
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event in a very long, theoretically infinite, sequence of the same experiment, conducted

independently of each other. Probabilistic statements in this classical framework have

to be interpreted in terms of future experiments and not, as usually but falsely done,

in terms of the currently observed data. For example, a 100p% confidence interval in-

cludes the true but unknown value θ with confidence p ∈ (0, 1), as it is a realisation

of a random interval containing the true value with probability p in the limit of re-

peated experiments. However, the realised interval cannot be stated as a fixed range

in which the unknown parameter lies with probability p, although it generally serves as

good approximation and is hence interpreted as such for convenience. Similarly, given

a statistic to test a null hypothesis H0 related to the problem, the corresponding fre-

quentist p-value is not the probability that H0 is true, as it is commonly said to be,

but the probability of observing a result at least as extreme for the outcome under the

null distribution in a sequence of similar inferences. It is natural to use the p-value as

a measure of inconsistency between the data and the hypothesis, but it does not tell

anything about the likelihood of H0 being true. A more detailed review on frequentist

interpretations in light of Bayesian statistics can be found in Dobson and Barnett (2008).

Conversely, the Bayesian approach makes use of an alternative paradigm, in which prob-

ability statements are applied with both observed and unobserved quantities, i.e. the

sampled data and the parameters of interest. A consequence is that uncertainty is quan-

tified explicitly through probability, which is the key philosophy in Bayesian statistics.

Gelman et al. (2013) describe this methodology in three steps. First, a joint probabil-

ity model for the data y and parameters θ is postulated based on scientific knowledge

of the underlying problem, eventually including dependence on additional explanatory

variables. After collecting sample data, the conditional probability distribution of the

parameters of interest given the observed data is derived. Inference is based on this

posterior distribution as it combines the general probabilistic assumption on θ, referred

to as the prior distribution, and what is learned from the data under the full model.

The third step comprises tools for analysing the model fit and sensitivity towards model

assumptions. Since the model is set up via a full probability approach, any probabilistic

statements can be immediately interpreted as such in a common sense without relating it

to a sequence of independent repetitions. A 100p% probability interval then expresses a

range for the quantity of interest with coverage probability p and a p-value is interpreted

as the probability of replicated data being more extreme than observed data evaluated
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under a specified test statistic. Besides the advantages of common-sense interpretation,

Bayesian statistics is said to be appealing due to a reduced impact of overparametrisa-

tion, in particular when using hierarchical models, in which the number of parameters

may even exceed the number of data points. Generally, the freedom of a full probability

model for all quantities enables the analyst to model complex problems by models which

are not restricted to be too simplistic. More details on hierarchical models are given

in Section A.3, whereas for a general overview on the usage of Bayesian inference the

reader is referred to Gelman et al. (2013).

A.2 Bayesian Inference

Given the probability distribution for the parameters of interest and one set of realised

data, the consequence of Bayesian statistics is that the posterior distribution for θ,

on which all inference is based on, depends on the observed values, which reverses the

conditioning of probabilistic statements known from frequentist approaches. Conditional

on the given data, the posterior is given by p(θ | y) = p(θ, y)/p(y), which depends on θ

only through the postulated full probability model p(θ, y). For the sake of simplification

in notation, any dependence on covariates is dropped in this chapter. Noting that

p(θ, y) = p(y | θ)p(θ) is the product of the sampling distribution p(y | θ) and the prior

distribution p(θ), the posterior distribution is ultimately obtained via the well-known

Bayes’ rule, i.e.

p(θ | y) = p(y | θ)p(θ)
p(y)

.

The normalising constant p(y) =
∫
p(y | θ)p(θ)dθ, which is evaluated as a sum in case

of discrete θ, is considered constant for the given realisation of the data and Bayesians

usually limit their attention to the non-normalised posterior

p(θ | y) ∝ p(y | θ)p(θ),

which summarises the key tasks in Bayesian inference: formulating an appropriate prob-

ability model, usually done by breaking down the problem into finding suitable sampling

and prior distributions, and computation of the posterior distribution. Since the data

are considered the fixed outcome of one experiment, p(y | θ) is read as a function in θ for
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fixed y and called the likelihood. Bayesian inference hence follows the so-called likelihood

principle such that identical inference is obtained for θ if the underlying probability

models share the same likelihood functions for given y.

If statistical conclusions about the unobservable parameters are the aim of Bayesian

data analysis, posterior distributions are the main tools to use. Of course, Bayesian

methodology is also useful for predictive inference, i.e. probabilistic statements about

observable quantities, for which the sampled data y constitute one realisation. Before

this sample is collected, the probability distribution for the unknown data is given by the

normalising constant p(y), which can be computed by integrating over both the likelihood

and the prior, as stated above. Gelman et al. (2013) call this marginal distribution the

prior predictive distribution to emphasise the independence of previous observations and

the fact that y is observable. After data y have been collected, the additional information

leads to the posterior predictive distribution for the random quantity ỹ, which stands for

further observable but yet unknown outcomes of the same quantity that generated y. It

is computed as

p(ỹ | y) =
∫

p(ỹ, θ | y)dθ

=

∫
p(ỹ | θ, y)p(θ | y)dθ

=

∫
p(ỹ | θ)p(θ | y)dθ,

i.e. the average of the likelihood weighted by the posterior distribution for θ. The last

equality follows from the conditional independence of ỹ and y given θ. Apart from the

purpose of predictive inference, the posterior predictive distribution is a fundamental

tool in model diagnostics, as further discussed in Section A.4.

Critics in favour of frequentist statistics often state the dependence on the rather sub-

jective choice of a prior distribution and the comparably difficult derivation of the pos-

terior distribution. Whereas the latter problem has significantly decreased over the

last decades with availability of computer-intensive numerical methods, mainly MCMC

procedures which are presented in Appendix B, Gelman et al. (2013) point out that

scientific reasoning must be applied even for specification of the likelihood, i.e. also in
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frequentist methodology. In particular, assumptions such as a specific error distribution

in a regression model can be similarly subjective as the choice of the prior for underlying

unknown quantities. Statistical inference relies to large extent on the chosen model, and

the specification of a prior distribution can be seen as part of the process of scientific

judgement on which model to choose. Moreover, accuracy of prior assumptions and the

corresponding sensitivity of posterior results can be similarly examined as it has to be

done in frequentist models. In practice, prior distributions are specified using informa-

tion which is already at hand, e.g. opinions from experts or results from previous studies.

In this case, the prior distribution is called informative and, analogously, the prior is

called non-informative if it does not contain any information based on prior beliefs.

Prior distributions are referred to as conjugate, if the posterior distribution remains in

the same family, i.e. the observed data only update the underlying parameters of the

distribution. Conjugate priors are convenient in that they offer analytic solutions for

the posterior distributions and are often chosen for convenience, but their necessity has

decreased through improvements in the numerical computation of posteriors. It is worth

mentioning that prior distributions need not be proper per se, i.e. they may not integrate

to one. Such diffuse priors, e.g. an unbounded uniform prior, which are useful options

for non-informative priors, can still lead to proper posteriors and Bayesian inference is

hence possible.

A.3 Hierarchical Models

Due to inclusion of a full probability model for both data and parameters in the Bayesian

framework, this methodology makes it particularly easy to use models whose parameters

reflect a high level of dependence on each other. With decompositions of joint distri-

butions by p(θ1, θ2) = p(θ1 | θ2)p(θ2), it is natural to express such complex models in

a hierarchical fashion. Depending on the scientific context, the parameters θ may be

modelled to follow a distribution with another set of unobservable parameters φ, the

so-called hyperparameters, which are of own interest to the modeller. The data y are

considered independent of φ given the parameters θ. The joint probability distribution

can then be simply written as

p(y, θ, φ) = p(y | θ, φ)p(θ, φ) = p(y | θ)p(θ | φ)p(φ).
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One sees that the joint prior distribution for θ and φ is now given by p(θ, φ) = p(θ | φ)p(φ)
and the according non-normalised posterior is

p(θ, φ | y) ∝ p(θ, φ)p(y | φ, θ) = p(θ, φ)p(y | θ).

The formulation of the more complex model results in specification of a prior for φ

rather than θ. With an increasing number of levels in the model, prior information

on the hyperparameters becomes less available, and non-informative prior distributions

must be employed. Common choices are diffuse priors, which allow for maximum flexi-

bility, but the posterior distribution must be carefully analysed, either analytically or by

inspection of the resulting variation, in order to verify that it is a proper distribution.

Predictive inference and model diagnostics can now be based on different versions of

the posterior predictive distribution. Assume that θ = (θ1, . . . , θJ)
′ comprises several

parameters for mutually exclusive blocks of data, and the individual θj’s are realisations

from a superpopulation whose distribution is governed by φ. The posterior predictive

distribution should be computed solely based on the inference made for a single θj, if

further outcomes ỹ are to be predicted for the j-th block. Predictions of future values

ỹ for an entirely different block refer to a posterior predictive distribution depending on

future values θj, which are themselves first drawn from the superpopulation based on

the posterior for φ.

Hierarchical models are useful when latent values in θ should be analysed in more de-

tail or when the nature of the scientific problem calls for such complex dependencies.

For example, count data are often modelled using the Poisson distribution for ease in

calculation and interpretation. However, data may exhibit overdispersion, i.e. the ob-

served variance exceeds the theoretical variance of the model, which in this case would

coincide with the mean. Modelling the Poisson parameter via, say, the two-parametric

Gamma distribution allows mean and variance to disagree. In particular, Gelman et al.

(2013) describe how hierarchical models with more parameters than actual data points

can be used for valid inference in Bayesian statistics. They also stress that ignorance

of hierarchical structure that is seen in the data, generally leads to failure in fitting

large datasets, when there are only few parameters in the non-hierarchical model, or to

overfitting, if the number of parameters is too large.
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A.4 Model Diagnostics

As mentioned earlier, Gelman et al. (2013) characterise Bayesian data analysis in three

steps. The first two steps, choice of a suitable probability model for all quantities and

computation of the posterior, were outlined in Section A.2. The third step encompasses

assessment of model fit, which will be discussed in what follows. Determination of

the underlying likelihood and prior distribution is based on scientific knowledge, which

may be limited so that assumptions are not accurate and the resulting poor model will

yield biased inference. Therefore, it is crucial for any statistical analysis to check the

outcome of a model for adequacy in fit and plausibility w.r.t. the purpose of the analysis.

Conceptually, model diagnostics in Bayesian statistics are very similar to standard meth-

ods in the frequentist framework. The main approach is to compare theoretical values

under the resulting model with observed data. External validation is one of the most use-

ful tools, especially for the purpose of prediction: fresh data on y are collected through

further sampling or experiments and their characteristics are compared to the theoretical

counterparts from the posterior predictive distribution. This is usually done via quanti-

tative summaries, e.g. empirical averages and theoretical posterior means or nominal and

true coverage probabilities of Bayesian probability intervals should agree, respectively.

However, collection of new data is often not feasible or even impossible, and one has

to turn to internal validation, also called posterior predictive checking, instead. Here,

one checks whether the already observed data y appear plausible under the posterior

predictive distribution

p(yrep | y) =
∫

p(yrep | θ)p(θ | y)dθ.

In practice, one simulates sufficiently many realisations of the parameter θ from p(θ | y)
and for each outcome, a sample yrep of the same size as the original dataset is generated

from p(yrep | θ). The notation yrep is used to indicate that these data are obtained under

the very same conditions as y, whereas the previously used ỹ may also denote values

from other experiments or depending on other underlying covariates. Note that for hier-

archical models, an appropriate choice for the posterior predictive distribution should be

made, as outlined in the previous section. Various numerical and graphical techniques

for comparison of observed and simulated values are possible. One may display all data
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for several replications if the dataset is rather small. Computation and plotting of sum-

mary statistics such as mean values or quantiles over all replicates and the observed

data, respectively, is more suitable for large datasets. An alternative is the computation

and visualisation of Bayesian residuals, which will not be further discussed in this work.

For more details on graphical tools for posterior predictive checks, the reader is again

referred to Gelman et al. (2013). It is worth mentioning that for prediction purposes,

advanced internal diagnostics such as cross-validation can be easily adopted, of course.

Although qualitative examination of predicted and observed data gives much insight into

the accuracy of the fit, it is desirable and scientific practice to base the final conclusion

of whether a model is appropriate or not, on well-defined quantitative decision rules,

such as hypothesis test statistics in frequentist analysis. Gelman et al. (2013) define the

Bayesian equivalent T (y, θ), which can be any suitable scalar summary of parameters

and data, as discrepancy measure. If such a measure only depends on the data, i.e.

T (y, θ) = T (y) for all θ, one speaks of a test statistic. Decision rules are quantified in

terms of p-values, i.e. tail-area probabilities of the discrepancy measure. In analogy to

frequentist statistics, the classical p-value for a test statistic T (y) with a fixed value for

the parameter θ is defined as

pC = P (T (yrep) ≥ T (y) | θ),

i.e. the probability of observing replicated data at least as extreme as the sampled

data given the specified value θ. The definition makes use of the fact that T (yrep |
y, θ) = T (yrep | θ). The value θ is either chosen to be a null value, which is tested for

plausibility, or a substituted point estimate, e.g. an ML estimate in frequentist analysis,

when the model accuracy is to be assessed. In contrast to the classical approach, the

posterior predictive p-value for model fit, going back to the influential work by Rubin

(1984), uses the inferred posterior distribution for θ to compare replicated data under

the posterior predictive distribution with observed data. Since the randomness in θ is

inherently accounted for, there is no need for pre-specified values for θ to be kept fixed

such that the discrepancy measure T (y, θ) can indeed be a function of both the data

and the parameters. The Bayesian p-value for T (y, θ) is given by the probability under

(θ, yrep) given y, i.e. the joint posterior and posterior predictive distribution given the

data, that the test quantity evaluated at the posterior pair (θ, yrep) exceeds its outcome
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for θ combined with the observed sample y, i.e.

pB = P (T (yrep, θ) ≥ T (y, θ) | y)

=

∫ ∫
IT (yrep,θ)≥T (y,θ) p(y

rep | θ) p(θ | y) dyrep dθ

with indicator function I, again noting that p(yrep | θ, y) = p(yrep | θ). The formula

implies that Bayesian p-values can be conveniently computed by first simulating from

the posterior distribution for θ and subsequent generation of corresponding predictive

values using p(yrep | θ). The resulting realisations are draws from the joint distribution

p(yrep, θ | y) and the p-value is estimated by the fraction of simulations for which the

inequality holds. Graphical visualisation of p-value computation is of additional help in

model assessment compared to a single numerical output. In case of test statistics, his-

tograms for the posterior distribution of T (yrep) depict the tail-area probability w.r.t. the

observed threshold T (y). For discrepancy measures that also depend on θ, histograms

for the posterior difference T (yrep, θ)− T (y, θ) should include 0 if the model provides a

good fit, and scatterplots of posterior T (yrep, θ) versus posterior T (y, θ) show the p-value

as proportion of points in the upper half of the first quadrant. Indeed, Gelman et al.

(2013) recommend to base any conclusions about the fit of a model not only on the single

p-value but also on assessment of the magnitude of discrepancy detected in the plots.

Generally, a p-value close to 0 or 1 indicates possibly severe discrepancy between the

model and the observed data. It can be directly interpreted as the posterior probability

of seeing the observed sample in replicated data and is as such a measure of statistical

significance, however even in Bayesian analysis it cannot be stated as the probability of

the model being true given the data.

There is no general guideline for the choice of the discrepancy measure, because it

depends on the scientific problem how well a summarising scalar can measure discrepancy

between observed and simulated data. Common practice is to account for features which

are not primarily addressed by the full probability model in order to avoid optimistic

results. Therefore, in most examples one would rather use summary statistics of less

interest such as the rank of a sample rather than, say, the mean value or, by their very

definition, analysis of the residuals to account for remaining uncertainty. Generally,

finding meaningful discrepancy quantities is far easier in Bayesian statistics compared
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to the construction of pivotal frequentist test statistics. Besides such particular tests,

Gelman et al. (2013) suggest omnibus tests, i.e. tests on comparison of explained and

unexplained variance, as additional model checks. For an observed sample with values

yi, i = 1, . . . , n, important examples are the χ2 discrepancy quantity

T (y, θ) =
n∑

i=1

(yi − E(yi | θ))2
Var(yi | θ)

(A.1)

or the deviance given by T (y, θ) = −2 log(p(y | θ)). In frequentist analysis, plug-

ging in null values θ0 for certain hypotheses yields hypothesis tests with statistics

T (y) = T (y, θ0). It is possible to use such test statistics for the replicated data yrep

in posterior predictive model checks, too. Similarly, by plugging in a point estimate

θ̂(y) into (A.1), e.g. an ML estimate, one obtains a classical χ2 goodness-of-fit test

T (y) = T (y, θ̂(y)). Although in Bayesian model diagnostics one could compute T (yrep)

based on the replicated data and their corresponding estimate θ̂(yrep), Gelman et al.

(2013) recommend applying the discrepancy measure T (y, θ) with the posterior out-

comes for θ directly, because this type of inference does not require any computational

burden in parameter estimation. The reference distribution for the Bayesian omnibus

test is immediately given through the distribution of T (yrep, θ) based on the posterior

predictive simulations yrep.

Note that the previous discussion was solely devoted to goodness-of-fit analyses for one

given model. An elaborate theory has been developed on the important diagnostic tool

of model comparisons and sensitivity analysis. In particular, the deviance information

criterion as Bayesian extension of the Akaike and Bayesian information criteria, de-

veloped by Spiegelhalter et al. (2002), is a strong tool to test different models against

each other by taking into account both the model’s fit and complexity. Since model

comparisons are not discussed in this work, the reader is referred to the aforementioned

literature for further information.
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Although Bayesian inference is traced back to work by Thomas Bayes (1702–1761) and

Pierre-Simon Laplace (1749–1821), see e.g. Stigler (1986), its usage has been denied to

all but the simplest problems for which the theoretical posterior distribution for the pa-

rameters could be derived. In more complex problems, the normalising constant in the

product of prior and likelihood, which is necessary for a well-defined density or probabil-

ity mass function, could not be analytically computed. As a result, prior distributions

had to be chosen to be conjugate w.r.t. the likelihood in order to meet computational

feasibility rather than any scientific reasoning. With the fast increase in computational

power, however, Bayesian statistics has seen a dramatic growth. The innovations in

numerical mathematics now allow for feasible approximations of posterior distributions

for general choices of priors, even in high-dimensional and hierarchical problems. In

particular, history of modern Bayesian statistics is closely connected to the development

of MCMC. Rather surprisingly, MCMC algorithms solve the difficult problem of simu-

lation from a complex distribution, which is only known up to a normalising factor and

not suitable to generate from by plain Monte Carlo methods, by another complex tool:

the construction of a correspondingly high-dimensional discrete-time Markov chain with

continuous state space for the parameters of interest. Well-known algorithms have been

developed, for which the resulting Markov chain has the theoretical posterior distribution

as a stationary distribution. Although the existence of a unique limiting distribution,

which in this case would be the posterior, cannot be proven in most applications due

to the implicit complexity – which in fact requires the use of MCMC –, this procedure

has become undoubtedly successful. This appendix provides a review on general Markov

chain theory in Section B.1 and introduces the two main sampling algorithms, the Gibbs

and Metropolis-Hastings samplers, in Sections B.2 and B.3. Section B.4 concludes with

comments on convergence diagnostics. The review builds upon the excellent discussions

by Robert and Casella (2004) and Gamerman and Lopes (2006) on MCMC and by Meyn

and Tweedie (2009) on the theory of Markov chains with continuous state spaces.
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B.1 Markov Chain Theory

The purpose of MCMC in Bayesian statistics is to construct a Markov chain, whose state

space equals the parameter space, and which converges to a unique limiting distribution,

which coincides with the posterior distribution. Since parameter spaces are generally

of continuous nature, the well-known theory on discrete-space Markov chains must be

expanded correspondingly. It is worth mentioning that the index set, which represents

the iteration steps in the algorithm, is still discrete such that the term Markov chain is

indeed appropriate.

