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Introduction

In the actuarial literature, optimal reinsurance problems have been heavily
studied, but almost all the solutions rely on mathematical optimizations that
are difficult to implement in practice. When the optimization is treated with
numerical examples, the latter are usually too simple in terms of assumptions
and reinsurance programs’ complexity.

The aim of this thesis is to overcome this impracticality through the imple-
mentation of a solid optimization procedure based on the frequency-severity
model, which is one of the mostly known methodologies in the insurance sector.
The combination of a wide range of Quota Share and Excess of Loss contracts
is generated and tested on a fictitious multi-line insurer, which is calibrated on
the Italian insurance market.

The aggregation of different lines of business has been achieved through
the use of Vine Copulas, a flexible instrument that extends the bivariate
Archimedean Copulas to the multivariate context.

Unconventional applications of the Panjer algorithm have been introduced:
from a backtesting technique to measure simulations’ accuracy to an unbiased
reinsurance pricing tool.

After the optimal reinsurance program has been determined, an additional
question is raised and answered: can the presence of reinstatements in an
Excess of Loss improve reinsurance in terms of risk return trade-off?
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Chapter 1

Reinsurance

The term Reinsurance can be easily described as the insurance for insurers: the
reinsurer agrees to assume a portion of insurance risks in charge of the insurer,
where the latter pays premium to compensate the reinsurer.

Reinsurance plays a major role in the insurance business since it diminishes
the impact of claims losses and stabilizes the underwriting result of the direct
insurer. Reinsurance is a fundamental tool that allows to obtain a more secure
and reliable insurance system.

Many drivers are involved in the demand of a reinsurance policy:

• Risk transfer: an insurance company may decide to split its portfolio
with a reinsurance company in order to decrease the risk exposure.

• Loss experience stabilization: since the insurance result uncertainty
depends on the volatility of the claims frequency and severity, reinsurance
comes handy to mitigate adverse fluctuations that could destabilize the
insurer placement in the market.

• Insurer’s capital relief and capacity increase: reinsurance reduces the
capital requirements of the direct insurer. Consequently, the insurer can
access new opportunities like the underwriting of new policies. From
an economical perspective, this driver is considered as one of the main
reason to build an effective reinsurance plan. Also, the achievement of
lower capital requirements for the company leads to a higher Solvency
Ratio, an fundamental indicator under Solvency framework.
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Chapter 1

• Catastrophe protection: this point gained relevance in recent years for the
increasing number of both natural and man-made catastrophes. Without
reinsurance, many insurers may risk being in ruin every time a relevant
catastrophe occurs. The reinsurer plays as safety net towards the insur-
ance market in case of such extreme events. Note that the reinsurance
company is able to receive this kind of risks, characterized by a huge expo-
sure, thanks to an adequate amount of own capital and a very diversified
portfolio.

The features and characteristics of a reinsurance coverage are the result of a
reciprocal trust and dialogue between the two parts.

Many conflicts of interest emerge:
On one hand, both the insurer and the reinsurer calibrate their decisions

by taking into account own needs and objectives.
On the other hand, both parties give huge emphasis to reasonable loadings

and commissions involved in the agreement: a weak compensation can damage
the reinsurer for assuming risks recklessly, while a too burdensome compensation
depletes the underwriting result and the own funds of the direct insurer.

For these reasons, facing the reinsurance topic from only one point of view
may lead to unpractical or unused solutions.

Afterall, a reinsurance contract take place only when both parties benefit
from it.

1.1 Reinsurance Basics

1.1.1 Facultative vs Treaty

When we talk about traditional reinsurance, we should distinguish between
facultative and treaty reinsurance.

A treaty reinsurance shall include all the risks of a specific class of the
ceding company’s business, and the reinsurer accepts the block of business
within the terms of the reinsurance contract.

Instead, a facultative reinsurance enables the direct insurer to choose on
an individual basis which risk to include in the cover, and consequently, the
reinsurer has the right to accept or reject those risks one by one. This kind

2



Reinsurance

of cover is usually suitable for risks that aren’t covered by treaties already in
force.

There are two other types, given by a mix of the previously described
ones. In the facultative-obligatory treaty the ceding insurer can choose which
risks include in the agreement and the reinsurer can only accept or reject the
selection made. Vice versa, in an obligatory-facultative treaty the reinsurer
is the only one that can decide from the whole portfolio which risks will be
considered.

In this thesis the focus will be on treaties to emphasize reinsurance effect
on the whole underwriting result. The analysis of simulated ad hoc facultative
reinsurance agreements, where just few risks are covered, may lead to a lack of
concrete results.

1.1.2 Proportional vs Non-Proportional

Both facultative and treaty reinsurance can be further divided in 2 groups:

• In proportional reinsurance premium and losses are shared proportionally
between ceding company and reinsurer. The latter usually pays a ceding
commission to the direct insurer to reimburse for expenses linked to the
underwriting of the policy. This kind of contract protects against both
adverse frequency and adverse severity of claims.

• In non-proportional reinsurance the claims amount is transferred to the
reinsurer in relation to the excess of a specified retention. Typically, the
price of the policy is expressed as a percentage of the direct insurer’s
premiums. The protection granted by a non-proportional contract allows
to smooth, or even delete, the worst case of claims losses during the
coverage period.

A well detailed description of differences between proportional and non-proportional
policies will be provided later on, since further specifications can be addressed
once the main coverages are explained.
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1.2 Proportional Reinsurance

1.2.1 Quota Share

In a quota share contract premiums and losses are shared according to a fixed
ratio α between the two parties. The letter α corresponds to the so-called
retention coefficient that represents the percentage of premiums and losses
retained by the direct insurer.

Quota share contracts are by definition treaties, since all kind of risks in
the portfolio are shared without any regards to the corresponding sum insured.
It is important to specify the notations used to clarify any doubts:

X̃ Original aggregate losses random variable

P Pure premiums with P = E(X̃)

λP Safety loading expressed as a percentage λ of the pure premium P

C Commissions expressed as a percentage c of the tariff premiums B

B Original tariff premiums with B = (1 + λ)P + cB

αB Direct insurer’s tariff premiums

αX̃ Direct insurer’s losses random variable

(1− α)B Reinsurer’s tariff premiums

(1− α)X̃ Reinsurer’s losses random variable

Thus, we can visualize the transfer of money between parties with the
following scheme. Firstly, the premium payments:

Policyholders
pay B to−−−−−→ DirectInsurer

pays (1− α)B to−−−−−−−−−−→ Reinsurer

Secondly, the claims payment in the opposite direction:

Policyholders
pays X̃ to←−−−−−− DirectInsurer

pays (1− α)X̃ + Cre to←−−−−−−−−−−−−−− Reinsurer

4



Reinsurance

As mentioned before, the reinsurer pays back to the direct insurer the ceding
commission Cre = creB, with usually cre ≤ c.

In fact, in quota share the reinsurer can apply an additional safety loading
to the direct insurer by acknowledging to him a commission rate cre lower than
c at the end of the treaty’s coverage period.

The value assumed by cre influences radically the nature of the contract
since, in case of low values, the profitability from the direct insurer point of
view is depleted.

It’s important to mention that cre can be either fixed or stochastic.

We will give a particular emphasis to this commission rate, since many
quota share contracts feature nowadays the so-called sliding commissions, where
the value depends on the loss ratio observed in the year.So, cre is a random
variable and, in this case, will be written as c̃re

In particular, c̃re assumes high values in case of favourable loss ratio and
vice versa.

Therefore, the reinsurer is more protected against two scenarios: the first,
as said before, where we observe a large aggregate amount of losses compared
to the earned premiums; the second were the direct insurer is transferring a
portfolio of risks were an insufficient pricing is made.
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It doesn’t exist a unique way to build the sliding commissions, but in general
they can be based upon:

• A step rule where the distribution function of the loss ratio is split into
a fixed number of classes with each having a corresponding value of c̃re.
So, given a realisation y of the loss ratio of the year, we will use the
commission rate associated to the class where y falls within.

• A mathematical function that, given the loss ratio (or another reasonable
index), returns the corresponding commissions. Therefore, the domain of
c̃re is not bounded to a discrete subset of values like the previous case,
but it is a continuous interval. Usually, the mentioned interval has upper
and lower bounds to avoid inappropriate commissions in case of extreme
(favourable and unfavourable) events.

The adoption of stochastic commissions affects in a very interesting manner
the variability of the insurance company’s capital from year to year. Obviously,
more protection for the reinsurer implies less protection for the direct insurer
in case of unfavourable loss ratio.

Let assume two opposite scenarios under stochastic c̃re framework:

1. During the year, small losses occurred, and the loss ratio assumes a very
low value. Therefore, high amounts of commissions are paid back by the
reinsurer to the insurer at the end of the year. The insurer has two good
news at the same time: the underwriting result of the year has gone great,
and the treaty cost is low.

2. Vice versa, huge losses in the year imply high loss ratio and low commis-
sions paid back to the direct insurer. The latter has now two problems:
the underwriting result has gone bad, and it is further worsened by high
treaty’s cost.

Thus, the presence of stochastic commissions amplifies the direct insurer’s
result of the year. From the cedant point of view, signing up this kind of
coverage may be counter-intuitive when compared with a quota share with
fixed cre. Afterall, the insurer is relying on reinsurance to reduce risks, not to
amplify them.
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The reason why many quota share contracts with sliding commissions are
signed up nowadays can be attributed to many drivers:

• As said before, a reinsurance contract is an agreement between two parties.
So, the reinsurer may impose stochastic commissions as a safety measure
against the possibility that the considered portfolio’s riskiness has been
underestimated by the ceding company.

• if both quota share with and without sliding commissions are offered by
the same reinsurer,on average the second type is expected to be more
expensive;

• Or we may reasonably think that both types are available on the market,
but the quota share contract with low fixed commission is provided by
a bad rated reinsurer. In this way, the reinsurance contract would be
affected by a more probable credit risk.

There is a wide list of decisions that lead a company to prefer a contract
over another one. We shall always remember that many trade-offs and market
relations between parties are involved in a reinsurance agreement.