Let S ⊆ R
d be the possibly continuous parameter space for the d-dimensional parameter

vector of interest in a probability model, and let B(S) be the set of all Borel sets on S.

A transition kernel is a function P : S × B(S) → [0, 1] for which P (x, ·) is a probability

measure on S for all x ∈ S, and P (·, A) is measurable for all A ∈ B(S). For such P ,

the corresponding Markov chain with state space S is defined as the discrete stochastic

process X := {X(n) : n ∈ N0} with the Markov property, i.e. the transition probabilities

fulfil

P
(
X(n+1) ∈ A | X(n) = xn, . . . , X

(1) = x1, X
(0) = x0

)

= P
(
X(n+1) ∈ A | X(n) = xn

)
=

∫

A

P (xn, dx)

for all n ∈ N0, x0, x1, . . . , xn ∈ S,A ∈ B(S). The Markov chain is homogeneous if the

distribution of X(n1), . . . , X(nk) | X(n0) equals the distribution of X(n1−n0), . . . , X(nk−n0) |
X(0) for all k ∈ N and n0, n1, . . . , nk ∈ N0 with n0 ≤ n1 ≤ · · · ≤ nk, i.e. it is invariant

w.r.t. shifts in the index. For n ∈ N, the n-step transition kernel P (n) : S×B(S) → [0, 1]

is then recursively given by P (n) = P for n = 1 and

P (n)(x,A) =

∫

S

P (n−1)(y, A)P (x, dy), x ∈ S,A ∈ B(S)

for n > 1. If π(0) denotes the probability measure on S for the initial state, one obtains

π(n) =
∫
S
P (n)(x, ·)π(0)(dx) as the distribution of the state of X(n).

In order to define stationary and limiting distributions for Markov chains with contin-

uous state spaces, let π be a probability measure on S. Then π is called a stationary
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distribution for the Markov chain X with transition kernel P if

π(A) =

∫

S

P (x,A)π(dx)

for all A ∈ B(S). The definition shows that once the current state’s distribution of

X is equal to π, all future states are also distributed according to π, and X has

reached an equilibrium. However, a Markov chain may have several stationary dis-

tributions. In MCMC, one is interested whether X has a unique stationary distribu-

tion to which the Markov chain will ultimately converge. Denoting the total variation

norm between two probability measures ξ1 and ξ2 as a measure of dissimilarity by

‖ξ1 − ξ2‖ := supA∈B(S) |ξ1(A) − ξ2(A)|, the limiting distribution of X with transition

kernel P and initial state distribution π(0) is the unique probability measure π which

fulfils

lim
n→∞

∥∥π(n) − π
∥∥ = 0,

if this limit exists.

The following attributes of a Markov chain are important for the broad theory on nec-

essary and sufficient characteristics for the existence of stationary and limiting distribu-

tions. A Markov chain is said to be π-irreducible if π is a probability measure on S and

for all A ∈ B(S) with π(A) > 0, it holds that there is a non-zero probability ofX reaching

A in finitely many steps for any initial state1. In an informal way, irreducibility assures

that it does not matter how the Markov chain is initialised, to guarantee that all non-

trivial sets under π can be reached. It can be shown that a π-irreducible Markov chain

has the unique stationary distribution π. A stronger assumption is the Harris-recurrence

named after the American mathematician Theodore Harris (1919–2005), which extends

irreducibility to infinitely many visits of non-trivial sets under π given any starting value.

A π-irreducible Markov chain is Harris-recurrent if for every A ∈ B(S) with π(A) > 0,

the number of visits
∑∞

n=1 I(X
(n) ∈ A | X(0) = x) given any x ∈ S equals infinity, π-

1To be precise, Markov chain theory w.r.t. continuous state spaces defines π-irreducibility for general
measures on S rather than probability measures. For this review, it suffices to focus on the interesting
case of probability measures; however, the terminology is directly restricted to this special case and
looses some of its generality. For the very exact definitions of irreducibility and other terms, the
reader is referred to the literature referenced in this section.
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almost surely. The third important property is aperiodicity, i.e. the non-existence of any

deterministic transition pattern which, for example, could allow an alternating sequence

of stationary distributions without a well-defined limit. A π-irreducible Markov chain is

called periodic if there is a d ∈ N with d > 1 and a sequence of non-empty and disjoint

sets E0, E1, . . . , Ed−1 ∈ B(S) with π(∪d−1
i=0Ei) = 1 such that for all i = 0, 1, . . . , d− 1, it

holds that P (x,E(i+1)mod d) = 1 for all x ∈ Ei. The Markov chain is aperiodic if it is

not periodic. The previous conditions are conveniently summarised under the the term

of ergodicity. A Markov chain X with stationary distribution π is ergodic if it is π-

irreducibly, Harris-recurrent, and aperiodic. It can be shown that for an ergodic Markov

chain with stationary distribution π and arbitrary initial state, the limiting distribution

exists and is given by π. It is worth mentioning that in contrast to discrete-space Markov

chains, the existence of a stationary distribution is a necessary condition rather than

the result of irreducibility, recurrence and aperiodicity. Note also that no statements are

made here regarding the pace of convergence, for which the reader is referred to Robert

and Casella (2004), for instance.

For a stochastic process, ergodicity can be informally stated as the property that after

convergence, the distribution of state occupancy over time agrees with the state dis-

tribution at a fixed point in time. This is the desired attribute of a Markov chain in

MCMC, because the sample of realised values should approximate the unknown limiting

distribution, which in Bayesian inference represents the posterior. The interpretation is

due to the Ergodic Theorem, a version of the law of large numbers for dependent reali-

sations of a Markov chain. For a Markov chain X and a function t : S → R, define the

ergodic mean of t(X) after n ∈ N steps via t̄n :=
∑n

i=1 t
(
X(i)

)
/n and the expected value

of t(X) under π as Eπ(t(X)) :=
∫
S
t(x)π(dx). The Ergodic Theorem states that if X

is π-irreducible and Harris-recurrent with stationary distribution π and Eπ(t(X)) < ∞,

then

lim
n→∞

t̄n = Eπ(t(X)).

There are also central limit theorems applied with Markov chains for the quantity t̄n,

which require stronger assumptions on the Markov chain, for which the reader is referred

to Robert and Casella (2004).
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B.2 Gibbs Sampling

While named after the American physicist Josiah Willard Gibbs (1839–1903) due to

an application with the Gibbs distribution in mechanical statistics, the Gibbs sampler

was developed by Geman and Geman (1984) to become one of the two main sampling

approaches to construct a Markov chain in MCMC. Let π be the posterior distribution

of the parameter θ = (θ1, . . . , θd)
′ ∈ S ⊆ R

d, which is to be estimated. For simplicity in

notification, the general dependence on the data y in the Bayesian context is dropped.

The necessity of MCMC implies that π is unknown or its simulation is intractable. The

Gibbs sampler assumes that the so-called full conditionals of π are known and easy to

simulate from, i.e. for each j = 1, . . . , d, the full conditional probability πj(θj | θ−j) =:

πj(θ−j) of θj given all other parameters θ−j := {θ1, . . . , θj−1, θj+1, . . . , θd} is available.

Beginning with a starting value θ(0) for the parameter θ, in each iteration step n, all

entries θj are successively visited and simulated according to the full conditionals, where

for all other parameters current realisations are used. More specifically, in iteration step

n, the following algorithm is run:

θ
(n)
1 ∼ π1

(
θ
(n−1)
2 , . . . , θ

(n−1)
d

)
,

θ
(n)
2 ∼ π2

(
θ
(n)
1 , θ

(n−1)
3 , . . . , θ

(n−1)
d

)
,

...

θ
(n)
j ∼ πj

(
θ
(n)
1 , . . . , θ

(n)
j−1, θ

(n−1)
j+1 , . . . , θ

(n−1)
d

)
,

...

θ
(n)
d ∼ πd

(
θ
(n)
1 , . . . , θ

(n)
d−1

)
.

The distribution of θj is hence determined via the realisations θ
(n)
1 , . . . , θ

(n)
j−1, which have

already been sampled in the current iteration, and the realisations θ
(n−1)
j+1 , . . . , θ

(n−1)
g from

the previous step for those parameters, which have not yet been visited. This entire pro-

cedure is repeated until a sufficiently large sample of values for θ is established.

It is easy to see that the ultimate outcome {θ(n)} yields the path of a homogeneous

Markov chain with the parameter space S as state space. Theory on the Gibbs sampler

reveals that the distribution π for θ is indeed a stationary distribution for the underly-
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ing Markov chain. This statement is the theoretical foundation for the Gibbs sampler,

because if a limiting distribution for {θ(n)} exists, it must agree with the then unique

stationary equilibrium, and the Markov chain will converge to the posterior. The suffi-

cient condition of ergodicity for the existence of a limiting distribution, however, need

not be true for the resulting Markov chain and must be proven individually for each

π. Since MCMC is principally applied to simulate from complex distributions, estab-

lishing ergodicity is far from trivial. The interested reader is referred to Robert and

Casella (2004) for more details on sufficient conditions for ergodicity of a Markov chain

obtained through Gibbs sampling. In practice, modellers simply apply the algorithm

and empirically check for convergence based on the realised path, see Section B.4. If an

equilibrium has been reached, it is accepted as the posterior distribution, and a large

number of simulations from the chain provides a discrete pseudo-independent approxi-

mation of the theoretical distribution.

Due to its computational efficiency, the Gibbs sampler is a favourable MCMC technique

with typically fast convergence. The knowledge of the full conditionals can be further

used for consistent continuous estimators of the density for π. Several amendments of the

standard algorithm above have been proposed in the literature to improve computational

efficiency, speed of convergence, or methods for statistical inference on π. Details are

discussed by Robert and Casella (2004). The drawbacks of Gibbs sampling lie in the

assumption on the knowledge of all full conditionals, which requires possibly difficult

analytical groundwork and may not be met in many applications.

B.3 Metropolis-Hastings Sampling

If full conditional distributions are not available or not feasible to simulate from, ap-

plication of the Gibbs sampler is not possible. In this case, the most useful alternative

is the Metropolis-Hastings sampler, a proposal-and-rejection type algorithm named af-

ter Nicholas Constantine Metropolis (1915–1999) and W. Keith Hastings (*1930). A

special case of this sampling procedure, the Metropolis sampler, was first described by

Metropolis et al. (1953) to simulate molecules in chemical liquids via the Boltzmann dis-

tribution. Hastings (1970) extended this algorithm, which resulted in the more general

Metropolis-Hastings sampler. Since the full conditionals need not be known, the mini-
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mal requirements on π make this sampling algorithm widely applicable, but convergence

is typically slower.

In the Metropolis-Hastings algorithm, the ultimate Markov chain {θ(n)}, which should

converge against π, is constructed to have a transition kernel of the form P (x, dy) =

α(x, y)q(x, dy) for x 6= y, where α : S×S → [0, 1], q : S×B(S) → R+, and q(x, ·) is a prob-
ability measure for all x ∈ S. If the current state of the Markov chain is x, the transition

probability function is decomposed into a proposal density q(x, ·) and the probability

α(x, ·), which can be thought of as the acceptance rate for the suggested new state. For

the Metropolis-Hastings sampler, the analyst defines proposal distributions q(x, ·), which
are known up to a constant or at least symmetric, i.e. q(x, dy) = q(y, dx), and which are

easy to simulate from. The algorithm only requires the minimal assumption on π that

for all x, y ∈ S, the ratio π(dy)/q(x, dy) is known up to a constant independent of x,

which is particularly useful when π has a normalising constant that cannot be computed.

With this ratio, the so-called Metropolis-Hastings acceptance probability

α(x, y) = min

{
1,

π(dy)q(y, dx)

π(dx)q(x, dy)

}
(B.1)

for all x, y ∈ S with π(dx)q(x, dy) > 0 is well-defined. With an initial value θ(0) in

the support of π, the n-th step of the Metropolis-Hastings algorithm starts with the

simulation of a proposal value θ∗ ∼ q(θ(n−1), dθ) based on the current state θ(n−1). With

probability α
(
θ(n−1), θ∗

)
, it is accepted as new state θ(n); otherwise the Markov chain

remains at θ(n−1), i.e.

θ(n) :=




θ∗, U ≤ α

(
θ(n−1), θ∗

)

θ(n−1), U > α
(
θ(n−1), θ∗

) ,

where U ∼ U([0, 1)) is independent of θ∗, and α(θ(n−1), θ∗) is given by (B.1). The pro-

posal is always accepted if π(dθ∗)/q(θ(n−1), θ∗) increases w.r.t. π(dθ(n−1))/q(θ∗, θ(n−1))

and, interestingly, may be still adopted with positive probability in the other case. In

many applications, q is chosen to be symmetric such that the Metropolis-Hastings ac-

ceptance probability reduces to the likelihood ratio α(x, y) = min{1, π(dy)/π(dx)}.

The resulting Markov chain is homogeneous with transition kernel given by P (x, dy) =
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α(x, y)q(x, dy) and stationary distribution π. As with the Gibbs sampler, this result

expresses the main motivation behind this algorithm, because the Markov chain will

converge against π if a limiting distribution exists. Again, sufficient conditions for the

existence of such a limit cannot be claimed in general due to the dependence on π and

q; however, ergodicity is easier to establish at the design stage through the analyst’s

freedom in the choice of the proposal distribution, see Robert and Casella (2004). De-

tailed discussions are also given for special cases of the universal algorithm above, for

example when the proposal distribution q(x, dy) = q(dy) is independent of the current

state, or – as in the original Metropolis sampler – it is a symmetric distribution centred

at the current value. While the Gibbs sampler requires more groundwork on analytical

expressions of the full conditionals, the Metropolis-Hastings sampler requires so-called

tuning, a careful analysis of the outcome to assess the performance of the chosen pro-

posal distribution q. If the range of proposals is chosen to be very close to the current

value, innovations in the path of the Markov chain are small and many iterations are

necessary to achieve a good level of mixing w.r.t. π. On the other hand, the opposite

extreme of a rather uninformative q may lead to many proposals outside the range of π

and the number of accepted proposals can be vanishingly small so that the chain stays

in the current state for a long time. Both scenarios imply slow convergence and, after

reaching stationarity, low mixing such that many steps of the algorithm are required. In

these cases, the proposal distribution must be tuned to achieve a good balance between

the acceptance rate and the variability in the path of the Markov chain.

B.4 Convergence Diagnostics

Once a sample path of a Markov chain {θ(n)} has been created via any of the above

MCMC procedures, convergence diagnostics must be conducted to assess the validity of

the ergodic sample as a pseudo-independent sample of the posterior distribution π. Such

diagnostics aim to justify the existence of a unique limiting distribution (if this could

not be established a priori via theoretical arguments) and, if so, whether and when the

actual equilibrium has been reached. The latter implies detection of the burn-in period,

i.e. the time which is required for the sample path to leave its initial set-up and reach

the stable support of π. The iterations within the burn-in period must be discarded for

the ergodic sample to be meaningful. Moreover, convergence diagnostics tools play the
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central role in tuning of Metropolis-Hastings algorithms.

There exist both theoretical and empirical approaches for convergence diagnosis in the

literature on MCMC. However, theoretical tools suffer from the reliance on the true

distribution π, which in MCMC applications is often not fully known or too complex

to work with analytically. As a consequence, convergence diagnostics are generally only

based on empirical approaches for realised paths of the Markov chain, although statistical

errors prevent them from being correct with absolute certainty. Most commonly, an

informal graphical analysis is conducted, which includes some of the following:

• Plots of the paths of the marginal components θ
(n)
j versus the iterations n to check

for an equilibrium after a possible burn-in period.

• Scatterplots of the empirical bivariate distribution for θi and θj with i 6= j, taken

over time, to check for an equilibrium with extreme observations only stemming

from a burn-in period.

• Plots of the paths of the marginal ergodic means and variances for θ
(0)
j , . . . , θ

(n)
j

versus the iterations n to check for convergence against a constant value.

• If available, plots of the marginal distributions after rejection of a potential burn-in

period for several different initialisations θ(0) of the algorithm to check for identical

distributions.

Convergence plots give much insight into the behaviour of the Markov chain and point

out possible flaws in the algorithm. Analyses, however, have to be done carefully, be-

cause a stationary behaviour in a realised path that is hypothesised to be the limit, may

only be due to what is usually referred to as metastability, i.e. a temporal equilibrium

caused by pure chance or the existence of several stationary distributions. Moreover,

inference for the convergence of a multidimensional quantity can be biased since only

marginal information is used.

More formal techniques have been proposed over the last decades to overcome the ten-

dency of subjectivity in assessing graphical output. For a function t : S → R, Raftery

and Lewis (1992) suggest to compute the burn-in length and the subsequent number

of required iterations to estimate confidence boundaries for t(θ) with pre-specified con-

fidence level and error tolerance. Robert and Casella (2004) point out that, with this
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method, convergence is only analysed for the confidence boundaries rather than the en-

tire Markov chain. Another approach is derived from common time series analysis. If

the sample path is believed to have reached an equilibrium, ergodic sample averages can

be computed for different windows at the beginning and end of the path, respectively.

Under the hypothesis of convergence of the Markov chain, both empirical means should

be similar. In fact, denoting by t̄a and t̄b the versions of the average t̄ =
∑

i t(θ
(i))/n at

both windows, respectively, for simultaneously increasing sample sizes the distribution

of the pivotal quantity

t̄a − t̄b√
V̂ar(t̄a − t̄b)

converges to the standard normal distribution. Values of large absolute magnitude indi-

cate a lack of convergence, though small values do not necessarily guarantee convergence.