1.2.2 Surplus

In opposition to quota share, surplus contracts are by definition facultative,
because the retention line M, fixed ex-ante, excludes all those risks characterized
by a smaller sum insured V. Thus, the direct insurer obtains a more homogeneous
portfolio of risks by retaining losses according a different retention coefficient α
for each risk, such that:

α =

1 if V < M

M
V

if V > M
(1.1)

Let us denote the random variable single claim cost with Z̃, where 0 < Z̃ ≤
V .

Under a surplus cover, αZ̃ is paid by the ceding company and (1− α)Z̃.
In case V < M , the whole single claim cost Z̃ is in charge of the direct

insurer, and, as mentioned before, the latter faces on his own only those risks
characterized by a small sum insured.
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Trivially, if case of loss Z = V , with V > M :

• The direct insurer pays αV = M
V
V = M

• The reinsurer pays (1− α)V = (1− M
V

)V = V −M .

As mentioned by Antal [2], the reinsurance commissions are paid in the
same manner as we discussed in the quota share contracts.

Regarding the presence of sliding commissions, we shall consider the rein-
surer’s loss ratio to calibrate the realizations of c̃re.

Note that, when we deal with quota share contracts, both the parties
observe the same loss ratio because the treaty includes all risks in the considered
business.

But with surplus, since we are dealing with a facultative reinsurance agree-
ment, the direct insurer’s loss ratio of the year differs from the reinsurer’s
one.

Surplus coverage is usually used in the property line of business, where the
sum insured value is directly linked to the value of the asset insured. It may
be hard to define the concept of sum insured in lines like General Third Party
Liability (GTPL) or Motor Third Party Liability (MTPL), where physical
damages to others may be involved.

8
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1.3 Non-Proportional Reinsurance

1.3.1 Excess of Loss

In an excess of loss treaty XL, the ceding company transfers to the reinsurer
a portion of each loss Z̃ in excess of the deductible D. In practice a limit L
is imposed on the reinsurer’s payment for each claim. We are in front of the
so-called L xs D (in words: L in excess of D).

Let us represent the mathematical notation:
The i− th claim cost Z̃i is split in two components:

Z̃i
re

= (Z̃i −D)+ − (Z̃i − (D + L))+ = min(max(Z̃i −D, 0), L) (1.2)

Z̃i
in

= Z̃i − Z̃i
re

(1.3)

Where Zre
i is the portion of claim paid by the reinsurer, and Zin

i is the part
paid by the direct insurer. As we can see, the reinsurer is in charge of the layer
that goes from D to D+L. To be complete in the notation, the Layer operator
is introduced:

LayerD,L(Z̃i) ≡ Z̃i
re

= min(max(Z̃i −D, 0), L) (1.4)

The number of losses Ñ that will occur during a year is a random variable,
that we will suppose distributed like a Poisson(E(Ñ)). In this way, the
aggregate claim cost X̃ is defined as a combination of two random variables:

X̃ =
Ñ∑
i=1

Z̃i (1.5)

Then, under an excess of loss treaty, X̃ is split between the two parties as
follows:

X̃re
XL =

N∑
i=1

Z̃i
re

=
N∑
i=1

LayerD,L(Z̃i) (1.6)

X̃ in =
N∑
i=1

Z̃i
in

=
N∑
i=1

Layer0,D(Z̃i) + LayerD+L,∞(Z̃i) (1.7)

It’s important to remind that a XL coverage protects the ceding company
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only from individual claims which cost falls in the layer. In fact, in case a large
number of small claims occurs, the direct insurer suffers huge losses anyways.

To be precise, the reinsurance agreement previously described is called
Working Excess of Loss (WXL), since the layer is applied individually to each
observed loss.

Instead, when we talk about the Catastrophe Excess of Loss (Cat XL), the
deductible D and limit L are applied per event (e.g. earthquake, flood, hail). In
fact, the occurrence of a catastrophic event affects a wide number of contracts
at the same time.

Let us now compute the reinsurance pure premium P re through the use of
the so-called stop loss transformation.

First, we consider the expected value E(Z̃re). It is necessary to know the
cumulative distribution function FZ̃(z) = P (Z̃ ≤ z) of the single claim Z̃.

For the generic random variable S̃, the stop-loss transformation is defined
as:

E(S̃) =

∫ ∞
0

1− FS̃(s)ds (1.8)

10
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In case of deductible D and infinite Limit L we have:

E(Z̃re) = E[(Z̃ −D)+] =

∫ ∞
D

1− FZ̃(z)dz (1.9)

Given the previous formula, we can compute trivially the result when L is
finite:

E(Z̃re) = E[(Z̃ −D)+]− E[(Z̃ − (D + L))+] =∫ ∞
D

1− FZ̃(z)dz −
∫ ∞
D+L

1− FZ̃(z)dz =

∫ D+L

D

1− FZ̃(z)dz (1.10)

Given the expected value E(Ñ) of the claims frequency, the reinsurance
pure premium P re is obtained by:

P re = E(X̃re) = E(Ñ)E(Z̃re) (1.11)

1.3.2 Stop Loss

Stop Loss is a non-proportional reinsurance contract where the reinsurer pays
the portion X̃re of the aggregate claim losses X̃ that exceed the aggregate
deductible AD, but only up to the aggregate limit AL. Trivially, a Stop Loss is
an Excess of Loss treaty applied to aggregate annual losses.