Note that the variance estimator must be chosen to account for the fact that the re-

alisations θ(i) are identically distributed but not independent. Geweke (1991) employs

spectral time series analysis to estimate the sample’s variance, in which case the test

is also referred to as Geweke’s diagnostics. Alternatively, the MCMC output can be

sufficiently thinned to eliminate serial autocorrelation, and the test is applied to the

resulting pseudo-independent sample. Then the variance is estimated via the sum of

plain variance estimators for the pseudo-independent sample means t̄a and t̄b. If several

paths of Markov chains with different, preferably overdispersed, initialisations are avail-

able, convergence to a common equilibrium can be assessed via the estimated variances

between and within paths. If convergence has not been reached, the individual paths

are still influenced by their initial values. The ergodic means for the different paths

show a wide spread between each other, and the sample variance of such ergodic means

overestimates the true variance. Conversely, the average of ergodic variances within each

path underestimates the true variance, because the Markov chains have not yet traversed

their burn-in range to the support of the equilibrium. A numerical output is given by

the proportional comparison of the two different estimates for the variance. It is far

from one if there is disagreement between the various paths, but formal hypothesis tests

are not available. For more information on these and further methods, see the review

by Robert and Casella (2004).
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In this appendix, the VECM, a well-known approach in multivariate time series analysis,

is presented. The VECM is an extension of the VAR model, which itself is the vector-

valued equivalent to standard AR approaches in time series analysis. While multiple

time series can be modelled simultaneously in VAR models with due regard being given

to serial cross-correlation of current and past multi-dimensional values, the VECM ad-

ditionally accounts for long-term equilibriums between the single time series, i.e. there

exists a linear combination of the different time series which is stationary, whereas the

marginal time series may be non-stationary. This so-called cointegration can often be

observed between different macroeconomic measures such as stock market indices or

prices for commodities and financial products. Indeed, the VECM was developed in

the context of financial econometrics, mainly by a series of pioneering papers, starting

with the work by Granger (1981) and further exploration in the famous seminal paper

by Engle and Granger (1987) with much contribution from several authors in the years

thereafter. Most notably, Johansen (1988, 1991) and Johansen and Juselius (1990, 1992)

developed an ML estimation framework, sometimes loosely referred to as the Johansen

procedure, which is widely used nowadays. A thorough overview on the VECM can be

found in Lütkepohl (2007) and Johansen (1995), for instance, which the following discus-

sion is mainly based on. The reader is expected to bring general knowledge of common

time series analysis as it can be found in many standard textbooks, for example in Box

et al. (2013) or Brockwell and Davis (2009). Detailed coverage of general multivariate

time series analysis is provided in the books by Lütkepohl (2007) and Reinsel (2003).

The remainder of this appendix is organised as follows. VAR processes and the concept

of cointegration are reviewed in Sections C.1 and C.2, respectively, before introducing

the VECM in Section C.3. Sections C.4 and C.5 describe both frequentist and Bayesian

estimation techniques, and Section C.6 summarises model diagnostics for the VECM.
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C.1 The Vector Autoregressive Model

In the following, let {xt, t = 1, . . . , T} be a multivariate time series of dimension m ∈ N,

i.e. xt ∈ R
m for each t = 1, . . . , T . The time series {xt} is an m-dimensional VAR process

of order k ∈ N, denoted as xt ∼ VAR(k), if it is defined by the equations

xt = φDt +
k∑

i=1

Aixt−i + εt, t = k + 1, . . . , T (C.1)

with initial values x1, . . . , xk and m-dimensional white noise εt, i.e. E(εt) = 0, E(εtε
′
t) =

Ω for all t = k + 1, . . . , T , and E(εtε
′
s) = 0 for all s 6= t, where Ω ∈ R

m×m is a positive

definite covariance matrix. For this work, it will suffice to think of εt as Gaussian white

noise, i.e. the special case of iid errors εt ∼ Nm(0,Ω). A vector of possibly time-varying

constants Dt with some fixed dimension d ∈ N enables the user to include deterministic,

e.g. linear or seasonal, trends. This influence is measured by the according parameter

matrix φ ∈ R
m×d. Further parameters are the k AR coefficient matrices Ai ∈ R

m×m,

which describe the impact of recent values in xt on the current outcome. Adjustment

of the so-called order k leads to different time horizons for the serial autocorrelation,

i.e. xt is conditionally independent of xt−k−1 and previous terms given the intermediate

outcomes xt−k, . . . , xt−1. Note that in the definition of the VAR model, it is implicitly

assumed that k is the maximum value for which Ak 6= 0.

For a given set of parameters, the solution of the system in (C.1) can be stated in terms

of the initial values of {xt} and the independent error terms εt, t = k + 1, . . . , T , see

Theorem 2.1 in Johansen (1995). The reverse characteristic polynomial of this process

is given by

A(z) = Im −
k∑

i=1

Aiz
i, z ∈ C,

where Im is the m ×m identity matrix. Denoting by B the backshift operator, defined

through the operation Bxt = xt−1, the reverse characteristic polynomial obviously sat-

isfies A(B)xt = φDt + εt for the VAR(k) process defined in (C.1). Let |A(z)| denote the
determinant of A(z). If Dt is bounded by a polynomial in t, and if |A(z)| 6= 0 for all z

with |z| ≤ 1, i.e. the VAR process does not have explosive or seasonal roots, then the
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process yt := xt − E(xt) is said to be stable, and, in this case, {xt} can be expressed as

an MA process via

xt =
∞∑

i=0

Ci(εt−i + φDt−i) = C0(B)(εt + φDt),

where the coefficient matrices Ci are given by C0(z) =
∑∞

i=0 Ciz
i = A(z)−1 for |z| < 1+δ

for some δ > 0, and can be solved for recursively. Stability is the required property of

any time series to enable statistical analyses, since if {yt} is stable, then it is also sta-

tionary1 with zero mean, i.e. it holds that E(yt) = 0 and that E(yty
′
t−h) = γ(h) depends

on h ∈ N0 only for all t. Often, stability and stationarity are used interchangeably,

although a stationary process need not be stable, and, in the literature, the condition

|A(z)| 6= 0 for |z| ≤ 1 is not only referred to a stability but also as stationarity condition.

Note that the VAR(k) model is a special case of the more general family of VARMA

models, which are also discussed by Lütkepohl (2007) as well as Box et al. (2013) and

Brockwell and Davis (2009). In analogy to the univariate case, the representation of

stationary multivariate time series through VARMA models is motivated by Wold’s De-

composition Theorem due to Wold (1938). It states that any stationary process can be

represented as the sum of two uncorrelated processes, one of which is a purely determin-

istic AR process and the other one has an MA representation, both having a possibly

infinite order. In particular, if the deterministic part only consists of a mean term, Wold’s

Theorem states that the process has a pure MA representation. As a consequence, if

the MA coefficients Ci are absolutely convergent, and the limit C0(z) =
∑∞

i=0 Ciz
i is

invertible for all z with |z| ≤ 1 such that C0(z)
−1 can be expressed as a convergent series

A(z) = Im −∑∞
i=0 Aiz

i, then {xt} is a VAR process of possibly infinite order with coef-

ficient matrices Ai. The absolute convergence of A(z) implies convergence of Ai to the

zero matrix and therefore a reasonable approximation by a finite order VAR(k) model for

sufficiently large k ∈ N. This result is the core motivation behind VAR models, because

it guarantees the usefulness of this approach for many eventually stationary time series

after possible transformations to account for deterministic components other than the

1This work adopts the convention in time series analysis that stationarity refers to weak or wide-sense
stationarity of time-invariant means and covariances. Other definitions, such as strict stationarity

of time-invariant joint distributions of vectors consisting of consecutive variables of the time series,
are not discussed here.
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mean. Note that in the definition of the VAR model through (C.1), deterministic trends

or seasonal patterns can be naturally included through φDt. Lütkepohl (2007) reviews

computation of the so-called Yule-Walker equations for the derivation of autocovariance

functions and least-squares estimators for the model parameters, ML estimation under

Gaussian white noise, determination of the lag length k, forecasting and checks of model

adequacy, among many more detailed topics.

C.2 Cointegration

The previous section showed that the VAR model is appropriate for stationary time

series with deterministic components, which can be modelled via φDt. Obviously, many

observed time series data will not meet such restrictive assumptions, for example time

series with stochastic trends, heteroskedastic covariances, or periodic patterns with time-

varying coefficients. Of particular interest in this work are time series models for stochas-

tic trends, a feature observed in many real-life applications that can be accounted for

by applying the already established methodology to transformed quantities of the un-

derlying data. This section summarises approaches in the analysis of multivariate time

series with stochastic trends. For the many other possible complications with observed

time series, the interested reader is referred to the previously cited literature.

As with univariate time series, a time series is non-stationary when |A(z)| = 0 for some

z with |z| ≤ 1, i.e. the reverse characteristic polynomial has roots inside or on the edge

of the unit disk. If for a univariate time series at least one root is strictly inside the

unit disk, the time series is explosive in that its variance diverges with exponential rate.

Although fruitful for analyses of, say, bacterial growth, in statistical time series appli-

cations, such models are usually considered unreasonable, and attention is devoted to

the borderline case, when |A(z)| = 0 for |z| ≤ 1 implies |z| = 1. If, in particular, the

only root on the unit circle is the so-called unit root z = 1 and all other roots still fulfil

|z| > 1, the behaviour is similar to that of a random walk, which is exactly the AR(1)

model with its only root being the unit root. In contrast to explosive time series, such

processes are characterised by linearly increasing variances and asymptotic correlation of

one for large lags. Moreover, trends are linear if there is no superimposed deterministic

trend. Although of interest in applications with periodic data, the case of roots on the
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unit circle other than the unit root z = 1 is not discussed here.

For the moment, let {xt, t = 1, . . . , T} be a univariate AR process without deterministic

components, which has d ∈ N unit roots with all other roots being outside the unit disk.

Note that then A(z) = α(z)(1 − z)d, where α(z) is the characteristic polynomial of a

stable process, because all its roots are now outside the unit disk. Hence, the process

{xt}, given through A(B)xt = εt, can be written as

α(B)(1− B)dxt = εt,

and it can be seen that the process yt := ∆dxt := (1 − B)dxt, which is the original

time series differenced d times, is stationary. Noting that xt = ((1 − B)−1)dyt with

(1− B)−1 =
∑∞

i=0 B
i, the original time series xt is obtained by summing – or, in other

words, integrating – d times the stationary time series yt. Hence, the process is called

integrated2 of order d, commonly denoted as xt ∼ I(d). For consistency, a stationary

time series is then sometimes denoted as xt ∼ I(0).

Now consider the general case of an m-dimensional VAR(k) process {xt} with A(z) =

Im −
∑k

i=1 Aiz
i and without deterministic components, i.e.

A(B)xt = εt.

The adjugate matrix of A(B) is the matrix adj(A(B)) for which A(B) adj(A(B)) =

|A(B)|Im. Multiplying by adj(A(B)) from the left gives the alternative representation

|A(B)|xt = adj(A(B))εt. (C.2)

Since it can be shown that |A(z)| is a characteristic polynomial, |A(B)| is a univariate

polynomial in the backshift operator, i.e. the left-hand side of (C.2) is an m-dimensional

vector of univariate AR processes with identical AR operators. By definition of the

adjugate matrix, the right-hand side of (C.2) is an m-dimensional MA process of fi-

nite order.As in the univariate case, the AR operator |A(B)| is tested for unit roots,

2Note that in the general setting of Autoregressive Moving Average (ARMA) models, any process is
called integrated of order d if it can be characterised as a stationary and invertible ARMA model
after differencing d times.
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where w.l.o.g. the case of roots with |z| ≤ 1 but z 6= 1 is neglected. Again, if the AR

operator consists of d unit roots with all other roots being outside the unit disk, then

|A(B)| = α(B)(1−B)d for some polynomial α with α(z) 6= 0 for |z| ≤ 1, and the vector

∆dxt of d times marginally differenced time series is anm-dimensional stationary process.

Lütkepohl (2007) points out that d is an upper bound for the integration order of each

marginal time series. In particular, all components may be integrated with orders strictly

less than d, and such orders may also vary. Moreover, if one allows {xt} to be VAR(k)

with deterministic trend vector φDt, the component-wise differencing technique can lead

to a stable representation α(B)∆dxt = adj(A(B))εt without deterministic trends in the

marginals, i.e. the underlying deterministic relations between the marginal time series in

xt are cancelled out. See the cited reference for simple examples. As a consequence of the

latter finding, considering marginal time series as I(d) processes and differencing them

individually can distort the structure of the multivariate time series, and therefore leads

to loss of information on the relationship between the components. As Box et al. (2013)

point out, dealing with non-stationarity becomes substantially different and more com-

plicated in the multivariate case when the marginal time series share common stochastic

trends. In this situation, the individual time series x1t, . . . , xmt in xt = (x1t, . . . , xmt)
′

are integrated of possibly different orders, but wander jointly by satisfying a linear com-

bination β′xt =
∑m

i=1 βixit, which itself is stationary with zero mean. If the maximum

order of integration among the marginals is d, and the process zt := β′xt fulfils β 6= 0

and zt ∼ I(d− b), then the multivariate process {xt} of integrated univariate time series

is called cointegrated of order (d, b), written as xt ∼ C(d, b), with cointegrating vector β.

Cointegration can be interpreted as a deterministic long-run equilibrium β′xt = 0, su-

perimposed by stochastic but stable deviations through a univariate stationary process.

Such noisy equilibriums are often observed between macroeconomic quantities. With the

foregoing definition, one can think of xt being of integration order d itself, since ∆dxt is

stable but ∆d−1xt is not, although the order of integration for certain marginals may be

less than d. This clearly simplifies terminology, but must be understood carefully when

analysing and interpreting the individual components. Moreover, note that the cointe-

gration vector β is not unique. Not only is cβ a cointegrating vector for any constant

c 6= 0, but also several linearly independent cointegrating vectors β1, . . . , βr may exist

for a given cointegrated process.
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C.3 Vector Error Correction Models

In the following, the special case of xt ∼ C(1, 1) is considered, i.e. the marginals are

xit ∼ I(0) or xit ∼ I(1) for all i = 1, . . . ,m, with the latter holding for at least one i,

and there exists at least one non-trivial linear combination zt ∼ I(0) of xit, i = 1, . . . ,m.

If xt ∼ VAR(k) without deterministic components, then

xt =
k∑

i=1

Aixt−i + εt, t = k + 1, . . . , T,

and |A(z)| has, say, d unit roots, where all other roots lie outside the unit disk. In

particular, it follows that |A(1)| = |Im−∑k
i=1 Ai| = 0, and so the m-dimensional square

matrix

Π := −
(
Im −

k∑

i=1

Ai

)

must be singular. Let r := rk(Π) be the rank of Π. Since Π is singular, it holds that

r < m. Also, suppose w.l.o.g. that r > 0, because for r = 0 the terms including Π would

simply vanish in the following discussion. Then there exists a decomposition Π = αβ′

with α and β both being non-zero m× r matrices of rank r. Differencing xt once yields

∆xt = xt − xt−1

=
k∑

i=1

Aixt−i + εt − xt−1

= −Imxt−1 + A1xt−1 +
k∑

i=2

Aixt−i + εt

= −Imxt−1 + A1xt−1 + A2xt−1 + · · ·+ Akxt−1 +
k∑

i=2

Ai(xt−i − xt−1) + εt

= Πxt−1 − A2∆xt−1 +
k∑

i=3

Ai(xt−i − xt−2 −∆xt−1) + εt

= Πxt−1 −
k∑

i=2

Ai∆xt−1 +
k∑

i=3

Ai(xt−i − xt−2) + εt

154



C Vector Error Correction Models

and hence, by induction,

∆xt = Πxt−1 −
k∑

i=2

Ai∆xt−1 −
k∑

i=3

Ai∆xt−2 − · · · − Ak∆xt−k+1 + εt

= αβ′xt−1 +
k−1∑

i=1

Γi∆xt−i + εt (C.3)

with Γi :=
∑k

j=i+1 Aj for i = 1, . . . , k − 1. Since, by assumption, the differenced time

series {∆xt−k+1, . . . ,∆xt−1,∆xt} and εt are stationary processes, rearranging of (C.3)

reveals that the term αβ′xt−1 as a linear combination of stationary processes is sta-

tionary itself. Multiplication of αβ′xt−1 by a matrix from the left does not distort

stationarity, and the special case of multiplication by (α′α)−1α′ reveals that even β′xt−1

is a vector of r different stationary processes, which hence must be the cointegrating

long-run relationships. Therefore, β is called cointegration matrix and consists of the r

cointegrating vectors, given by its columns. The loading matrix α then consists of m

rows, each measuring the effect of the long-run equilibriums on the corresponding time

series through a weighted sum. The rank r of Π can be interpreted as the number of

linearly independent equilibrium relationships between the univariate marginals, and is

often called the cointegration rank. Since Π = αβ′ = αQQ−1β′ = α̃β̃′ with α̃ := αQ

and β̃ := β(Q−1)′ for every regular matrix Q ∈ R
r×r, the decomposition of Π is not

unique, which corresponds to the non-uniqueness of representations for the individual

cointegrating equations. Identifiability can be obtained by imposing restrictions on α or

β, and most commonly one sets β = (Ir, β
′
l)

′ for some lower block matrix βl ∈ R
(m−r)×r.

This constraint is often referred to as linear normalisation.

The VAR(k) model for {xt} written as in (C.3) is referred to as the VECM representa-

tion. More precisely, this model equation is called the transitory version of the VECM,

compared to the equivalent long-run specification

∆xt =
k−1∑

i=1

Γ̃i∆xt−i + αβ′xt−k + εt, t = k + 1, . . . , T

with coefficients Γ̃i := −(Im −
∑i

j=1 Aj) for i = 1, . . . , k − 1. This work adopts the

transitory specification of the VECM, because Π can be conveniently interpreted as the
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error correction effect on the previous observation rather than the outcome at a possibly

large lag k. Again, it is worth emphasising that although the maximum integrating or-

der of each univariate time series is at most 1, a VAR(k− 1) representation for the first

differences in {xt} would eliminate the cointegration term αβ′xt−1 and, hence, would

not contain the full information of the VAR(k) process {xt} as derived in (C.3). In par-

ticular, the derivation above reveals that a cointegrated process does not yield a VAR

representation for the first differences of the original time series. Starting from a VECM

representation, however, is a valuable approach, as one obtains a stationary VAR(k− 1)

process for the first differences if r = 0 or, equivalently, Π = 0, and a stationary VAR(k)

process for the integrated time series if r = m, because a full rank m implies that Π is

regular such that |A(1)| 6= 0, which means that {xt} has no unit roots.

As a final step, the VECM presentation in (C.3) can be extended by an additional

term φDt for deterministic trends. Since Dt is time-dependent, it can be easily used to

incorporate constant means or any linear, quadratic, or higher order trend. The resulting

VECM

∆xt = φDt + αβ′xt−1 +
k−1∑

i=1

Γi∆xt−i + εt, t = k + 1, . . . , T (C.4)

is unrestrictive in the deterministic component. Lütkepohl (2007) shows that if each

φDt can be decomposed into a sum with one addend being of the form −αβ′µ0, then

this latter term can be absorbed as intercepts into the cointegration relations such that

the process {β′xt} has constant mean µ0 ∈ R
m. Similarly, parts of a linear trend in {xt}

can be absorbed into an expanded error correction term, representing linear trends in

the cointegrating relationships, whereas remaining time-invariant addends of φDt would

generate linear trends in the marginal time series. In this work, the focus is limited

to the unrestrictive specification without exploring the nature of deterministic compo-

nents in more detail. The reader is referred to Johansen (1995) for a thorough discussion.

By analogy to the MA representation of any VAR(k) process, under minimum conditions

on the parameters and initial values in the VECM, the process {xt} can be represented as

a function in the white noise variables εk+1, . . . , εt and the initial values x1, . . . , xk. More

specifically, xt is decomposed into m − r stochastic trends, represented by a weighted
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sum of m random walks that determine the long-run behaviour of xt, an I(0) process

denoting the disequilibrium error, as well as terms for the initial values and deterministic

components. This result is known as the Granger Representation Theorem3, see The-

orem 4.2 in Johansen (1995), which is of particular importance in deriving asymptotic

properties of parameter estimators.