Recalling (1.5), under a Stop Loss contract, we can split X̃ into two com-
ponents:

X̃re
SL = LayerAD,AL(X̃) = LayerAD,AL(

Ñ∑
i=1

Z̃i) (1.12)

X̃ in = X̃ − X̃re (1.13)

In this scenario, the direct insurer is exposed in a different manner with
respect to the XL: Stop Loss treaty does not give any relevance to the behaviour
of the individual claims loss and protects the ceding company against the overall
unfavourable result on aggregate basis.

Obviously, every insurance company would opt for such a strong protection,
if it wasn’t for the related price. In fact, the safety loading imposed by the
reinsurer is noteworthy, in order to protect himself from the high volatility of
the random variable X̃re.
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Note that a precise estimation of the so-called tail behaviour is one of the
hardest actuarial tasks, and it has been studied in numerous researches.

Let us compute the reinsurance pure premium for a stop loss contract. We
need to know FX̃(x) to proceed.

Recalling the stop loss transformation of Equation (1.9), we have:

P re = E(X̃re) =

∫ AL

AD

1− FX̃(x)dx (1.14)

1.3.3 Excess of Loss with Aggregate Deductible and Ag-

gregate Limit

We now consider a mixture of an Excess of Loss with layer (L xs D) and of a
Stop Loss with aggregate layer (AL xs AD). We can indicate the reinsurer’s
aggregate claim loss of this form of contract as:

X̃re = LayerAD,AL(X̃re
XL) = LayerAD,AL(

Ñ∑
i=1

LayerD,L(Z̃i)) =

min(max(
Ñ∑
i=1

(LayerD,LZ̃i)))− AD, 0), AL) =

min(max(
Ñ∑
i=1

(min((max(Z̃i −D, 0), L))− AD, 0), AL) (1.15)

The resulting formula can be easily analysed step by step. Let us imagine
that N claims occurred:

• The single claim loss Zi is transferred to the reinsurer according to the
Layer L xs D;

• Repeat step 1 for all the N occurred claims to obtain N values of Zre
i ,

with i = 1, 2, . . . , N ;

• Obtain a provisional aggregate reinsurer loss by summing up all the Zre
i ;

• Apply the Aggregate Layer AL xs AD to the provisional aggregate loss.

12
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1.3.4 Excess of Loss with Reinstatements

Usually, the Aggregate Limit AL is set equal to a multiple of the individual
claim Limit L. If AL = (K + 1)L, we are in front of an Excess of Loss L xs D
with K reinstatements.

At the start of the contract, the direct insurer pays the initial premium
PL
AD for the Original Aggregate Layer L xs AD. Afterwards, if a claim loss Zi

leads the amount
∑
Zre
i to fall within the Aggregate Layer (K+1)L xs AD, the

direct insurer pays an additional premium to restore the used up part of the
layer.

The additional premium is called reinstatement premium, and it is propor-
tional to both PL

AD and to the used portion of the layer. The capacity of each
reinstatement is equal to L, and the total premium of the k − th reinstatement
is expressed as a percentage of PL

AD. We call it PL
AD+kL = ckP

L
AD, with ck ≥ 0.

The k − th reinstatement covers the Aggregate Layer L xs (AD + (k − 1)L).

If ck = 0, we are in front of the so-called free reinstatements, where the
initial premium PL

AD already includes the price of the whole Aggregate Layer
AL xs AD. Instead, with ck ≥ 0, we have the so-called paid reinstatements.

Usually in practice, ck = c ∀k = 1, 2, . . . , K and assumes the value 0, 5 or 1.
As c tends to 1, the initial premium PL

AD and the stochastic premiums balance,
and PL

AD decreases.

Obviously, in case ck = 1, we have:

PL
AD = PL

AD+L = PL
AD+2L = · · · = PL

AD+KL. (1.16)

With free reinstatements, the reinsurance premium is deterministic, while,
with paid reinstatements, we deal with a random variable since the premium is
paid pro rata. Trivially, the reinsurance loss and the stochastic premiums are
highly correlated random variables.

To clarify how the reinstatements work, a graphical example is provided, in
which a Excess of Loss with K reinstatements is bought and the loss in the
year is big enough to consume the whole capacity of the treaty:
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Xre > 0

Reinstatement 1 restores L xs AD

Xre > L

Reinstatement 1 is fully used

Reinstatement 2 restores L xs AD

Xre > 2L

Reinstatements 1 and 2 are fully used

Reinstatement 3 restores L xs AD

Xre > KL

Reinstatements 1, 2, . . . , K are fully used

Original Layer L xs AD cannot be restored anymore!

Xre > (K + 1)L

The Direct Insurer is no more protected!

(. . . )

As mentioned before, the k-th reinstatement premium is proportional to
the amount of layer to be reinstated, and it is given by:

ckP
L
AD

LayerAD+(k−1)L,L(X̃re
XL)

L
(1.17)

To simplify the notation, we will denote the r.v. amount covered by the k − th
reinstatement with:

r̃k−1 = LayerAD+(k−1)L,L(X̃re
XL) (1.18)

14
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The term r̃k−1

L
represents the proportion of layer reinstated. The only random

variable involved in the formula (1.17) is X̃re
XL. So, it is fundamental to deeply

understand the behaviour of the aggregate claims amount to price such a
contract.

Since the total random premium is defined as the sum of the determin-
istic initial premium PL

AD and of the stochastic reinstatements premiums∑K
k=1 ckP

L
AD

r̃k−1

L
, we can express it as:

P̃AL
AD = PL

AD(1 +
1

L

K∑
k=1

ckr̃k−1) (1.19)

By applying the Expected Value operator, we have:

E(P̃AL
AD) = PL

AD(1 +
1

L

K∑
k=1

ckE(r̃k−1)) (1.20)

Now, our focus is to determine PL
AD, since it is the only component we

cannot estimate directly. In fact:

• Recalling equation (1.15), note that the term E(P̃AL
AD) is equivalent to

the pure premium paid for an excess of loss LxsD with aggregate layer
ALxsAD. Therefore:

E(P̃AL
AD) = E(LayerAD,AL(X̃re

XL)) (1.21)

Assume now that we are able to determine the cumulative distribution
function FX̃re

XL
(x), with X̃re

XL =
∑Ñ

i=1 LayerD,L(Z̃i). This point is achiev-
able through the use of methodologies like Panjer Algorithm.

Hence, using the stop loss transformation of equation (1.9), we can
compute the following term:

E(P̃AL
AD) =

∫ AL

AD

1− FX̃re
XL

(x)dx (1.22)

• E(r̃k−1) computation is based on the same concepts of E(P̃AL
AD). In fact,
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recalling the previous formula, we have:

E(r̃k−1) = E(LayerAD+(k−1)L,L(X̃re
XL)) =

∫ L

AD+(k−1)L
1− FX̃re

XL
(x)dx

(1.23)

Therefore, it is possible to compute the initial premium PL
AD by rewriting

equation (1.20) as:

PL
AD =

E(P̃AL
AD)

(1 + 1
L

∑K
k=1 ckE(r̃k−1))

(1.24)

In case ck = c ∀k = 1, . . . , K, the previous equation can be easily simplified:

PL
AD =

E(P̃AL
AD)

(1 + c
L

∑K
k=1E(r̃k−1))

=
E(P̃

(K+1)L
AD )

(1 + c
L
E(P̃KL

AD ))
(1.25)

Trivially, in case of free reinstatements, the deterministic premium PAL
AD is

equal to the numerator of the previous formula.
To better grasp how the reinstatements work in practice, a detailed numerical

example is provided.
Suppose we are dealing with a XL coverage with layer 15 xs 10 with

AD = 20 and 2 reinstatements. Hence, AL = (1 + 2)15 = 45.
Imagine we observed 8 individual claim costs Zi, represented in the following

table:

1. The 1st claim Z1 is 20, and through the application of the Layer 15 xs 10,
we have the corresponding claim amount Zre

1 = 10. Thus, the reinsurer’s
aggregate claim amount Xre is still 0, since 10 is lower than the AD = 20.

2. Z2 = 5, that is lower than D = 10. So, this claim loss is in charge of the
direct insurer (Zre

2 = 0 ,Zin
2 = 5).

3. Z3 = 40, split among reinsurer and insurer with Zre
3 = 15 and Zin

3 = 25.
Now,

∑3
i=1 Z

re
i = 25 > 20 = AD. Therefore, the reinsurer pays Xre = 5

and the direct insurer pays the additional premium to reinstate the layer,
reducing the 1st reinstatement capacity by 5.

4. Z4 = 25 with Zre
4 = 15 and Zin

4 = 10. Note that, in comparison with the
previous case, the reinsurer is always in charge of 15 for the presence of
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Table 1.1: Reinstatement numerical example

Claim number i 1 2 3 4 5 6 7 8

Zi 20 5 40 25 15 25 35 20

X =
∑
Zi 20 25 65 90 105 130 165 185

Zre
i = Layer10,15(Zi) 10 0 15 15 5 15 15 10∑

Zre
i 10 10 25 40 45 60 75 85

Xre = Layer20,45(
∑
Zre
i ) 0 0 5 20 25 40 45 45

X in = X −Xre 20 25 60 70 80 90 120 140

Original layer 15 15 15 15 15 5 0 0

Reinstatement 1 15 15 10 0 0 0 0 0

Reinstatement 2 15 15 15 10 5 0 0 0

L = 15. The reinsurer pays 15 and the insurer reinstate the layer using
both the 1st and the 2nd reinstatement. So, the 1st capacity is completely
used to pay 10, and the second one is reduced by the remaining 5.

5. Z5 = 15, with Zre
5 = 5 and Zin

5 = 10. So, the layer is reinstated by
reducing by 5 the 2nd reinstatement.

6. Z6 = 25, with Zre
6 = 15 and Zin

6 = 10. Therefore, also the 2nd reinstate-
ment is depleted, and the original layer is reduced by the remaining 10.
From now on, the layer won’t be reinstated anymore.