Based on the findings with regard to Wold’s Theorem, this work focuses on the VECM

as the direct extension of the generally applicable VAR model through the error correc-

tion term. Note, however, that the broader class of VARMA models contains stochastic

processes, which cannot be represented through pure VAR equations. If such processes

are not stationary, they may be modelled as integrated time series and, again, possible

cointegration for long-run relationships between the marginal time series must be taken

into account. The generalisation of the VECM to cointegrated VARMA models is dis-

cussed by Lütkepohl (2007) and the references therein, but not further considered here.

Note also that the concept of cointegration, which was introduced in multivariate time

series through the work by Granger (1981) and Engle and Granger (1987), is closely

connected to the idea of even earlier developed error correction models, which were de-

signed to overcome spurious correlation in hitherto used linear regression approaches.

Besides the above derivation of the VECM, Lütkepohl (2007) motivates this model by

extension of error correction models by time series concepts. A general survey on error

correction models can be found in, e.g., Salmon (1982).

C.4 Frequentist Estimation and Forecasting

Estimation of the VECM becomes more complicated than for a VAR specification, be-

cause in addition to the order k, the cointegration rank r is generally unknown and must

be estimated. As a result, asymptotic behaviour for the estimators is different from what

is known for the stationary VAR(k) model. The starting point for the general estimation

3As Hansen (2005) points out, the famous Granger Representation Theorem in this form is due to
Johansen (1991), but should not be confused with the same-titled theorem proven by Engle and
Granger (1987), which makes statements about the existence of an error correction representation
for a process with stationary and invertible VARMA specifications for its first difference and coin-
tegrating relationships.
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of a VECM specification is the simplified version

∆xt = αβ′xt−1 + εt, t = 2, . . . , T

with initial value x1, standard white noise for the error terms, no deterministic compo-

nents, and a lag order of k = 1 for the VAR model, i.e. the innovation process does not

have any AR components. Unknown parameters that have to be estimated, are the coin-

tegration rank r and the matrices α, β, as well as the variance and covariance terms for

the error terms. The estimation procedure will be generalised later for an arbitrary lag k.

For the following estimators, it is assumed that a sample of time series data x2, . . . , xT

and the initial value x1 are observed. Given that the cointegration rank r and the

covariance matrix Ω for the white noise are known with r 6= 0, the unrestricted least-

squares estimator is given by

Π̂ :=

(
T∑

t=2

∆xtx
′
t−1

)(
T∑

t=2

xt−1x
′
t−1

)−1

, (C.5)

and Lütkepohl (2007) shows that this is an unbiased and asymptotically normal esti-

mator. In particular, denoting by vec and ⊗ the vectorisation operator and Matrix

Kronecker product from Definitions D.2 and D.3, respectively, it holds that

√
T − 1 vec

(
Π̂− Π

)
d−→ Nm2(0, β Cov(zt, zt−1)

−1β′ ⊗ Ω),

where zt := (β, α⊥)
′xt for some t ∈ {2, . . . , T} with an orthogonal complement α⊥

of α, i.e. an m × m − r matrix of full column rank with α′α⊥ = 0. The matrix

β Cov(zt, zt−1)
−1β′ can be consistently estimated via

(
(T − 1)−1

T∑

t=2

xt−1x
′
t−1

)−1

.

When Ω is unknown, the usual residual covariance matrix yields a consistent estimator

for Ω and allows for t-tests on individual entries in Π̂. However, more general Wald tests

with more flexible restrictions suffer from singularities in the limiting distribution, and

must be treated differently, see Lütkepohl (2007).
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With the linear parametrisation β = (Ir, β
′
l)

′ for some βl ∈ R
(m−r)×r, the estimators for

α and β are derived in a two-step procedure. Noting that under this normalisation the

first r columns of Π = αβ′ are equal to α, a consistent estimator α̂ for this matrix is

given by the corresponding columns in Π̂ as in (C.5). Then the estimated generalised

least-squares estimator for βl is defined through

β̂′
l :=

(
α̂′Ω̂−1α̂

)−1

α̂′Ω̂−1

(
T∑

t=2

(
∆xt − α̂x

(1)
t−1

)
x
(2)′
t−1

)(
T∑

t=2

x
(2)
t−1x

(2)′
t−1

)−1

,

where xt =
(
x
(1)′
t , x

(2)′
t

)′
with r-dimensional x

(1)
t and (m − r)-dimensional x

(2)
t , and Ω̂

is the consistent residual covariance matrix estimator for Ω. Asymptotic normality can

be established for this estimator as well, and it brings the advantage of asymptotic χ2

distributions for Wald tests.

Under the additional assumption of Gaussian white noise, the normal distribution on

εt can be used to establish ML estimation. The maximisation problem of the (log)

likelihood is equivalent to a determinant minimisation problem, which can be solved by

an eigen-decomposition of the matrix

(
T∑

t=2

xt−1x
′
t−1

)−1/2( T∑

t=2

xt−1∆x′
t

)(
T∑

t=2

∆xt∆x′
t

)(
T∑

t=2

∆xtx
′
t−1

)(
T∑

t=2

xt−1x
′
t−1

)−1/2

.

Denoting the orthonormal eigenvectors of this matrix by v1, . . . , vm, where the indices

correspond to the eigenvalues λ1 ≥ · · · ≥ λm, the ML estimator is Π̃ := α̃β̃′ with

β̃ := (v1, . . . , vr)
′

(
T∑

t=2

xt−1x
′
t−1

)−1/2

,

α̃ :=

(
T∑

t=2

∆xtx
′
t−1β̃

)(
T∑

t=2

β̃′xt−1x
′
t−1β̃

)−1

.

The ML estimator has the same asymptotic properties as the unrestricted least-squares

estimator Π̂. Estimators for the normal linearisation are obtained by multiplication of

β̃ with the inverse of its own upper r × r block matrix, which yields
(
Ir, β̃

′
l

)′
, and by

substitution of β̃ in the second formula to obtain the corresponding estimator for α.
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Again, asymptotic properties correspond to those found for the estimated generalised

least-squares estimator.

The previously mentioned residual covariance matrix is estimated as

Ω̂ := (T − 1)−1

T∑

t=2

(
∆xt − Π̂xt−1

)(
∆xt − Π̂xt−1

)′
,

where Π̂ can be any of the above estimators for Π. Simple versions of the above estima-

tors for the special case of r = 0 are specifically derived by Lütkepohl (2007).

For the general case of k AR lags, i.e. for the VECM of the form

∆xt = αβ′xt−1 +
k−1∑

i=1

Γi∆xt−i + εt, t = k + 1, . . . , T

with initial values x1, . . . , xk, each of the above estimators can be generalised. With the

compact matrix formulation already known from Section 3.2.2, the model can be written

as

∆X = αβ′X1 + ΓX2 + ε

withm×T−k matrices ∆X = (∆xk+1, . . . ,∆xT ),X1 = (xk, . . . , xT−1), ε = (εk+1, . . . , εT ),

an m× (k − 1)m matrix Γ = (Γ1, . . . ,Γk−1), and a (k − 1)m× T − k matrix

X2 =
(
(∆x′

k, . . . ,∆x′
2)

′
,
(
∆x′

k+1, . . . ,∆x′
3

)′
, . . . ,

(
∆x′

T−1, . . . ,∆x′
T−k+1

)′)
.

The consistent and asymptotically normal unrestricted least-squares estimator can be

shown to be

(
Π̂, Γ̂

)
:= (∆XX ′

1,∆XX ′
2)

(
X1X

′
1 X1X

′
2

X2X
′
1 X2X

′
2

)−1

with consistent estimator for the covariance matrix

Ω̂ := (T − (m+ 1)k)−1
(
∆X − Π̂X1 − Γ̂X2

)(
∆X − Π̂X1 − Γ̂X2

)′
.
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Remarks w.r.t. t and Wald tests made for the unrestricted least-squares estimator in the

case without AR components apply here, too. Now, let

M = IT−k −X ′
2(X2X

′
2)

−1X2,

R0 = ∆XM,

R1 = X1M,

and split R1 = (R
(1)′
1 , R

(2)′
1 )′ into block matrices with r and m − r rows, respectively.

By analogy to the previous case, under linear normalisation the estimated generalised

least-squares estimator for βl is

β̂′
l :=

(
α̂′Ω̂−1α̂

)−1

α̂′Ω̂−1
(
R0 − α̂R

(1)
1

)
R

(2)′
1

(
R

(2)
1 R

(2)′
1

)−1

,

when Π̂, Γ̂, Ω̂ are given through the unrestricted least-squares estimation above and α̂

equals the first r rows of Π̂. Its asymptotic behaviour corresponds to the simple case

where k = 1.

Under iid εt ∼ Nm (0,Ω), the previous ML estimator can be generalised for an arbitrary

lag order k. With above definitions of M,R0, R1 and the matrices Sij = RiR
′
j/(T −

k) for i, j = 0, 1, (log) likelihood maximisation can again be achieved through an

eigen-decomposition. Let λ1 ≥ · · · ≥ λm be the ordered eigenvalues of the matrix

S
−1/2
11 S10S

−1
00 S01S

−1/2
11 with corresponding orthonormal eigenvectors v1, . . . , vm. The ML

estimator is then given by Π̃ := α̃β̃′ with

β̃′ := (v1, . . . , vr)
′S

−1/2
11 ,

α̃ := S01β̃
(
β̃′S11β̃

)−1

.

The corresponding estimators for Γ and Ω are

Γ̃ :=
(
∆X − Π̃X1

)
X ′

2 (X2X
′
2)

−1
,

Ω̃ := (T − k)−1
(
∆X − Π̃X1 − Γ̃X2

)(
∆X − Π̃X1 − Γ̃X2

)′
.

All estimators are consistent and asymptotically normal with the same limiting distri-
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bution as the least-squares estimator, and Ω̃ is asymptotically independent of all other

parameter estimators. For an identifiable decomposition of Π̃, the same technique as for

the case of k = 1 leads to the ML estimator of βl and corresponding α under the linear

normalisation. Again, the asymptotic distribution coincides with that of the estimated

generalised least-squares estimator. As before, special formulae for the case of r = 0 are

again derived in Lütkepohl (2007).

Generalisation of the already introduced estimators through inclusion of deterministic

components is straightforward. Consider the unrestrictive specification of the VECM in

(C.4) with deterministic component Dt and corresponding parameters φ. The compact

representation of the VECM introduced in this section remains valid if Γ and X2 are

replaced by

Γ = (Γ1, . . . ,Γk−1, φ) ,

X2 =
((

∆x′
k, . . . ,∆x′

2, D
′
k+1

)′
, . . . ,

(
∆x′

T−1, . . . ,∆x′
T−k+1, D

′
T

)′)
.

Lütkepohl (2007) shows that with above notation, both least-squares and ML estima-

tors are given by their previous formulae. Asymptotic behaviour remains principally the

same, too.

Once all parameters, including the covariance matrix in the VECM representation, are

estimated, it is possible to return to the VAR formulation in (C.1) for prediction pur-

poses. For the AR parameters A1, . . . , Ak in levels, it holds that A1 = Im + Π if k = 1,

and

A1 = Im +Π+ Γ1,

Ai = Γi − Γi−1, i = 2, . . . , k − 1,

Ak = −Γk−1

otherwise. Being linear transformations of Γ and Π, consistent and asymptotic normal

estimators Â1, . . . , Âk are obtained by replacing Γ and Π by their least-squares or ML

estimators. The estimators Ω̂ and, if applicable, φ̂ can be directly carried forward.

Consequently, for h ∈ N, the h-step forecasts for the time series in levels are then
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recursively given through

x̂T+h = φ̂DT+h +
k∑

i=1

Âix̂T+h−i,

where x̂t = xt for all t ≤ T . Under the assumption of future iid Gaussian white noise

with covariance matrix Ω, the forecast errors xT+h − x̂T+h are multivariate normal with

zero mean and a covariance matrix that is estimated by

Ω̂h :=
h−1∑

i=0

ĈiΩ̂Ĉ
′
i,

where Ĉi :=
∑i

j=1 Ĉi−jÂj for i = 1, . . . , h − 1 can be solved for recursively with start-

ing value Ĉ0 = Im and Âj = 0 for j > k. With this result, confidence intervals for

individual components or confidence regions for the multivariate h-step forecast become

computable. For simultaneous confidence intervals for several components, inflation of

type I errors must be dealt with via the, say, Bonferroni method.

All above approaches rely on the assumption that both the lag order and cointegration

rank are known, which will be unreasonable in most applications. As it is the case for

the lag order k in any AR model, the rank, too, has to be determined in a prior step, and

estimation is conducted as described before based on this finding. Since a VECM with

k− 1 lags can be written as an equivalent VAR(k) model, lag order selection is adopted

from the general VAR framework and applied with the latter representation. For the

VECM representation, the number of lags is reduced by one such that the VAR(k)

process need not be analysed for k = 0. As known from univariate AR processes, the

value of k may be estimated through different approaches. A common strategy in-

volves consecutive Wald or likelihood-ratio tests. Starting with a predetermined upper

bound K for k, by decreasing the possible lag order k by 1, one tests Ak = 0 versus

Ak 6= 0 | AK = · · · = Ak+1 = 0 until no rejection occurs. Due to the significant increase of

type I errors in multiple testing schemes with the complicated determination of a correct

nominal significance level, a popular alternative is so-called information criteria. The fi-

nal prediction error criterion by Akaike (1969) is recommended if forecasting is the main

purpose, as it chooses the lag order such that the mean prediction error is minimised.

The Akaike information criterion, also due to Akaike (1974), the Bayesian or Schwarz
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information criterion due to Schwarz (1978), as well as the Hannan-Quinn information

criterion by Hannan and Quinn (1979) are prominent alternatives. Lütkepohl (2007)

defines each of these criteria and discusses pro and cons in terms of different sample sizes.

Since the lag order selection is done with aid of the VAR representation, it can be

conveniently conducted without knowledge of the number of cointegration relationships,

whence it is typical to derive the lag order first and the cointegration rank subsequently.

Although information criteria for rank determination can be found in the literature,

here it is common to apply consecutive likelihood-ratio tests under the assumption of

Gaussian white noise. As mentioned earlier, the maximised (log) likelihoods are obtained

by minimisation of a determinant, which for a VECM without deterministic components

is the product of the previously defined eigenvalues λ1, . . . , λm. For a test ofH0 : rk(Π) =

r0 against H1 : r0 < rk(Π) ≤ r1 with pre-specified integers r0 < r1, the likelihood-ratio

test statistic becomes

λLR(r0, r1) := −(T − k)

r1∑

i=r0+1

log(1− λi).

In situations with more complex VECM representations, e.g. with linear trends, the test

statistic remains the same but with eigenvalues of a correspondingly generalised matrix

given in Lütkepohl (2007). Two particular choices for r1 w.r.t. r0 are of main interest:

with r1 = m, the null value r0 is tested against any other possible rank exceeding r0,

called the trace test, and with r1 = r0 + 1, one obtains the maximum eigenvalue test in

which the null value is only tested against the next higher value. Tabulated percentage

points for the asymptotic non-standard distributions are given by Johansen (1995), for

instance. The strategy for rank determination, often explicitly referred to as the Jo-

hansen procedure, is to start with r0 = 0 and to test it against higher alternatives. The

cointegration rank of r0 is accepted if H0 cannot be rejected, otherwise the test is carried

forward to r0 = 1. The proposal is increased until the test cannot be rejected for the

first time, and the according value for r0 determines r. If the resulting cointegration

rank turns out to be either 0 or m, one concludes that a VAR model in first differences

or a stationary VAR model for the original variables is appropriate, respectively. The

strategy allows for both the trace or maximum eigenvalue tests, and power analyses show

that none of these tests is generally preferable over the other. It is noteworthy that,
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despite the fact that the Johansen procedure is still the most common practice in fre-

quentist analysis, some authors have criticised inconsistency problems in the estimation

of r and proposed alternatives, see, e.g., Chao and Phillips (1999).

C.5 Bayesian Estimation and Forecasting

Following the arguments in Appendix A, Bayesian estimation of VAR(k) models in gen-

eral and, in particular, in VECM representation has evolved an interesting alternative

to least-squares and ML approaches as described above. As before, for parameter esti-

mation, the lag order k is generally assumed known or determined in advance. In a fully

Bayesian framework, this may be done as outlined by Villani (2001). However, whereas

pioneering work in the Bayesian estimation of VECM also requires a fixed value for the

cointegration rank, as it is the case in all frequentist techniques, modern approaches

incorporate the determination of r in the general parameter estimation. Their outcomes

can be regarded highly advantageous since incoherence in this step is diminished. A

short overview on different Bayesian estimation procedures is given in the remainder of

this section.

Starting with a general VAR(k) model as in (C.1) but without deterministic compo-

nents, Bayesian estimation of A1, . . . , Ak is often done via a multivariate normal prior

for the stacked vector vec(A1, . . . , Ak) of all columns of all individual AR parameter

matrices with pre-determined mean µA ∈ R
km2

and covariance matrix VA ∈ R
km2×km2

.

The likelihood is chosen based on Gaussian error terms with zero mean and covariance

matrix Ω that is assumed known for the moment. Lütkepohl (2007) derives the pos-

terior distribution for vec(A1, . . . , Ak), which is again multivariate normal. The exact

form of the posterior depends on the choice of the hyperparameters µA and VA. Most

commonly, the mean value µA is set to zero to reflect weak belief that AR correlation

is significant. The covariance matrix VA is typically chosen to be a diagonal matrix in

order to reflect prior independence between all entries within and between the matrices

A1, . . . , Ak. Using a suitable version for stable processes of the so-called Minnesota or

Litterman prior by Doan et al. (1984) and Litterman (1986), the diagonal elements of
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VA are given by

vijl =





(
λ

l

)2

, i = j

(
λθσi

lσj

)2

, i 6= j

for i, j = 1, . . . ,m and l = 1, . . . , k, where vijl is the diagonal element in VA referring

to the entry (i, j) in Al. The hyperparameters become the prior standard deviation

λ > 0 for all diagonal entries in A1 and a tuning parameter θ ∈ (0, 1). The entries

σi, i = 1, . . . ,m, represent the square roots of the diagonal elements of Ω, still assumed

to be known for the moment. The hyperparameter λ determines the general uncertainty

in the parameters in vec(A1, . . . , Ak) and the tuning parameter θ represents the reduc-

tion of uncertainty for the off-diagonal elements, as they are believed to be closer to 0.

Also, the variance and covariance terms for the entries in A1, . . . , Ak decrease with in-

creasing lags, because AR terms for higher orders are believed to be less significant than

for smaller orders. The ratio σ2
i /σ

2
j is a normalisation factor to take into account the

differences in residual variability. As a final note, for the Bayesian estimation in a proper

VAR(k) model, the error variance Ω is generally not known and, in strict Bayesian philos-

ophy, priors for its elements must be included in the analysis. However, since this would

highly complicate the computation of the posterior distribution for all variables, usually

an empirical Bayes approach is entertained in which Ω is replaced by its least-squared

or ML estimator. Also, priors may be adjusted to allow for deterministic trends in (C.1).

The Bayesian methodology becomes far more complicated with regards to models in

VECM form. Not only is the cointegration rank to be additionally estimated, but also

the determination of Π = αβ′ reveals a non-linear estimation task with possible iden-

tification problems. Due to these restrictions, Lütkepohl (2007) points out that many

modellers circumnavigate these challenges by setting up the model in VAR(k) form and

estimating its parameters via the, e.g., original Minnesota prior as described by Doan

et al. (1984) and Litterman (1986), thereby ignoring the fact that the individual time

series may be cointegrated. In contrast to the previously discussed modification of the

Minnesota prior, the original version for possibly integrated multivariate AR processes

is still multivariate normal with zero mean for almost all parameters, except for the

means of the diagonal elements for the first lag coefficient matrix. These are set equal
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to one to express the prior belief of having m individually integrated time series, i.e. m

independent random walks. The variance for the normal prior is still chosen as outlined

above and allows for uncertainty about the simple assumption of independent random

walks. Alternatives to the Minnesota prior are found in the literature of the early 1990s,

for example see DeJong (1992), who applies a non-informative prior for A1, . . . , Ak in

the VAR(k) representation. Since these models, however, do not include the concept of

cointegration and bear the risk of undesired changes in the prior when transforming the

VAR(k) model into the VECM representation for cointegration analysis, the specifica-

tion of priors for VAR(k) models has become less important in favour of more elaborate

techniques, which are reviewed in the excellent survey paper by Koop et al. (2006).

With the pioneering work on Bayesian cointegration during the mid-1990s, mainly by

Bauwens and Lubrano (1993), Geweke (1996), and Kleibergen and van Dijk (1994), fo-

cus in estimation of model parameters has been shifted to the VECM representation

directly. These approaches have in common that a cointegration rank r is determined

and fixed a priori such that the dimension of α and β is known. For suitable informative

priors, the full conditionals for these and all the other parameters can be derived, and

hence the posterior can be efficiently approximated through Gibbs sampling. The most

prominent example is the work by Geweke (1996), who considers the linear normali-

sation β = (Ir, β
′
l)

′ and chooses normal priors for α, βl, φ,Γ1, . . . ,Γk−1 and an Inverse

Wishart prior for Ω. The uncertainty about the cointegration rank can be incorporated

into the estimation procedure by carrying out the analysis for every possible value of

r and applying Bayesian model selection techniques to the results. However, problems

with these approaches exist. Koop et al. (2006) point out that, while the behaviour of

standard priors are well-understood in linear estimation, the reduced rank restriction

introduces a non-linear estimation problem of Π = αβ′, for which the posterior proper-

ties of standard priors are not known. Furthermore, the exact form of α depends on the

normalisation of β, which makes a suitable prior choice rather difficult. Strachan and

Dijk (2004) give an example of inconsistency for the linear normalisation with a diffuse

prior for βl, whose posterior in turn states that such a parametrisation, although spec-

ified as such due to prior beliefs, is unlikely. Kleibergen and van Dijk (1994) also find

local non-identification problems for certain values of α, leading to improper posteriors

for βl when its prior is improper. Therefore, posterior moments need not exist and the

Gibbs sampler may not converge.
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Due to these shortcomings with early approaches in direct Bayesian cointegration analy-

sis, these models – although intuitive and convenient – have not become particularly pop-

ular. The late 1990s and the years thereafter have seen much further work on Bayesian

estimation within the VECM framework, most notably the concept of estimating the

so-called cointegration space spanned by the columns of β. Other modern approaches

include the use of Jeffreys’ prior, named after Jeffreys (1998) and first discussed by

Kleibergen and van Dijk (1994), and the embedding model, also introduced by Kleiber-

gen and van Dijk (1994), which nests the VECM as a special case. The general idea and

many of the extensions in later years by several authors, as well as problems with these

approaches, are reviewed by Koop et al. (2006) and will not be further discussed here.

The line of research with the cointegration space, referred to as the Grassman approach,

is applied in this work and presented in detail. The following summary is adopted from

Koop et al. (2006) and Villani (2005).

The Grassman approach goes back to the seminal work by Villani (2000) and was further

developed by Villani (2005), Strachan (2003), Strachan and Inder (2004), and Strachan

and Dijk (2004). The principal idea is to avoid problems arising from the lack of global

identification in the product of Π = αβ′ through direct estimation of the cointegration

space for β ∈ R
m×r with full column rank, i.e. sp(β) := {αβ′ : α ∈ R

m×r, rk(α) = r}, the
only uniquely estimable quantity given the data. In Bayesian methodology, it follows

that the analyst has to specify a prior for all possible outcomes of this quantity of inter-

est rather than for the individual parameters α and β. A diffuse prior then distributes

all probability mass uniformly over the support of the cointegration space. The appeal

of this approach becomes apparent from a result shown by Strachan and Inder (2004)

that such a desired non-informative prior belief would not yield a non-informative but

an undesired informative prior for βl in the linear normalisation.

For illustration purposes of the Grassman approach, consider the simple example of

m = 2 and r = 1, i.e. there are two individually non-stationary processes which share a

stationary cointegration relationship. Then β is a 2×1 vector, which can be depicted as

an arrow starting at the origin in a two-dimensional coordinate system. The cointegra-

tion space for one true vector β is the infinite line through the origin containing the arrow

corresponding to β. A prior must distribute the probability mass over the support of all

lines through the origin in this coordinate system. In this simple example, this is easily
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doable by introducing polar coordinates through β = (cos θ, sin θ)′ with θ ∈ [−π/2, π/2).

Implicitly, the length of β is w.l.o.g. constrained to unity. A non-informative prior for

the support of the cointegration space is hence equivalent to a uniform prior for θ over

its support. A more complex example is the case for m = 3 and r = 2, in which the

cointegration space is a two-dimensional plane in a three-dimensional coordinate system,

spanned by two linearly independent cointegration vectors given by the columns of the

3 × 2 matrix β, and the support are all such planes through the origin. Generally, the

cointegration space is an r-dimensional hyperplane in the m-dimensional space. Due to

the restriction of linear independence between different cointegration vectors, priors in

such higher dimensions cannot be simply expressed by distributions over marginal angles

for the individual vectors. However, there exist unique distributions over the so-called

Grassman manifolds, which are equivalent to any chosen prior over the support of the

cointegration space. The Grassman manifold Gm,r is the set of all r-dimensional hyper-

planes in the m-dimensional space. Obviously, the cointegration space sp(β) must be an

element of Gm,r. A non-informative distribution over the support for all cointegration

spaces is naturally given by a uniform distribution over Gm,r. For practical purposes,

these abstract distributions can be again transformed to more convenient representa-

tions, e.g. for βl, if the normal linearisation is chosen. Villani (2000, 2005) shows that

a diffuse prior on the cointegration space equals a Matrix-t distribution on βl in this

parametrisation. Strachan and Dijk (2004) and Strachan and Inder (2004) discuss pos-

sible disadvantages of the linear normalisation and propose alternative and more general

approaches, which work directly with the Grassman manifolds without identification re-

strictions on β, but the generally convenient discussion of the linear normalisation as in

Villani (2005) is considered sufficient for this work. For more information on the general

estimation procedure w.r.t. Grassman manifolds and, for example, informative priors on

the cointegration space, the interested reader is referred to the above cited literature and

to, e.g., James (1954) for a general review on this well-understood field of mathematics.

Note that, so far, the Grassman approach has only been concerned with the estimation

of β through more abstract quantities. Villani (2005) uses a joint prior for the cointegra-

tion space and all remaining parameters. In particular, the priors for φ,Γ1, . . . ,Γk−1 turn

out to be non-informative in his work. Motivated by the Bayesian analysis of VAR(k)

processes, Warne (2006) extends this approach to apply a Minnesota-like prior with

Γ1, . . . ,Γk−1. The priors for the cointegration space are further specified in terms of βl
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under the linear normalisation. As a result, in both studies, an efficient Gibbs sampling

algorithm becomes available. Note that when the order of the individual time series is

chosen such that the last m − r series are not cointegrated solely among themselves,

then the analysis based on this prior is invariant to the normalisation. The exact form

of the priors and the resulting posterior distributions are presented in Section 3.3. An-

other main advantage of the approach by Villani (2005) is the possibility of computing

a consistent posterior distribution for the cointegration rank r. Consequently, only the

lag order k must be specified a priori, whereas the inconsistency of a pre-specified value

for r, as seen in many other Bayesian and frequentist approaches, can be eliminated.

Alternatively, if the inconsistency between lag order determination and parameter es-

timation becomes problematic, joint posterior distributions for both k and r can be

derived through the extension by Warne (2006).

As a final note, Bayesian predictions of the time series are obtained through simulation

of the VECM parameters from their posterior distribution, which is obtained via Gibbs

sampling. For each set of realised parameters, the h-step forecast is simulated using

the normality of the white noise in the VECM formulation. The necessary initial values

xT−k+1, . . . , xT can be their observed values for simplicity or, to be more accurate, draws

from their posterior predictive distribution.

C.6 Goodness-of-Fit Diagnostics

This section provides a short overview on tools for diagnostics to assess how the model

fits the data. Quantitative and qualitative goodness-of-fit checks constitute an impor-

tant step in any statistical analysis. Model diagnostics in the VECM adopt many tools

for VAR models, which are multivariate extensions of well-known diagnostics in the

univariate case. Most importantly, residuals should be checked for remaining autocor-

relation, unexplained by the model, and non-normality when assuming Gaussian white

noise. Residual checks for whiteness are of less concern when the model’s main objective

is forecasting, and when predictions perform reasonably well. The following review on

main techniques is again based on Lütkepohl (2007), who assumes parameter estima-

tion to be done via the frequentist approaches outlined in Appendix C.4. In Bayesian

frameworks, the tests are applied with techniques from Appendix A.4.
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The estimated residuals for the VECM in (C.4) are defined as

ε̂t := ∆xt − φ̂Dt − α̂β̂′xt−1 −
k−1∑

i=1

Γ̂i∆xt−i

for all t = k+1, . . . , T , where α̂ and β̂ are the unrestricted least-squares or ML estimators

for the general case of k lags, along with the corresponding frequentist estimators for all

other parameters. The residual autocovariances for any lag h ∈ {0, 1, . . . , T − k− 1} are

computed as

Ĉh :=
1

T − k

T∑

t=k+1+h

ε̂tε̂
′
t−h.

The residual autocorrelations are then given by R̂h = D̂−1ĈhD̂
−1 for h = 0, 1, . . . , T −

k− 1, where D̂ is a diagonal matrix with its entries being the square roots of the diago-

nal elements of Ĉ0. Lütkepohl (2007) derives asymptotic normality for both the residual

autocovariance and autocorrelation terms under minimum conditions. Plots of the es-

timated autocorrelation and cross-correlation versus the lag indices for each marginal

time series, along with empirical confidence bounds, give a rough check of significance in

the residual autocorrelation. Estimates, which exceed approximate bounds for, say, 95%

confidence intervals, indicate a lack of fit and give insight in how to adjust the model.

More quantitative checks are available through formal hypothesis tests known from stan-

dard time series analysis. Brüggemann (2004) shows that the well-known Portmanteau

test in the VECM framework has the statistic

Qh := (T − k)
h∑

i=1

tr
(
Ĉ ′

iĈ
−1
0 ĈiĈ

−1
0

)

with some pre-specified h ∈ {1, . . . , T − k − 1} to test H0 : R1 = · · · = Rh = 0 against

H1 : Ri 6= 0 for some i. Here, tr (M) denotes the trace of a quadratic matrix M , i.e. the

sum over all diagonal elements. Under H0, for sufficiently large h, the statistic has an

asymptotic χ2 distribution with hm2−m2(k− 1)−mr degrees of freedom. The limiting

distribution for the Portmanteau test is obtained when both the sample size and h go to

infinity. This test is hence not suitable to test the significance of residual autocorrelation

of low order. Modified versions of the test statistic exist to account for this shortcoming.
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The Lagrange Multiplier or Breusch-Godfrey test due to Breusch (1978) and Godfrey

(1978) is an alternative procedure to test for residual autocorrelation of a pre-specified,

preferably small lag order h. Here it is assumed that the error terms follow a VAR(h)

model, i.e.

εt = Λ1εt−1 + · · ·+ Λhεt−h + δt

with white noise δt. The null hypothesis of no residual autocorrelation corresponds to

H0 : Λ1 = · · · = Λh = 0 versus H1 : Λi 6= 0 for some i. The Lagrange Multiplier test

statistic is then derived as the statistic for a score test on the auxiliary regression model

ε̂t = φ̂Dt + α̂β̂′xt−1 +
k−1∑

i=1

Γ̂i∆xt−i + Λ1ε̂t−1 + · · ·+ Λhε̂t−h + δt

for t = k + 1, . . . , T , where ε̂t = 0 for t ≤ k, which Lütkepohl (2007) shows to be

λLM := (T − k)ĉ′hΩ̂c(h)
−1ĉh,

where ĉh := vec(Ĉ1, . . . , Ĉh) and Ω̂c(h) := 1/(T − k)
(
ÊÊ ′ − ÊX ′ (XX ′)−1 XÊ ′

)
⊗

Ω̂, with Ω̂ as before, and the following quantities by analogy to the compact matrix

formulation from Appendix C.4 for the VECM representation,

Xt =
(
1, x′

t, . . . , x
′
t−k+1

)′
, t = k, . . . , T − 1,

X = (Xk, . . . , XT−1) ,

Fi = (0T−k×i, IT−k)
′ (IT−k, 0T−k×i) , i = 1, . . . , h,

F = (F1, . . . , Fh) ,

ε̂ = (ε̂k+1, . . . , ε̂T ) ,

Ê = (Ih ⊗ ε̂)F ′.

Under the same minimum conditions as for the Portmanteau test, the asymptotic dis-

tribution for λLM is χ2(hm2).

Particular interest in goodness-of-fit is devoted to the normality of the residuals if a

Gaussian distribution was assumed for the error terms. Rejection of normality indicates
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misspecification of the likelihood and, hence, of all statistical inference for the model.

A common way to test the residuals for normality is to check whether their skewness

and kurtosis, i.e. the third and fourth moments, equal the theoretical values of zero and

three, respectively. Such a test, the Lomnicki-Jarque-Bera test due to Jarque and Bera

(1987) and Lomnicki (1961), is available for the univariate case and can be extended to

the multivariate case of VAR models, including the VECM specification. For iid error

terms εt ∼ Nm(0,Ω), one obtains wt = (w1t, . . . , wmt)
′ := P−1εt ∼ Nm(0, Im), where P

is a matrix fulfilling PP ′ = Ω, and hence E(w3
it) = 0 and E(w4

it) = 3 for all i = 1, . . . ,m.

Substituting the error terms by the estimated residuals, the test statistics for the null

hypotheses of E(ŵ3
it) = 0 and E(ŵ4

it) = 3 are asymptotically χ2(m)-distributed pivotal

quantities of the vectors of empirical third and fourth moments for these standardised

residual terms, see Lütkepohl (2007) for exact definitions. Rejection of either of the null

hypotheses indicates problems with the normality assumption, where, for small sample

sizes, the test should be understood as a rough check only. Further tests in assessment

of the fit of a VECM are derived for checks of structural changes within the time series

over time, since the statistical inference and forecasts rely on the time invariance of

parameters. The interested reader is referred to Lütkepohl (2007) for more information.
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Probabilistic Preliminaries

D.1 The Generalised Gamma Function

The following definition introduces a generalisation of the Gamma function as used in

the normalising constant of the Grassman prior in (3.10). For simplicity, the function’s

support is restricted to the case of natural numbers. More information on generalised

Gamma functions can be found in, e.g., James (1964).

Definition D.1 (Generalised Gamma Function). Let b ∈ N0. Then the Generalised

Gamma function Γb is defined for all a ∈ N0 with a ≥ b through Γb (a) := 1 if b = 0, and

Γb (a) :=
b∏

i=1

Γ

(
a− i+ 1

2

)

if b > 0, where Γ (·) is the (positive real) Gamma function given by

Γ (t) =

∫ ∞

0

xt−1 exp(−x) dx, t > 0.

In particular, since (a− i + 1)/2 is a multiple of 1/2 for all a, b ∈ N and i ∈ {1, . . . , b},
it follows from the basic properties of the standard Gamma function that

Γ

(
a− i+ 1

2

)
=





(
a− i− 1

2

)
!,

a− i

2
/∈ N

(a− i)!

2a−i
(
a−i
2

)
!

√
π,

a− i

2
∈ N

.
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D.2 Definitions in Matrix Algebra

In probabilistic matrix algebra, it is convenient to transform matrices into vectors in

order to make use of well-known multivariate distributions instead of rather uncommon

matrix-valued distributions.

Definition D.2 (Vectorisation Operator). Let M = (m1 · · ·mb) ∈ R
a×b be a matrix with

b columns m1, . . . ,mb ∈ R
a. The vectorisation (or vector or column stacking) operator

vec : Ra×b → R
ab transforms the matrix M into the vector vec (M) := (m′

1, . . . ,m
′
b)

′

of length ab by stacking together all columns from left to right. The vector vec (M) is

usually referred to as the vectorised or vectorisation of M .

When random matrices are transformed into random vectors, corresponding covariance

matrices must be changed accordingly. The following notation is useful.

Definition D.3 (Matrix Kronecker Product). For matrices M1 ∈ R
a1×b1, with elements

mij for i = 1, . . . , a1 and j = 1, . . . , b1, and M2 ∈ R
a2×b2, define their Matrix Kronecker

product as

M1 ⊗M2 :=




m11M2 m12M2 · · · m1b1M2

m21M2 m22M2 · · · m2b1M2

...
...

. . .
...

ma11M2 ma12M2 · · · ma1b1M2




∈ R
a1a2×b1b2 .

Then ⊗ is called the Matrix Kronecker product operator.

For more information, see, e.g., Neudecker (1968).

D.3 Matrix-Valued Distributions

When dealing with multivariate problems in Bayesian applications, it becomes necessary

to simulate from matrix-valued distributions for the covariance matrices. The following

distributions are generalisations of the Normal, t and χ2 distributions.

A generalisation of the normal distribution for matrix-valued random variables is the

Matrix-Normal distribution.
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Definition D.4 (Matrix-Normal Distribution). A random matrix X ∈ R
a×b is Matrix-

Normal distributed with parameter matrices M ∈ R
a×b, U ∈ R

a×a, V ∈ R
b×b, the latter

two being positive definite, denoted by X ∼ MNa×b(M,U, V ), if X has the density

f (X) =
1

(2π)ab/2 |V |a/2 |U |b/2
exp

(
−1

2
tr
[
V −1(X −M)′U−1(X −M)

])
.

Note that with the vector operator and Matrix Kronecker product from Definitions D.2

and D.3, X ∼ MNa×b(M,U, V ) is equivalent to vec(X) ∼ Nab(vec(M), V ⊗ U), i.e. the

vectorised X can be conveniently expresses through a multivariate vector-valued nor-

mal distribution. For more information on the Matrix-Normal distribution, see Dawid

(1981), for instance.

In analogy to univariate and multivariate normal distributions, a shift to t-distributions

is required when variance components are not known but sampled. In matrix-valued

probability theory, this analogue is the Matrix-t distribution.