7. Z7 = 35, with Zre
7 = 15 and Zre

7 = 20. But, since the original layer
capacity is only 5, the reinsurer will pay 5, and the insurer the remaining
30. In this moment,

∑7
i=1 Z

re
i = 75 > 65 = AD + AL, so the reinsurer

does not have any further obligation towards the insurer.

8. Z8 = 20, with Zre
7 = 10 and Zre

7 = 10. But, as said before, the whole
claim is in charge of the direct insurer now.

In conclusion, the reinsurer pays 45, the maximum possible according to the
agreement. The direct insurer pays 140 for the claims (instead of 185 without
the reinsurance) and an additional amount for the reinsurance premiums related
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to the original layer and the two reinstatements, expressed as

P 15
20 + P 15

35 + P 15
50 = P 15

20 (1 + c1 + c2). (1.26)

It’s important to mention that the analysed numerical example shows an
extreme case: It’s unusual to observe the reinsurer in charge of the whole
Aggregate Limit AL.

In fact, the Non-Proportional treaties protect the ceding company from
extreme unfavourable losses. Typically, the reinsurer’s profit is generated in
those years where there aren’t any obligations towards the ceding company, in
particular when

∑
Zre
i < AD.

This typology of contract adds a significant amount of complexity into
the reinsurance framework. But it’s important to remark that the presence
of aggregate deductibles and limits is common in Excess of Loss reinsurance
context. For this reason, this topic will be deeply analysed and commented
later in the thesis with adequate case studies.
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The Frequency-Severity Approach

To understand clearly reinsurance and its effects in terms of risk mitigation, an
adequate model is required. The most known in literature is the Frequency-
Severity approach. Recalling equation (1.5), the scope is to estimate the
aggregate claim amount X̃ of the direct insurer, which is defined as:

X̃ =
Ñ∑
i=1

Z̃i

In the standard frequency-severity approach, the actuary estimates distri-
butions for the number of claims Ñ (frequency) and the single claim cost Z̃
(severity), because the main goal is to define the distribution of X̃, both gross
and net of reinsurance. The question may sound obvious: why not estimate X̃
directly? The first issue is connected to the fact that excess of loss reinsurance
works on Z̃, and therefore the estimation of Z̃ distribution shouldn’t be avoided.
The second and biggest problem is related to the estimation accuracy. Let us
take few steps back.

To estimate properly a distribution, a large amount of observations is
needed to achieve an accurate result. Since the random variable X̃ is the
annual aggregate amount, the actuary would have too little data to perform a
proper fit. But, if we consider how many single claims are observed annually, it
is a whole different situation: Z̃ would be way easier to estimate in comparison.

But it is not ended: how could we estimate the frequency if it is annual
too? In literature, the main distribution associated to Ñ is the Poisson, which
comes very handy for this purpose due to one of its properties: the sum
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of independent Poisson-distributed random variables is Poisson-distributed.
In particular, if Ñi ∼ Poisson(λi) for i = 1, . . . , n are independent, then
Ñ =

∑n
i=1 Ñi ∼ Poisson(

∑n
i=1 λi).

This property is more important than it might appear at the first glance:
instead of studying Ñ , it is now possible to focus on the frequency component
Ñi of the single policyholder in the portfolio. In this way, we are even able
to study more precisely the frequency component, and associate the proper
volatility to this random variable. Now, more than ever, Generalized Linear
Models (GLM) are used to perform frequency and severity fitting per contract,
based on the characteristics of the single policyholder.

Usually, in the actuarial literature Z̃ and Ñ are assumed independent. This
assumption makes simpler both the theory and the simulation procedure to
obtain X̃. Nonetheless, in case more lines of business (e.g. A,B,C ) are modelled,
an estimation of the underlying dependency structure between X̃A, X̃B, X̃C is
needed. In this case, each single X̃i is computed separately, and in a second
step they are aggregated considering the dependency. The copula aggregation
is a very popular method to achieve this operation. With the introduction
of Solvency II, copulas are a hot topic in insurance for both internal model
and ORSA (own risk and solvency assessment). The most known copula is
the Gaussian Copula, due to being the simplest and the most flexible one in a
high-dimensional case.

In the next sections many distributions and dependencies are explained
to give a good overview over all the main topics and tools underlying the
frequency-severity approach used in the thesis.

2.1 Distributions

In this section the only distributions that will be presented are the ones
needed to understand the reasoning in this thesis. Further discussions on other
distributions are avoided in order to maintain a fluid argumentation.

Normal Distribution Known to be the most famous distribution in eco-
nomics and finance, it is one of the most inappropriate choice to model insurance
risks. Since the normal distribution has a huge relevance in statistics, it is often
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used as a benchmark to make comparison with other distributions. For this
reason, it is worthy to give a quick summary on its properties.

The density function of a random variable Ỹ ∼ Normal(µ, σ) is equal to

fỸ (y) =
1

σ
√

2π
e−

1
2

(y−µ)2

σ2 ,

with
y ∈ (−∞,∞), µ = E(Ỹ ), σ = σ(Ỹ )

Figure 2.1: Normal(4000,1000) density function

The normal distribution is characterized by a perfect symmetry, and for the
severity fitting, it is a serious problem. Let’s investigate the main issues:

• the mathematical domain of Z̃ is R+, and by using a Normal we would
observe claims with also negative values, which don’t make sense;

• in Non-Life insurance, the skewness index γ(Z̃) is positive, while, a
Normal, instead, is characterized by a perfect symmetry;

• insurance risks exhibit extreme tails, which are not present in a Normal.