Definition D.5 (Matrix-t Distribution). A random matrix X ∈ R
a×b is Matrix-t dis-

tributed with parameters µ ∈ R
a×b, P ∈ R

a×a, Q ∈ R
b×b, the latter two being positive

definite, and n ≥ 0, denoted by X ∼ Mta×b(µ, P,Q, n), if X has the density

f (X) =
Γb (n+ a+ b− 1) |P |b/2

Γb (n+ b− 1) πab/2 |Q|a/2
∣∣Ib +Q−1 (X − µ)′ P (X − µ)

∣∣−(n+a+b−1)/2
.

More information on the Matrix-t distribution can be found in Box and Tiao (2011), for

instance.

The Wishart distribution, named after Wishart (1928), generalises the χ2 distribution to

matrix-valued random variables. It has become popular, since in Bayesian methodology,

it is a conjugate prior for the precision, i.e. the inverse of the covariance matrix, given a

multivariate normal distributed random vector. In this case, the covariance matrix itself

is said to be Inverse Wishart distributed.

Definition D.6 (Wishart Distribution). A positive definite random matrix X ∈ R
a×a

is Wishart distributed with positive definite scale matrix V ∈ R
a×a and n ≥ a degrees of
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freedom, denoted by X ∼ Wa(V, n), if X has the density

f (X) =
|X|(n−a−1)/2

2na/2πa(a−1)/4Γa (n) |V |n/2
exp

(
−1

2
tr
(
V −1X

))
.

The Wishart distribution is motivated as distribution for the precision, because for iid

yi ∼ Na(0, V ), i = 1, . . . , n, it follows that the scatter matrix X = (y1 · · · yn)(y1 · · · yn)′ ∈
R

a×a is Wishart distributed with parameters V and n.

Definition D.7 (Inverse Wishart Distribution). A positive definite random matrix X ∈
R

a×a is Inverse Wishart distributed with positive definite scale matrix S ∈ R
a×a and

degrees of freedom n ≥ a, denoted by IWa (S, n), if X has the density

f (X) =
|S|n/2

2na/2πa(a−1)/4Γa (n)
|X|−(n+a+1)/2 exp

(
−1

2
tr
(
A−1X

))
.

The mean of X is E(X) = S/(n − a − 1) if n > a + 1. If X ∼ Wa(V, n), then X−1 ∼
IWa(V

−1, n). See Zellner (1971) for more properties such as variance formulae.
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E Numerical Details on the Markov

Chain Monte Carlo Algorithm

E.1 Computation of the Acceptance Probability

In the Metropolis-Hastings step for updates of κt, the acceptance probability

a
(
κ
(i−1)
t , κ∗

t

)
= min



1,

f
(
κ∗
t | D, E ,H(i),K(i−1/i)

−t , k, r
)

f
(
κ
(i−1)
t | D, E ,H(i),K(i−1/i)

−t , k, r
)



 .

must be computed in each iteration step i, where κ∗
t denotes the proposal value. Here,

H(i) =
{
φ(i), α(i), β(i),Γ(i),Ω(i)

}
denotes the set of hyperparameters, which have been

already updated at step i via the Gibbs sampler. The expression

K(i−1/i)
−t =

{
κ
(i)
1 , . . . , κ

(i)
t−1, κ

(i−1)
t+1 , . . . , κ

(i−1)
T

}

comprises the latest updated realisations of all other parameters. In Section 3.3.3, it

was derived that the posterior density for some κt is of the form

f (κt | D, E ,H,K−t, k, r) ∝ exp (Lt + Pt)

with the likelihood-driven component

Lt =
∑

x

∑

p

[Dxpt log (log (1 + exp(ηxpt)))− Expt log (1 + exp(ηxpt))]
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and prior-driven component

Pt =





−1

2

(
k+t∑

s=k+1

ε′sΩ
−1εs + (κt − µt)

′ Σ−1
t (κt − µt)

)
, t ≤ k

−1

2

k+t∑

s=t

ε′sΩ
−1εs, k < t ≤ T − k

−1

2

T∑

s=t

ε′sΩ
−1εs, t > T − k

.

The proportionality factors can be neglected in the evaluation of the acceptance proba-

bility as they cancel out. The following sections provide formulae for the numerical eval-

uation of the acceptance probability both under standard as well as single-component

Metropolis-Hastings algorithms.

E.2 General Formulae

Let η
(i−1)
xpt and η∗xpt denote the linear predictor from the right-hand side of equation (3.2)

when plugging in κ
(i−1)
t and κ∗

t , respectively. Furthermore, for s = k + 1, . . . , k + t if

t ≤ k, and for s = t, . . . ,min{k + t, T} if t > k, define

ε(i−1/i)
s = κ(i−1)

s − φ(i) −
(
Im + α(i)β(i)′

)
κ
(i−1/i)
s−1 −

k−1∑

j=1

Γ
(i)
j ∆κ

(i−1/i)
s−j

where

κ
(i−1/i)
s−1 =




κ
(i)
t−1, s = t

κ
(i−1)
s−1 , s > t

,

∆κ
(i−1/i)
s−j =





κ
(i)
s−j − κ

(i)
s−j−1, s− j < t

κ
(i−1)
t − κ

(i)
t−1, s− j = t

κ
(i−1)
s−j − κ

(i−1)
s−j−1, s− j > t

.
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Replacing κ
(i−1)
t by κ∗

t leads to the residuals

ε∗k+1 = ε
(i−1/i)
k+1 + Γ

(i)
k−1

(
κ∗
1 − κ

(i−1)
1

)

if t = 1,

ε∗s = ε(i−1/i)
s −

(
Γ
(i)
s−t − Γ

(i)
s−t−1

)(
κ∗
t − κ

(i−1)
t

)
, s = k + 1, . . . , k + t− 1,

ε∗k+t = ε
(i−1/i)
k+t + Γ

(i)
k−1

(
κ∗
t − κ

(i−1)
t

)

if t = 2, . . . , k − 1,

ε∗k+1 = ε
(i−1/i)
k+1 −

(
Im + α(i)β(i)′ + Γ

(i)
1

)(
κ∗
k − κ

(i−1)
k

)
,

ε∗s = ε(i−1/i)
s −

(
Γ
(i)
s−k − Γ

(i)
s−k−1

)(
κ∗
k − κ

(i−1)
k

)
, s = k + 2, . . . , 2k − 1,

ε∗2k = ε
(i−1/i)
2k + Γ

(i)
k−1

(
κ∗
k − κ

(i−1)
k

)

if t = k,

ε∗t = ε
(i−1/i)
t + κ∗

t − κ
(i−1)
t ,

ε∗t+1 = ε
(i−1/i)
t+1 −

(
Im + α(i)β(i)′ + Γ

(i)
1

)(
κ∗
t − κ

(i−1)
t

)
,

ε∗s = ε(i−1/i)
s −

(
Γ
(i)
s−t − Γ

(i)
s−t−1

)(
κ∗
t − κ

(i−1)
t

)
, s = t+ 2, . . . , k + t− 1,

ε∗k+t = ε
(i−1/i)
k+t + Γ

(i)
k−1

(
κ∗
t − κ

(i−1)
t

)

if t = k + 1, . . . , T − k,

ε∗t = ε
(i−1/i)
t + κ∗

t − κ
(i−1)
t ,

ε∗t+1 = ε
(i−1/i)
t+1 −

(
Im + α(i)β(i)′ + Γ

(i)
1

)(
κ∗
t − κ

(i−1)
t

)
,

ε∗s = ε(i−1/i)
s −

(
Γ
(i)
s−t − Γ

(i)
s−t−1

)(
κ∗
t − κ

(i−1)
t

)
, s = t+ 2, . . . , T,

if t = T − k + 1, . . . , T − 2,

ε∗T−1 = ε
(i−1/i)
T−1 + κ∗

T−1 − κ
(i−1)
T−1 ,

ε∗T = ε
(i−1/i)
T −

(
Im + α(i)β(i)′ + Γ

(i)
1

)(
κ∗
T−1 − κ

(i−1)
T−1

)
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if t = T − 1, and

ε∗T = ε
(i−1/i)
T + κ∗

T − κ
(i−1)
T

if t = T . Note that for all cases to be well-defined, it is assumed that k < T/2 + 1.

Evaluation of the acceptance probability w.r.t. κ
(i−1)
t and κ∗

t gives

a
(
κ
(i−1)
t , κ∗

t

)
= min

{
1, exp

(
∆L

(i−1/∗)
t +∆P

(i−1/∗)
t

)}
(E.1)

with

∆L
(i−1/∗)
t =

∑

x

∑

p

Dxpt

[
log
(
log
(
1 + exp

(
η∗xpt
)))

− log
(
log
(
1 + exp

(
η
(i−1)
xpt

)))]

+
∑

x

∑

p

Expt

[
log
(
1 + exp

(
η
(i−1)
xpt

))
− log

(
1 + exp

(
η∗xpt
))]

and

∆P
(i−1/∗)
t

=





1

2

[
k+t∑

s=k+1

(
ε(i−1)′
s

(
Ω(i)
)−1

ε(i−1)
s − ε∗′s

(
Ω(i)
)−1

ε∗s

)
+ ζ

(i−1/∗)
t

]
, t ≤ k

1

2

k+t∑

s=t

(
ε(i−1)′
s

(
Ω(i)
)−1

ε(i−1)
s − ε∗′s

(
Ω(i)
)−1

ε∗s

)
, k < t ≤ T − k

1

2

T∑

s=t

(
ε(i−1)′
s

(
Ω(i)
)−1

ε(i−1)
s − ε∗′s

(
Ω(i)
)−1

ε∗s

)
, t > T − k

,

where

ζ
(i−1/∗)
t =

(
κ
(i−1)
t − µt

)′
Σ−1

t

(
κ
(i−1)
t − µt

)
− (κ∗

t − µt)
′ Σ−1

t (κ∗
t − µt)

for t = 1, . . . , k, and the residuals ε∗s are chosen for t as outlined above. Using that

a′Ma− (a+ b)′ M (a+ b) = − (a′Mb+ b′Ma+ b′Mb) = − (2a′Mb+ b′Mb)
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for a symmetric matrix M ∈ R
n×n and vectors a, b ∈ R

n, it can be further deduced that

∆P
(i−1/∗)
1

= −
(
κ
(i−1)
1 − µ1

)
′

Σ−1
1

(
κ∗

1 − κ
(i−1)
1

)
− 1

2

(
κ∗

1 − κ
(i−1)
1

)
′

Σ−1
1

(
κ∗

1 − κ
(i−1)
1

)

− ε
(i−1)′
k+1

(
Ω(i)

)
−1

Γ
(i)
k−1

(
κ∗

1 − κ
(i−1)
1

)

− 1

2

(
κ∗

1 − κ
(i−1)
1

)
′

Γ
(i)′
k−1

(
Ω(i)

)
−1

Γ
(i)
k−1

(
κ∗

1 − κ
(i−1)
1

)

if t = 1,

∆P
(i−1/∗)
t

= −
(
κ
(i−1)
t − µt

)
′

Σ−1
t

(
κ∗

t − κ
(i−1)
t

)
− 1

2

(
κ∗

t − κ
(i−1)
t

)
′

Σ−1
t

(
κ∗

t − κ
(i−1)
t

)

+

k+t−1∑

s=k+1

ε(i−1)′
s

(
Ω(i)

)
−1 (

Γ
(i)
s−t − Γ

(i)
s−t−1

)(
κ∗

t − κ
(i−1)
t

)

− 1

2

k+t−1∑

s=k+1

(
κ∗

t − κ
(i−1)
t

)
′
(
Γ
(i)
s−t − Γ

(i)
s−t−1

)
′
(
Ω(i)

)
−1 (

Γ
(i)
s−t − Γ

(i)
s−t−1

)(
κ∗

t − κ
(i−1)
t

)

− ε
(i−1)′
k+t

(
Ω(i)

)
−1

Γ
(i)
k−1

(
κ∗

t − κ
(i−1)
t

)

− 1

2

(
κ∗

t − κ
(i−1)
t

)
′

Γ
(i)′
k−1

(
Ω(i)

)
−1

Γ
(i)
k−1

(
κ∗

t − κ
(i−1)
t

)

if t = 2, . . . , k − 1,

∆P
(i−1/∗)
k

= −
(
κ
(i−1)
k − µk

)
′

Σ−1
k

(
κ∗

k − κ
(i−1)
k

)
− 1

2

(
κ∗

k − κ
(i−1)
k

)
′

Σ−1
k

(
κ∗

k − κ
(i−1)
k

)

+ ε
(i−1)′
k+1

(
Ω(i)

)
−1 (

Im + α(i)β(i)′ + Γ
(i)
1

)(
κ∗

k − κ
(i−1)
k

)

− 1

2

(
κ∗

k − κ
(i−1)
k

)
′
(
Im + α(i)β(i)′ + Γ

(i)
1

)
′
(
Ω(i)

)
−1 (

Im + α(i)β(i)′ + Γ
(i)
1

)(
κ∗

k − κ
(i−1)
k

)

+

2k−1∑

s=k+2

ε(i−1)′
s

(
Ω(i)

)
−1 (

Γ
(i)
s−k − Γ

(i)
s−k−1

)(
κ∗

k − κ
(i−1)
k

)

− 1

2

2k−1∑

s=k+2

(
κ∗

k − κ
(i−1)
k

)
′
(
Γ
(i)
s−k − Γ

(i)
s−k−1

)
′
(
Ω(i)

)
−1 (

Γ
(i)
s−k − Γ

(i)
s−k−1

)(
κ∗

k − κ
(i−1)
k

)

− ε
(i−1)′
2k

(
Ω(i)

)
−1

Γ
(i)
k−1

(
κ∗

k − κ
(i−1)
k

)

− 1

2

(
κ∗

k − κ
(i−1)
k

)
′

Γ
(i)′
k−1

(
Ω(i)

)
−1

Γ
(i)
k−1

(
κ∗

k − κ
(i−1)
k

)
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if t = k,

∆P
(i−1/∗)
t

= −ε
(i−1)′
t

(
Ω(i)

)
−1 (

κ∗

t − κ
(i−1)
t

)
− 1

2

(
κ∗

t − κ
(i−1)
t

)
′
(
Ω(i)

)
−1 (

κ∗

t − κ
(i−1)
t

)

+ ε
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if t = T − 1, and
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for t = T . For numerical efficiency, the following terms should be computed once at the

beginning as they occur often, but do not change in the course of the Metropolis-Hastings

algorithm:

•
(
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)−1
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)−1
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)−1
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Im + α(i)β(i)′ + Γ
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)

E.3 Expressions under Single-Component

Metropolis-Hastings

As a special case of the procedure in the previous section, assume that for a given cal-

endar year t ∈ {1, . . . , T}, each component of κt is visited and updated individually. In

particular, at iteration step i in the Metropolis-Hastings algorithm, the random vector

κ∗
t is not simulated once from an m-dimensional normal distribution. Instead, for each

component j = 1, . . . ,m, a univariate proposal value for the j-th entry of κt is simulated

from a one-dimensional normal distribution with the corresponding marginal mean and

variance parameters. Updates of the components are done individually, i.e. for each j,

the acceptance probability is computed and a realisation of a uniform random variable

is simulated. As a consequence, during each iteration i, the Metropolis-Hastings step

is now conducted mT instead of T times. However, simulation of proposal values has

become a univariate process, and acceptance rates generally increase, because more plau-

sible components will not be rejected as often as before, when other components caused

the proposed vector to be less likely. Note that with this procedure, the proposals for
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different components in κt become independent. For more information on the tuning

effects of this algorithm, the reader is referred to Gilks (2005).

For the following discussion, assume that j ∈ {1, . . . ,m} is arbitrary but fixed. A new

proposal for the j-th component of κt is simulated from a normal distribution with mean

being the j-th component of κ
(i−1)
t and variance being the entry (j, j) of ΣMH. Let δ

be the difference of the realised value and the mean, i.e. the current value for the j-th

component. Then in the vector notation as before, where κ
(i−1)
t is now implicitly assumed

to consist of the i-th values for components 1, . . . , j − 1 and (i − 1)-th components for

j, . . . ,m, one can write

κ∗
t = κ

(i−1)
t + δej,

where ej = (0, . . . , 0, 1, 0, . . . , 0)′ is the canonical vector having entry 1 at j-th position.

Hence, in the results from Section E.2, the terms κ∗
t − κ

(i−1)
t can be replaced by δej.

Noting that δ can be factored out as a scalar, the remaining multiplication of matrices

with ej from the right simply leaves their j-th columns, and one similarly gets the entry

(j, j) when multiplying with ej from both sides. Denoting by subscripts j and jj the j-th

column and the entry (j, j) of a matrix, the formulae for the prior-driven term ∆P
(i−1/∗)
t

in (E.1) then simplify to

∆P
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1 = −δ

[(
κ
(i−1)
1 − µ1

)′ (
Σ−1

1

)
j
+

1

2
δ
(
Σ−1

1

)
jj

+ε
(i−1)′
k+1

((
Ω(i)
)−1

Γ
(i)
k−1

)
j
+

1

2
δ
(
Γ
(i)′
k−1

(
Ω(i)
)−1

Γ
(i)
k−1

)
jj

]
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if t = 1,
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if t = k,
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if t = T − k + 1, . . . , T − 2,
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if t = T .

Further note that for such j ∈ {1, . . . ,m}, which correspond to global parameters that

are not specific for a certain population p, the likelihood-driven term is conveniently

computed for the average population p∗ only. This minimises the computational effort

in the computation of the acceptance probability without any loss of information.
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This appendix introduces the R package bmpmp for flexible and efficient estimation and

creation of output of the BMPMP model. The package is specifically designed for

joint forecasts of different countries with distinction of both genders. It consists of the

following five main functions, which will be described in more detail in the respective

sections F.1 to F.5.

• create.data reads country-specific observed numbers of deathsDxgt and exposure-

to-risk Exgt for both genders as provided by the Human Mortality Database (2014)

and creates one input data file for the estimation procedure of the BMPMP model.

• bmpmp.estimation runs the MCMC algorithm for the BMPMP model using the

input data file created by create.data and the modeller’s choices for the prior

distributions.

• bmpmp.estimation.continue continues the MCMC algorithm for the BMPMP

model with the same input data and prior distributions, when output has already

been created by bmpmp.estimation (or bmpmp.estimation.continue).

• bmpmp.plots constructs posterior distribution, convergence, validation, and fore-

cast plots for the output from bmpmp.estimation

• ml.estimation.plots estimates the CBD model and VECM equations in the

BMPMP model via ML (if not over-parametrised), using input data files created

by create.data and bmpmp.estimation, and constructs forecast plots.

It is noteworthy that, although the term BMPMP model is used throughout this ap-

pendix, the R package allows all functions to be applied for the case of univariate single-

country mortality forecasts.
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F.1 The Function create.data

Description

create.data reads country-specific observed numbers of deaths Dxgt and exposure-to-

risk Exgt for both genders as provided by the Human Mortality Database (2014) and

creates one input data file for the estimation procedure of the BMPMP model.

Usage

create.data(x min = 40, x max = 100, t min = 1956, t max = 2009,

countries, name overall = "Total",

death files, exposure files,

output directory = paste(getwd(),"/output/", sep = ""))

Arguments

x min The minimum age x0 for the model. Must be a scalar in N0.

Default is 40.

x max The maximum age for the model. Must be a scalar in N exceeding

x min but not exceeding the maximum possible age in the input

data. Default is 100.

t min The minimum calendar year for the calibration period. Must be

a scalar in N chosen such that calibration period is covered by all

input data. Default is 1956.

t max The maximum calendar year for the calibration period. Must be

a scalar in N exceeding t min and chosen such that calibration

period is covered by all input data. Default is 2009.

countries The names (or any other identification) of the countries which

shall be analysed. Must be a character object in case of one sin-

gle country and a vector with character entries in case of several

countries.

name overall Character object with the name (or any other identification) for

the reference population, i.e. the overall population consisting of

all countries under consideration. Only required if several coun-

tries are to be analysed. Default is "Total".
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death files Character object/vector containing the location paths of the input

data file(s) in txt format for the observed numbers of deaths.

Must be of the same length as countries and match in order.

See ‘Details’ for the required input format.

exposure files Character object/vector containing the full paths of the input data

file(s) in txt format for the exposure-to-risk. Must be of the same

length as countries and match in order. See ‘Details’ for the

required input format.

output directory Character object specifying the directory for the output data

file input data.RData. Must end with /". Default is

paste(getwd(),"/output/", sep = "")), i.e. a folder called

output in the current workspace. For the current workspace sim-

ply set output directory = "/".

Details

The routine extracts the required observations from the individual input data files for the

calibration window defined through the parameters x min, x max, t min, t max. Data

for both genders of each country are stored, and in case of several countries, the refer-

ence population of all males in all countries is derived. Furthermore, other important

quantities, such as the dimension of the corresponding time series for the VECM, are

computed. While the routine is running, status messages are provided.

For death files and exposure files, each of the vector entries (or the object itself in

case of one country) must be a character specifying the full path of the corresponding

input data file (either full path or starting from the current workspace). The input data

files must be the 1x1 Deaths and 1x1 Exposure-to-Risk txt files provided by the Human

Mortality Database (2014), available at http://www.mortality.org under Complete

Data Series (Period data) for each country1. As an example for the observed number of

deaths in Ireland (effective 24 September 2014), the input data file’s header should look

like the following.

1Note that when certain files have entries . to denote missing data, as found for Belgium for the years
1914–1918, they must be replaced by 0.00 for the routine to work.
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deaths ireland.txt

1 Ireland, Deaths 1x1 Last modified: 12-Nov-2010, MPv5 May07

2

3 Year Age Female Male Total

4 1950 0 1246.00 1676.00 2922.00

5 1950 1 101.00 142.00 243.00

6 1950 2 60.00 73.00 133.00

7 1950 3 52.00 59.00 111.00

8 1950 4 48.00 45.00 93.00

9 1950 5 39.00 30.00 69.00

10 1950 6 22.00 18.00 40.00

11 1950 7 23.00 34.00 57.00

12 1950 8 18.00 30.00 48.00

13 1950 9 11.00 17.00 28.00

14 1950 10 21.00 18.00 39.00

Value

The routine does not return but saves the output as a list in input data.RData in the

output directory as required by the function bmpmp.estimation for estimation of the

BMPMP model for the specified input data.

The function load can be used to read the list into the current workspace. It consists

of the following components.

age levels A vector containing all ages under consideration from x min to

x max.

calendar years A vector containing all calendar years under consideration from

t min to t max.

countries The input object countries in case of one country or the vector

countries extended by name overall otherwise.

x min The supplied value for x min.

x max The supplied value for x max.

C The number of countries including the reference population (will

equal one in case of one country).

T The number of calendar years of the calibration window.
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M The number of ages of the calibration window.

m The dimension of the multivariate time series for the VECM.

D m In case of one country: A matrix containing all observed number

of deaths for males for all ages (given by rows) and calendar years

(given by columns). In case of several countries: A list containing

all observed numbers of deaths for males for all countries (given

by list entries), ages (given by respective rows), and calendar years

(given by respective columns).

D f In case of one country: A matrix containing all observed number of

deaths for females for all ages (given by rows) and calendar years

(given by columns). In case of several countries: A list containing

all observed numbers of deaths for females for all countries (given

by list entries), ages (given by respective rows), and calendar years

(given by respective columns).

E m In case of one country: A matrix containing all exposure-to-risk

for males for all ages (given by rows) and calendar years (given

by columns). In case of several countries: A list containing all

exposure-to-risk for males for all countries (given by list entries),

ages (given by respective rows), and calendar years (given by re-

spective columns).

E f In case of one country: A matrix containing all exposure-to-risk

for females for all ages (given by rows) and calendar years (given

by columns). In case of several countries: A list containing all

exposure-to-risk for females for all countries (given by list entries),

ages (given by respective rows), and calendar years (given by re-

spective columns).

logit Q m In case of one country: A matrix containing all observed logits

for mortality rates under assumption (2.1) for males for all ages

(given by rows) and calendar years (given by columns). In case of

several countries: A list containing all observed logits of mortality

rates under assumption (2.1) for males for all countries (given by

list entries), ages (given by respective rows), and calendar years

(given by respective columns).
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logit Q f In case of one country: A matrix containing all observed logits

for mortality rates under assumption (2.1) for females for all ages

(given by rows) and calendar years (given by columns). In case of

several countries: A list containing all observed logits of mortality

rates under assumption (2.1) for females for all countries (given by

list entries), ages (given by respective rows), and calendar years

(given by respective columns).

own col An object (if one country) or vector (if several countries) of char-

acters defining colours for graphical output.

death files The supplied object/vector for death files.

exposure files The supplied object/vector for exposure files.

Examples

### Example for Big Five as in Section 4.1

# Set workspace first

# Save input data from http://www.mortality.org

# under the following paths

death_files <- c("input_data\\deaths_west_germany.txt",

"input_data\\deaths_spain.txt",

"input_data\\deaths_france.txt",

"input_data\\deaths_italy.txt",

"input_data\\deaths_united_kingdom.txt")

exposure_files <- c("input_data\\exposure-to-risk_west_germany.txt",

"input_data\\exposure-to-risk_spain.txt",

"input_data\\exposure-to-risk_france.txt",

"input_data\\exposure-to-risk_italy.txt",

"input_data\\exposure-to-risk_united_kingdom.txt")

# Give corresponding names for countries and reference population

countries <- c("DE","ES","FR","IT","UK")

name_overall <- "EU"
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# Set output directory for combined dataset (folder must exist)

output_directory <- paste(getwd(),"/output/", sep = "")

# Define calibration window

x_min <- 40

x_max <- 100

t_min <- 1956

t_max <- 1995

# Run function

create.data(x_min = x_min, x_max = x_max, t_min = t_min, t_max = t_max,

countries, name_overall, death_files, exposure_files,

output_directory = paste(getwd(),"/output/", sep = ""))

### End example

F.2 The Function bmpmp.estimation

Description

bmpmp.estimation runs the MCMC algorithm for the BMPMP model using the input

data file created by create.data and the modeller’s choices for the prior distributions.

Usage

bmpmp.estimation(N = 1000000, thinning = 100, save = 2000,

output directory = paste(getwd(),"/output/", sep = ""),

cbd plots = TRUE, cbd plots directory = "cbd plots/",

titles = TRUE, tikz format = FALSE,

k = 2, r = 1, w = 1, lambda A = 1, lambda alpha = 1,

lambda b = 5, lambda l = 1, mhc = 1)

Arguments
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N Number of iterations N for the MCMC algorithm. Must be a

scalar in N0. Default is 1,000,000. If N is chosen to be zero, the

routine will only initialise all quantities for the MCMC algorithm.

thinning Thinning factor for the MCMC algorithm if N > 0, i.e. every

thinning-th iteration is stored. Must be a positive divisor of N.

Default is 100.

save Number of iterations for which intermediate results subject to

thinning should be stored if N > 0. Must be a positive divisor of

N and a multiple of thinning. Default is 2,000.

output directory Character object specifying the directory for both the input data

file input data.RData created through the routine create.data

and the output data files initial.RData, constants.RData

and, if N > 0, bmpmp.RData. Must end with /". Default

is paste(getwd(),"/output/", sep = "")), i.e. a folder called

output in the current workspace. For the current workspace sim-

ply set output directory = "/".

cbd plots Logical value indicating whether starting values for the CBD

model, i.e. its ML estimates, should be plotted. Default is TRUE.

cbd plots

directory

Character object specifying the directory within the output di-

rectory given through output directory for plots of the starting

values for the CBD model if cbd plots = TRUE. Must end with

/". Default is "cbd plots/", i.e. a folder called cbd plots in

the output directory. For the output directory itself simply set

cbd plots directory = "/".

titles Logical value if cbd plots = TRUE, indicating whether main and

axis titles should be included in the graphical output for the start-

ing values. Default is TRUE.

tikz format Logical value if cbd plots = TRUE, indicating whether the output

for the starting values should not be graphs stored in pdf format

as by default, but files in tikz format to allow easy inclusion of

graphs in LATEX documents. Default is FALSE.

k Lag order k in the VAR model representation, i.e. the lag order

for the VECM is k − 1. Must be a scalar in N. Default is 2.
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r Cointegration rank r in the VECM. Must be a scalar in N0. De-

fault is 1.

w Posterior weight w for the likelihood and prior in the Metropolis-

Hastings algorithm. Must be a scalar in (0, 1]. Default is 1, i.e.

the original Metropolis-Hastings algorithm.

lambda A Tuning factor λA in the tuning function fA for the determination

of A. Must be a scalar exceeding 0. Default is 1. See ‘Details’ for

information on the initialisation of A.

lambda alpha Constant λα for the prior of α. Must be a scalar exceeding 0.

Default is 1.

lambda b Baseline constant λb for the overall magnitude of variance in the

prior of Γ if k > 1. Must be a scalar exceeding 0. Default is 5.

lambda l Lag constant λb for the shrinkage in variance with increasing order

in the prior of Γ if k > 2. Must be a scalar exceeding 0. Default

is 1.

mhc Tuning constant cMH for the Metropolis-Hastings proposal vari-

ance ΣMH. Must be a scalar exceeding 0. Default is 1. See ‘Details’

for information on the initialisation of ΣMH.

Details

The routine initialises and, if N > 0, runs the Bayesian estimation algorithm for the

BMPMP model with the data supplied through input data.RData in the output direc-

tory. When there is more than one country to be analysed, the exact equation for the

CBD model applied in this function is given by

log

(
qxpgt

1− qxpgt

)
= κ0

t + κp
t + κg

t + κpg
t + (κx

t + κxp
t + κxg

t ) (x− x0)

+
(
κx2

t + κx2p
t + κx2g

t

)
(x− x0)

2, x ≥ x0,

with t, x, p running through the calendar years, ages, and populations (including the

reference population) specified in input data.RData, and g denoting the effects for

females compared to males. The minimum age x0 coincides with x min. In case of only

one country, the above model is applied with all population-specific parameters set equal

to zero.

197



F The R Package bmpmp

For the Metropolis-Hastings algorithm within the estimation procedure, the single-

component method is applied. The starting values are the ML estimates for the CBD

parameters, A for Ω, and zero matrices or vectors for all other hyperparameters. The

matrix A is initialised through A = fA(Ω̂), where fA(M) = (λ2
Am

2
ij)ij for a square ma-

trix M = (mij)ij with λA as specified in lambda A, and Ω̂ is the empirical covariance

matrix of the time series in differences. If this choice of A becomes numerically singu-

lar, its off-diagonal elements are set to zero. The constant q is automatically given by

m + 2, where m is the dimension of the time series, stored in m in input data.RData.

All other prior constants λα, λb, λl can be directly selected by the modeller through

lambda alpha, lambda b, lambda l. The constants µt and Σt for the priors regard-

ing the first k CBD parameters are automatically determined through an empirical

Bayes approach, i.e. µ1, . . . , µk are chosen to be the corresponding ML estimates and

Σ1 = · · · = Σk = A. The Metropolis-Hastings proposal variances are chosen to be the

diagonal elements of ΣMH = cMHA, where cMH can be determined by the user through

mhc. The function further allows for the choice of a posterior weight in w.

Since the required number of iterations N must be chosen to be large in general, suf-

ficiently high thinning and a low value for save must be selected to guarantee enough

data allocation space within the R workspace and to reduce the necessary storage space

for the output.

If cbd plots = TRUE, the routine will construct plots of the starting values in pdf or

tikz format, stored in the folder specified through cbd plots directory.

The function bmpmp.estimation requires the MCMCpack package if N > 0 and the

tikzDevice package if tikzformat = TRUE. While the routine is running, status mes-

sages are provided. The routine automatically sets seeds for reproducible output. Error

messages will be given for improper choices of k and r w.r.t. the latent dimension and

horizon of the time series. Note that the choice of r = 0 corresponds to a stationary

VAR(k) model for the time series in levels, where r = m corresponds to a stationary

VAR(k − 1) model for the time series in differences.

Value

The routine does not return but saves the output as lists in the files initial.RData,
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constants.RData, and bmpmp.RData in the output directory as required by the function

bmpmp.plots for graphical outputs for the analysis of the BMPMP model.

The function load can be used to read any of the lists into the current workspace. The

list initial.RData consists of the following components.

data An m × T − k matrix containing the multivariate time series in

levels (without the k initial values). The marginal time series

(given by the rows) are ordered as follows: κ0, κg, κx, κx2
, κxg, κx2g,

all κp in the order of countries, then all κpg, all κxp, and all κx2p

in the same order, respectively. In case of the analysis of one single

country, data consists of the first six time series only.

delta x An m× T − k − 1 matrix containing the multivariate time series

given in data in differences.

Z 0 The m × T − k matrix ∆K = (∆κk+1, . . . ,∆κT ) in the compact

matrix form for the VECM.

Z 1 The m×T − k matrix K1 = (κk, . . . , κT−1) in the compact matrix

form for the VECM.

Z 2 The (k−1)m×T−k matrixK2 with entries
(
∆κ′

T−1, . . . ,∆κ′
T−k+1

)′

in the compact matrix form for the VECM.

Omega The initial value for Ω.

Omega inverse The inverse of the initial value of Ω.

Phi The initial value for φ.

Gamma The initial value for Γ.

alpha The initial value for α.

beta The initial value for β.

Psi The initial value for βl.

The list constants.RData consists of the following components.

C The number of countries including the reference population (will

equal one in case of one country).

T The number of calendar years of the calibration window.

M The number of ages of the calibration window.
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k The lag order k in the VAR model representation, i.e. the lag order

for the VECM is k − 1.

r The cointegration rank r in the VECM.

m The dimension of the multivariate time series for the VECM.

d The dimension of the deterministic parameters in the VECM,

which is one by default.

D t The matrix of time-varying coefficients for the deterministic pa-

rameters in the VECM, i.e. a 1× T matrix of ones.

D 0 The last T − k columns of D t.

lambda alpha The constant λα.

A The constant matrix A.

Sigma inverse The inverse of ΩΓ.

mu A matrix (or vector if k = 1) consisting of µ1, . . . , µk.

B inverse The inverse of Σ = Σ1 = · · · = Σk = A.

mhc The tuning constant cMH for the Metropolis-Hastings proposal

variance ΣMH.

w The posterior weight w for the likelihood and prior in the

Metropolis-Hastings algorithm.

n Omega The value nΩ = T − k + q + r +m(k − 1).

c The matrix c = (Ir, 0r×m−r)
′.

c orthogonal The matrix c⊥ = (0m−r×r, Im−r)
′.

H The matrix H = Ir ⊗ c⊥.

h The vector h = vec(H).

age levels A vector containing all ages under consideration from x min to

x max.

In case of N > 0, the list bmpmp.RData consists of the following components.

mcmc A list, whose i-th entry is a list containing all values of the quan-

tities in initial.RData for the i-th iteration (after thinning).
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eta A list, whose i-th entry is a list with two entries. In case of several

countries, the first entry is a list with T−k entries, whose t-th entry

is a matrix of the linear predictors for all male populations at t-th

calendar year realised at the i-th iteration (after thinning), where

the rows indicate the countries as given in countries (with the

last row being the reference population) and the columns indicate

the ages as given in age levels. In case of a single country, the

first entry is a list with T−k entries, whose t-th entry is a vector of

the linear predictors for the male population at t-th calendar year

realised at the i-th iteration (after thinning), where the entries

indicate the ages as given in age levels. The second entry of i-th

entry of eta is the corresponding list of all female linear predictors,

arranged in the analogous way.

N thinned The number of iterations after thinning.

In the alternative case of N = 0, the list bmpmp.RData consists of the following compo-

nents.

mcmc A list of one entry, which is a list containing all values of the

quantities in initial.RData.

eta A list of one entry, which is a list with two entries. In case of several

countries, the first entry is a list with T − k entries, whose t-th

entry is a matrix of the linear predictors for all male populations

at t-th calendar year realised for the initial values, where the rows

indicate the countries as given in countries (with the last row

being the reference population) and the columns indicate the ages

as given in age levels. In case of a single country, the first entry

is a list with T−k entries, whose t-th entry is a vector of the linear

predictors for the male population at t-th calendar year realised

for the initial values, where the entries indicate the ages as given

in age levels. The second entry of the single entry of eta is the

corresponding list of all female linear predictors, arranged in the

analogous way.

N thinned The number zero.
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In case of N > 0, additional output files are the intermediate results for each incre-

ment of save iterations, which are automatically contained in bmpmp.RData. Their lists

are set up as in the case of bmpmp.RData, where the entries are called mcmc thinned,

eta thinned, number thinned.

Finally, if cbd plots = TRUE, the routine saves graphical output in pdf or tikz format

as outlined under ‘Details’.

Examples

### Example for Big Five as in Section 4.1

### (Example for create.data continued)

# Required package (must be installed)

library(MCMCpack) # (will also be loaded within the function)

# Set workspace first and create input_data.RData through create.data()

# Set output directory as before

output_directory <- paste(getwd(),"/output/", sep = "")

# Set directory for CBD plots within the output directory

# (folder must exist)

cbd_plots_directory <- "cbd_plots/"

cbd_plots <- TRUE

titles <- TRUE

tikz_format <- FALSE

# Setup of model

k <- 2

r <- 5

w <- 1

lambda_A <- sqrt(10)

lambda_alpha <- 1

lambda_b <- 5
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lambda_l <- 1 # (not required)

mhc <- 10

# Setup algorithm

N <- 1000000

thinning <- 100

save <- 1000

# Run function

bmpmp.estimation(N = N, thinning = thinning, save = save,

output_directory = output_directory,

cbd_plots = cbd_plots,

cbd_plots_directory = cbd_plots_directory,

titles = titles, tikz_format = tikz_format,

k = k, r = r, w = w, lambda_A = lambda_A,

lambda_alpha = lambda_alpha,

lambda_b = lambda_b, lambda_l = lambda_l, mhc = mhc)

### End example

F.3 The Function bmpmp.estimation.continue

Description

bmpmp.estimation.continue continues the MCMC algorithm for the BMPMP model

with the same input data and prior distributions, when output of bmpmp.estimation

(or bmpmp.estimation.continue) has already been created.

Usage

bmpmp.estimation.continue(N = 2000000, thinning = 100, save = 2000,

output directory

= paste(getwd(),"/output/", sep = ""))

Arguments
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N Number of iterations N for the entire MCMC algorithm, i.e. the

final number of iterations including previously obtained results.