The Normal is often mentioned for the possibility to determine its quantiles
for every chosen level of confidence (1 − α) through the use of the standard
Normal tables. We need first to define the standardized Normal S̃ as

S̃ =
Ỹ − µ
σ
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Then, it is possible to associate for the same level of confidence (1− α) the
quantile y1−α of Ỹ and the quantile s1−α of S̃:

s1−α =
y1−α − µ

σ

Since s1−α can be found on standard Normal tables, we isolate y1−α:

y1−α = s1−α σ + µ

The most important level of confidence in insurance is 99.5% due to the
fact that Solvency II evaluates at that level the capital requirement using the
Value at Risk. The corresponding standard Normal quantile is s0.995 = 2.58.

This multiplier assumes a huge importance when comparing distributions:
if we are dealing with a positive skewed distribution, we would expect to have
a value greater than 2.58 in order to reach the quantile with level of confidence
99.5%.

LogNormal Distribution The LogNormal distribution is often used in
actuarial context for both single claim cost Z̃ and aggregate claim cost X̃. It
is obtainable through a transformation of the Normal distribution, such that:

if Ỹ ∼ Normal(µ, σ) and W̃ ∼ LogNormal(µ, σ), then W̃ = exp(Ỹ ).
The LogNormal density function is defined as

fW̃ (w) =
1

σw
√

2π
e−

1
2

(ln(w)−µ)2

σ2

It is crucial important to know that, unlike the Normal, the parameters
µ and σ are not respectively the mean and the standard deviation of the
LogNormal. In fact, they are obtained through the following formula:

σ =
√
ln(1 + CV 2

W̃
)

µ = ln(E(W̃ ))− σ2

2

where the so-called coefficient of variation CVW̃ = σ(W̃ )

E(W̃ )
.

This distribution is characterized by a positive skewness and a long right
tail, which come handy to model the severity component Z̃.
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Figure 2.2: LogNormal(8, 1.1) density function

Poisson Distribution As mentioned before, the Poisson distribution is used
in the actuarial context to model the number of claims Ñ . It is a discrete
probability distribution, where the random variable Ñ ∈ N = {0, 1, 2, . . . }.

The probability mass function of the generic random variable Ñ ∼ Poisson(n)

is defined as:

P (Ñ = k) = en
nk

k!

with k ∈ N.

Figure 2.3: Poisson(3) density function

Note that the Poisson distribution is characterized by only one parameter
n, and therefore, all of its moments depend on it. The main results are listed
below:

23



Chapter 2

E(Ñ) = σ2(Ñ) = n

γ(Ñ) =
1√
n

It is interesting to see that, for high values of the parameter n, the distribu-
tion is almost symmetric. The fact that the mean and the variance are equal is
a huge limitation, since in real insurance scenarios this assumption does not
hold. In fact, its coefficient of variation is equal to:

CV (Ñ) =
1√
n

which tends to zero too as the portfolio increases in size. One could think
that this type of relation is understandable, since it is true that, through the
contracts’ diversification, the insurer is able to reduce the risks in relative terms.
But, it is also true that a perfect diversification is not realistic.

To overcome this issue, one possible solution is the use of a Negative
Binomial, which can be expressed as a Poisson(nQ̃), where Q̃ is distributed as
a Gamma(h, h). This feature is described more in detail in the next paragraphs.

Gamma Distribution The Gamma distribution is a continuous and positive-
only distribution with two parameters (α, β). α is the shape parameter and
β the rate parameter. A random variable Q̃ ∼ Gamma(α, β) has its density
function defined as:

fQ̃(q) =
βαqα−1

Γ(α)
e−βq

with
q, α, β > 0 Γ(α) =

∫ ∞
0

tα−1e−tdt

In statistics the Gamma distribution is used to describe the time required
for α events to occur in a Poisson(β) process. In the actuarial context it can
be used to model the single claim random variable Z̃ for light positive skewed
data, like non-catastrophe claims.

The main results are:
E(Q̃) =

α

β

σ2(Q̃) =
α

β2
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Figure 2.4: Gamma(3, 0.001) density function

γ(Q̃) =
2√
α
.

Hence, the Gamma distribution is always positive skewed.

Negative Binomial Distribution The negative binomial is a discrete and
positive only distribution used to model the claims number Ñ random variable
in the actuarial literature. A huge emphasis is given to this distribution since,
compared to the Poisson, we are able to reject the assumption for which mean
and variance of Ñ are equal.

A negative binomial random variable Ñ ∼ NB(k, p) is characterized by the
following probability mass function:

P (Ñ = n) =

(
n+ k − 1

n

)
pk(1− p)n. (2.1)

Its main moments are
E(Ñ) = k

(1− p)
p

σ2(Ñ) = k
1− p
p2

γ(Q̃) =
2− p√
k(1− p)

Another interesting formulation for our purposes is the one that connects a
particular Poisson to the Negative Binomial one: given Ñ ∼ Poisson(n · Q̃)
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Figure 2.5: NB(12, 0.004) density function

with Q̃ ∼ Gamma(α, β), the claims count random variable can be expressed as

Ñ ∼ NB(α,
β

β + n
). (2.2)

Since the presence of Q̃ is justified in order to add variability to the Poisson
without affecting the mean, its parameters are both equal to a number h such
that Q̃ ∼ Gamma(h, h) has

E(Q̃) =
h

h
= 1

σ2(Q̃) =
h

h2
=

1

h

γ(Q̃) =
2√
h
.