Must be a scalar in N exceeding Nprev, i.e. the number of itera-

tions before thinning used in bmpmp.estimation (or the last call

of bmpmp.estimation.continue). Default is 2,000,000.

thinning Thinning factor for the new section of the MCMC algorithm, i.e.

every thinning-th iteration in the current part of the MCMC

algorithm is stored. Must be a positive divisor of the additional

number of iterations N −Nprev. Default is 100.

save Number of iterations for which intermediate results subject to

thinning should be stored in the new section of the MCMC al-

gorithm. Must be a positive divisor of the additional number of

iterations N −Nprev and a multiple of thinning. Default is 2,000.

output directory Character object specifying the directory for the input data

files input data.RData, constants.RData, as well as the pre-

vious results in bmpmp.RData created through the routine

bmpmp.estimation (or bmpmp.estimation.continue), and the

new output data file, which will override the existing bmpmp.RData.

Must end with /". Default is paste(getwd(),"/output/", sep

= "")), i.e. a folder called output in the current workspace. For

the current workspace simply set output directory = "/".

Details

The routine continues the Bayesian estimation algorithm for the same BMPMP model as

in the previously used bmpmp.estimation (or bmpmp.estimation.continue). In partic-

ular, the same input data and choices for the prior distributions given in the respective

files in the output directory are used. The routine carries forward the previous results as

stored in bmpmp.RData and resumes the MCMC algorithm with the realisation for the

last iteration therein. New realisations are combined with the already given iterations

such that the output comprises the entire output of the algorithm. As a special case,

bmpmp.estimation.continue starts the MCMC algorithm in case bmpmp.estimation

was used for initialisation only, i.e. with N begin zero.

The function bmpmp.estimation.continue requires the MCMCpack package. While the
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routine is running, status messages are provided. The routine automatically sets seeds

for reproducible output (even if next time bmpmp.estimation was used for all iterations

at once). Notes made in the ‘Details’ section for the function bmpmp.estimation re-

garding the parameters N, thinning, and save apply here, too.

Value

The routine does not return but saves the output as a list in bmpmp.RData, thereby

overriding the already existing file. The function load can be used to read any of the

lists into the current workspace. As for the output of bmpmp.estimation, it consists of

the following entries.

mcmc A list, whose i-th entry is a list containing all values of the quan-

tities in initial.RData for the i-th iteration (after thinning) of

the entire MCMC algorithm.

eta A list, whose i-th entry is a list with two entries. In case of sev-

eral countries, the first entry is a list with T − k entries, whose

t-th entry is a matrix of the linear predictors for all male popu-

lations at t-th calendar year realised at the i-th iteration (after

thinning) of the entire MCMC algorithm, where the rows indicate

the countries as given in countries (with the last row being the

reference population) and the columns indicate the ages as given

in age levels. In case of a single country, the first entry is a list

with T − k entries, whose t-th entry is a vector of the linear pre-

dictors for the male population at t-th calendar year realised at

the i-th iteration (after thinning) of the entire MCMC algorithm,

where the entries indicate the ages as given in age levels. The

second entry of i-th entry of eta is the corresponding list of all

female linear predictors, arranged in the analogous way.

N thinned The number of iterations after thinning for the entire MCMC al-

gorithm.

Additional output files are the intermediate results for each increment of save iterations

for the new realisations, which are automatically contained in bmpmp.RData. Their lists

are set up as in the case of bmpmp.RData, where the entries are called mcmc thinned,
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eta thinned, number thinned.

Examples

### Example for bmpmp.estimation continued

# Required package (must be installed)

library(MCMCpack) # (will also be loaded within the function)

# Set workspace first and create input_data.RData through create.data()

# and constants.RData and bmpmp.RData through bmpmp.estimation()

# Set output directory as before

output_directory <- paste(getwd(),"/output/", sep = "")

# Setup 100,000 additional realisations for the algorithm

N <- 500000 # (previous value was N = 400,000)

thinning <- 100

save <- 2000

# Run function

bmpmp.estimation.continue(N = N, thinning = thinning, save = save,

output_directory = output_directory)

### End example

F.4 The Function bmpmp.plots

Description

bmpmp.plots constructs posterior distribution, convergence, validation, and forecast

plots for the output from bmpmp.estimation.

Usage

bmpmp.plots(burn in = 0, year = 1980, age = 60,

forecast begin = 2000, forecast end = 2050,
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output directory = paste(getwd(),"/output/", sep = ""),

distribution plots directory = "distribution plots/",

convergence plots directory = "convergence plots/",

validation plots directory = "validation plots/",

forecast plots directory = "forecast plots/",

titles = TRUE, tikz format = FALSE)

Arguments

burn in Length of burn-in period, i.e. the number of initial realisations

(after thinning) in the MCMC algorithm that should be discarded.

Must be a scalar in N0 smaller than N thinned in bmpmp.RData.

Default is 0.

year The fixed reference calendar year for posterior distribution and

validation plots of the logit of mortality rates (linear predic-

tors) versus age levels. Must be an entry in calendar years in

input data.RData. Default is 1980.

age The fixed age for posterior distribution, validation, and forecast

plots of the logit of mortality rates (linear predictors) versus calen-

dar years. Must be an entry in age levels in input data.RData.

Default is 60.

forecast begin Calendar year, for which the forecast period should begin. Must

be a scalar in N exceeding tmin + k but not larger than tmax +

1, where tmin and tmax are the input parameters t min and

t max from create.data, and k is the chosen lag order k for

bmpmp.estimation. Default is 2000.

forecast end Calendar year, for which the forecast period should end. Must be

a scalar in N exceeding forecast begin. Default is 2050.

output directory Character object specifying the directory for both input data files

input data.RData created through the routine create.data and

bmpmp.RData created through bmpmp.estimation. Must end with

/". Default is paste(getwd(),"/output/", sep = "")), i.e. a

folder called output in the current workspace. For the current

workspace simply set output directory = "/".
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distribution

plots

directory

Character object specifying the directory within the output di-

rectory given through output directory for posterior distribu-

tion plots of hyperparameters and parameters. Must end with

/". Default is "distribution plots/", i.e. a folder called

distribution plots in the output directory. For the output di-

rectory itself simply set distribution plots directory = "/".

convergence

plots

directory

Character object specifying the directory within the output di-

rectory given through output directory for MCMC conver-

gence plots of hyperparameters and parameters. Must end

with /". Default is "convergence plots/", i.e. a folder called

convergence plots in the output directory. For the output di-

rectory itself simply set convergence plots directory = "/".

validation plots

directory

Character object specifying the directory within the output direc-

tory given through output directory for internal validation plots

of hyperparameters and parameters. Must end with /". Default

is "validation plots/", i.e. a folder called validation plots in

the output directory. For the output directory itself simply set

validation plots directory = "/".

forecast plots

directory

Character object specifying the directory within the output di-

rectory given through output directory for forecast (external

validation) plots of hyperparameters and parameters. Must end

with /". Default is "forecast plots/", i.e. a folder called

forecast plots in the output directory. For the output direc-

tory itself simply set forecast plots directory = "/".

titles Logical value indicating whether main and axis titles should be

included in the graphical output. Default is TRUE.

tikz format Logical value indicating whether the output should not be graphs

stored in pdf format as by default, but files in tikz format to allow

easy inclusion of graphs in LATEX documents. Default is FALSE.

Details

The routine will construct the following plots in pdf or tikz format, stored in the

respectively specified folders, for the output in bmpmp.RData and input data.RData,

constructed through the functions bmpmp.estimation and create.data, respectively.
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• Posterior distribution plots: (a) Marginal time series plots for all CBD parameters,

showing fancharts for the posterior realisations of the time series for all iterations

after the burn-in period (after thinning), their pointwise 90%, 95%, 99%, and 100%

credibility intervals (solid, dashed, dotted, limiting), and their starting values given

by the corresponding ML estimates (solid red). The files are named after the cor-

responding parameters. (b) Plots of the logit of mortality rates (linear predictors)

versus calendar years of the calibration period for all countries and genders for

the fixed reference age given through age. Shown are fancharts for the posterior

realisations of the linear predictors for all iterations after the burn-in period (after

thinning), their pointwise 90%, 95%, 99%, and 100% credibility intervals (solid,

dashed, dotted, limiting), their starting values given by the corresponding ML

estimates (solid red), and the logits of the observed mortality rates under the as-

sumption of piecewise constant forces of mortality (solid green). The files’ names

start with linear predictor and indicate the respective gender and country. (c)

Plots of the logit of mortality rates (linear predictors) versus age levels of the cal-

ibration window for all countries and genders for the fixed reference calendar year

given through year. Shown are fancharts for the posterior realisations of the linear

predictors for all iterations after the burn-in period (after thinning), their pointwise

90%, 95%, 99%, and 100% credibility intervals (solid, dashed, dotted, limiting),

their starting values given by the corresponding ML estimates (solid red), and the

logits of the observed mortality rates under the assumption of piecewise constant

forces of mortality (solid green). The files’ names start with mortality rate and

indicate the respective gender and country.

• MCMC convergence plots: Marginal scatterplots for all hyperparameters and pa-

rameters versus iterations after thinning (starting with initial values, i.e. the burn-

in period is shown). For the covariance matrices Ω(i) and the cointegration hy-

perparameters α(i) and β(i), the precision matrices
(
Ω(i)
)−1

and the cointegration

matrices Π(i) = α(i)β(i)′ are also plotted. The files are named after the name of

the corresponding parameter or hyperparameter and their respective subscripts

denoting the vector’s or matrix’s entry.

• Internal validation plots: (a) Marginal time series plots for all CBD parameters

over the calibration period, showing fancharts for the marginal realisations of the

VECM for each realisation of the posterior distribution for the hyperparameters
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after the burn-in period (after thinning) using the prior distribution for the first

k values, their pointwise 90%, 95%, 99%, and 100% credibility intervals (solid,

dashed, dotted, limiting), and their starting values given by the corresponding ML

estimates (solid red). The files are named after the corresponding parameters.

(b) Plots of the logit of mortality rates (linear predictors) versus calendar years

of the calibration period for all countries and genders for the fixed reference age

given through age. Shown are fancharts for the simulated realisations of the linear

predictors, their pointwise 90%, 95%, 99%, and 100% credibility intervals (solid,

dashed, dotted, limiting), their starting values given by the corresponding ML

estimates (solid red), and the logits of the observed mortality rates under the

assumption of piecewise constant forces of mortality (solid green). The files’ names

start with linear predictor and indicate the respective gender and country. (c)

Plots of the logit of mortality rates (linear predictors) versus age levels of the

calibration window for all countries and genders for the fixed reference calendar

year given through year. Shown are fancharts for the simulated realisations of the

linear predictors, their pointwise 90%, 95%, 99%, and 100% credibility intervals

(solid, dashed, dotted, limiting), their starting values given by the corresponding

ML estimates (solid red), and the logits of the observed mortality rates under the

assumption of piecewise constant forces of mortality (solid green). The files’ names

start with mortality rate and indicate the respective gender and country.

• Forecast (external validation) plots: (a) Marginal time series plots for all CBD pa-

rameters over the calibration and forecast period defined through forecast begin

and forecast end, showing the initial values for the calibration period until the

begin of the forecast period and, thereafter, fancharts for the marginal realisations

of the VECM for each realisation of the posterior distribution for the hyperpa-

rameters after the burn-in period (after thinning), using the posterior distribution

for the preceding k values, and their pointwise 90%, 95%, 99%, and 100% cred-

ibility intervals (solid, dashed, dotted, limiting). The files are named after the

corresponding parameters. (b) Plots of the logit of mortality rates (linear predic-

tors) versus calendar years of the calibration and forecast period for all countries

and genders for the fixed reference age given through age. Shown are fancharts

for the simulated realisations of the linear predictors for the forecast period, their

pointwise 90%, 95%, 99%, and 100% credibility intervals (solid, dashed, dotted,
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limiting), and the logits of the observed mortality rates under the assumption of

piecewise constant forces of mortality for the entire calibration period (solid green).

The files’ names start with linear predictor and indicate the respective gender

and country. (c) Plots of the logit of mortality rates (linear predictors) versus age

levels of the calibration window for all countries and genders for the final calendar

year of the forecast period given through forecast end. Shown are fancharts for

the simulated realisations of the linear predictors in solid black, their pointwise

90%, 95%, 99%, and 100% credibility intervals (solid, dashed, dotted, limiting),

and the logits of the observed mortality rates under the assumption of piecewise

constant forces of mortality for the last calendar year of the calibration period as

comparison (solid green). The files’ names start with mortality rate and indicate

the respective gender and country.

The function bmpmp.plots requires the fanplot package and, if tikzformat = TRUE,

the tikzDevice package. While the routine is running, status messages are provided.

The routine automatically sets seeds for reproducible output. If bmpmp.RData has been

initialised with the choice of N = 0, no plots can be created, and an error message will

be provided.

Value

The routine does not return any values, but saves graphical output in pdf or tikz for-

mat as outlined under ‘Details’.

Examples

### Example for Big Five as in Section 4.1

### (Example for bmpmp.estimation continued)

# Set workspace first and create input_data.RData through create.data()

# and bmpmp.RData through bmpmp.estimation()

# Set output directory as before

output_directory <- paste(getwd(),"/output/", sep = "")

# Set directories for output plots within the output directory

# (folders must exist)
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distribution_plots_directory = "distribution_plots/"

convergence_plots_directory = "convergence_plots/"

validation_plots_directory = "validation_plots/"

forecast_plots_directory = "forecast_plots/"

# Setup for output graphs

burn_in <- 7500 # (after thinning, i.e. 750000 iterations in total)

year <- 1980

age <- 60

forecast_begin <- 1996

forecast_end <- 2014

titles <- TRUE

tikz_format <- FALSE

# Run function

bmpmp.plots(burn_in = burn_in, year = year, age = age,

forecast_begin = forecast_begin,

forecast_end = forecast_end,

output_directory = output_directory,

distribution_plots_directory = distribution_plots_directory,

convergence_plots_directory = convergence_plots_directory,

validation_plots_directory = validation_plots_directory,

forecast_plots_directory = forecast_plots_directory,

titles = titles, tikz_format = tikz_format)

### End example

F.5 The Function ml.estimation.plots

Description

ml.estimation.plots estimates the CBD model and VECM equations in the BMPMP

model via ML (if not over-parametrised), using input data files created by create.data

and bmpmp.estimation, and constructs forecast plots.
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Usage

ml.estimation.plots(forecast begin = 2000, forecast end = 2050,

age = 60, output directory

= paste(getwd(),"/output/", sep = ""),

ml forecast plots directory = "ml forecast plots/",

titles = TRUE, tikz format = FALSE)

Arguments

forecast begin Calendar year, for which the forecast period should begin. Must

be a scalar in N exceeding tmin + k but not larger than tmax +

1, where tmin and tmax are the input parameters t min and

t max for create.data and k is the chosen lag order k for

bmpmp.estimation. Default is 2000.

forecast end Calendar year, for which the forecast period should end. Must be

a scalar in N exceeding forecast begin. Default is 2050.

age The fixed age for the forecast plots of the logit of mortality rates

(linear predictors) versus calendar years. Must be an entry in

age levels in input data.RData. Default is 60.

output directory Character object specifying the directory for the input data files

input data.RData, constants.RData and initial.RData. Must

end with /". Default is paste(getwd(),"/output/", sep =

"")), i.e. a folder called output in the current workspace. For

the current workspace simply set output directory = "/".

ml forecast

plots

directory

Character object specifying the directory within the output di-

rectory given through output directory for forecast (external

validation) plots of hyperparameters and parameters. Must end

with /". Default is "ml forecast plots/", i.e. a folder called

ml forecast plots in the output directory. For the output di-

rectory itself simply set ml forecast plots directory = "/".

titles Logical value indicating whether main and axis titles should be

included in the graphical output. Default is TRUE.
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tikz format Logical value indicating whether the output should not be graphs

stored in pdf format as by default, but files in tikz format to allow

easy inclusion of graphs in LATEX documents. Default is FALSE.

Details

Given the input data through input data.RData, the initial values via initial.RData,

and the constants through constants.RData (where the latter two files can be con-

veniently created using bmpmp.estimation with the choice of N = 0), the routine es-

timates both the CBD model and the VECM as defined in the BMPMP model for

bmpmp.estimation via ML in a two-step procedure known from classical LC or CBD

models. First, the CBD model is estimated via standard ML procedures known from

Binomial generalised regression (i.e. the starting values for the Bayesian estimation). In

a second step, the VECM is estimated via the ML techniques outlined in Appendix C.4.

Note that ML estimation will not be available for many applications, as the number

of hyperparameters in the VECM soon exceeds the number of latent parameters in the

CBD model. In particular, only a very small number of countries will allow for a lag

order k greater than one. In case of singularities in the ML procedure, respective error

messages will be provided.

ml.forecast.plots further provides the following forecast (external validation) plots

in pdf or tikz format, stored in the folder given by ml forecast plots directory:

(a) Marginal time series plots for all CBD parameters over the calibration and forecast

period defined through forecast begin and forecast end, showing the ML point es-

timates for the calibration period until the begin of the forecast period and, thereafter,

the ML forecasts of the VECM consisting of the pointwise estimates (solid black), and

the pointwise 2.5% and 97.5% confidence limits (dashed cyan). The files are named after

the corresponding parameters. (b) Plots of the logit of mortality rates (linear predictors)

versus calendar years of the calibration and forecast period for all countries and genders

for the fixed reference age given through age. Shown are the ML point estimates for the

calibration period until the begin of the forecast period and, thereafter, the ML forecasts

consisting of the pointwise estimates (solid black), and the pointwise 2.5% and 97.5%

confidence limits (dashed cyan) along with the logits of the observed mortality rates

under the assumption of piecewise constant forces of mortality for the entire calibration

period (solid green). The files’ names start with linear predictor and indicate the
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respective gender and country. (c) Plots of the logit of mortality rates (linear predic-

tors) versus age levels of the calibration window for all countries and genders for the

final calendar year of the forecast period given through forecast end. Shown are the

ML forecast point estimates of the linear predictors in solid black and their pointwise

2.5% and 97.5% confidence limits (dashed cyan) along with the logits of the observed

mortality rates under the assumption of piecewise constant forces of mortality for the

last calendar year of the calibration period as comparison (solid green). The files’ names

start with mortality rate and indicate the respective gender and country.

The function ml.forecast.plots requires the expm package and, if tikzformat =

TRUE, the tikzDevice package. While the routine is running, status messages are pro-

vided.

Value

The routine does not return any values, but saves graphical output in pdf or tikz for-

mat as outlined under ‘Details’.

Examples

### Example for Big Five as in Section 4.1

### (Example for bmpmp.estimation continued)

# Required package (must be installed)

library(expm) # (will also be loaded within the function)

# Set workspace first and create input_data.RData through create.data()

# and constants.RData

# and bmpmp.RData through bmpmp.estimation() (e.g. with N=0)

# Set output directory as before

output_directory <- paste(getwd(),"/output/", sep = "")

# Set directory for output graphs (folder must exist)

ml_forecast_plots_directory <- "ml_forecast_plots/"
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# Setup for output graphs with forecast period as before

age <- 60

forecast_begin <- 1996

forecast_end <- 2014

titles <- TRUE

tikz_format <- FALSE

# Run function

ml.estimation.plots(forecast_begin = forecast_begin,

forecast_end = forecast_end, age = age,

output_directory = output_directory,

ml_forecast_plots_directory

= ml_forecast_plots_directory,

titles = titles, tikz_format = tikz_format)

### End example
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