Therefore, we are in front of

Ñ ∼ NB(h,
h

h+ n
) = NB(h, p). (2.3)

with the following moments:

E(Ñ) = h
(1− p)
p

= h
1− h

h+n
h

h+n

= h
n

h
= n
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σ2(Ñ) = h
1− p
p2

=
n(h+ n)

h
= n+

n2

h
= n+ n2σ2

Q̃

γ(Q̃) =
2− p√
h(1− p)

=
2n+ h√
nh(h+ n)

.

This bridge between these two formulations enables the opportunity to
perform useful insights and comparisons in terms of variability.

The Negative Binomial isn’t the only solution in order to add variability to
the pure Poisson case. For example, in case Q̃ ∼ Exponential, it is possible to
express Ñ ∼ Geometric. These alternatives won’t be explored in the thesis,
but it’s worth noticing the reader of other ways to model Ñ .

2.2 Dependence measures

The main dependence measures between couples of variables are the Pearson
correlation, Kendall’s Tau and Spearman correlation.

Linear (Pearson) correlation coefficient It is a measure of the strength
of a linear association between two variables X and Y , such that:

ρ(X, Y ) =
COV (X, Y )√
σ2(X)σ2(Y )

∈ [−1, 1]

where σ2(X) and σ2(Y ) are the variances of X and Y , which must be finite,
and it is not always satisfied when dealing with heavy tailed distributions.

The Pearson correlation coefficient is the very popular in statistics, but
its linearity is a huge pitfall in the actuarial context: generally only extreme
events present a strong dependence. Assuming a linear correlation measure
would underestimate the correlation between the tails of the distributions,
and it would overestimate the one between common events. Therefore, since
capital requirement measures rely on the estimation of extreme quantiles, the
passage from a linear to a non-linear dependence structure would increase in a
significant way the estimated risk on the shoulders of the insurance company.

Kendall’s Tau It is a rank correlation measure that measures the concor-
dance between couples of elements (Xi, Yi) and (Xj, Yj) (with i < j) from a
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bivariate population. Given a sample n of (X, Y ), Kendall ’s tau estimator is:

τ̂k =

(
n

2

)−1∑
i<j

sign((xi − yi)(xj − yj)) ∈ [−1, 1]

In case τ = 1, there is a perfect agreement between X and Y , and the
rankings are exactly the same. On the opposite, in case τ = −1, the two
random variables are ordered in the opposite way.

Spearman correlation coefficient It measures the strength and direction
of association between two ranked variables. It assumes high values if the ranks
of the two variable are similar, and it can be seen as the linear correlation
coefficient between ranks. Considering an n number of observations, rxi and ryi
the ranks of X and Y , r̄x and r̄y the mean rank, an estimator of Spearman’s
rho is given by:

ρ̂s =

∑
i=1,...,n(rxi − r̄x)(ryi − r̄y)√∑

i=1,...,n(rxi − r̄x)2
∑

i=1,...,n(ryi − r̄y)2

2.3 Copula functions

The Copula functions are one of the most popular tools to aggregate different
random variables with an underlying non-linear dependence.

A d-dimensional Copula C : [0, 1]d → [0, 1] is a multivariate cumulative
distribution function with uniform marginals (Ui ∈ [0, 1]):

C(u1, ..., ud) = P(Ũ1 ≤ u1, Ũ2 ≤ u2, ..., Ũd ≤ un)

Sklar theorem (1959) shows that if F is a d-dimensional distribution function
with marginals F1, ..., Fd, there exists a Copula C such that:

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd))

and so:

C(u1, u2, ..., ud) = P(X̃1 ≤ F−11 (u1), X̃2 ≤ F−12 (u2), ..., X̃d ≤ F−1d (ud))
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The joint density assumes the following form:

f(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) ·
d∏
i=1

fi(xi)

and the conditional density is equal to

f(x1|x2, . . . , xd) = C(F1(x1), . . . , Fd(xd)) ·
d∏
i=2

fi(xi)

The main Copula classes that will be considered are Archimedean and
Elliptical.

2.3.1 Elliptic Copulas

The elliptical Copulas are based on elliptic distributions and share a link with
the linear correlation coefficient. A huge advantage of these copulas is the
possibility to specify different linear correlation index between the marginals
involved in the copula aggregation.

Gaussian Copula It corresponds to a multivariate gaussian distribution
with a matrix linear correlation matrix R ∈ [−1, 1]dxd. It holds if the univariate
marginals are gaussian and the relation between them is described by an unique
Copula function such that:

CNormal
R (u1, ..., ud) =

1

|R| 12
exp
{
−1

2
ST (R−1 − I)S

}
with Sj = Φ−1(uj), φ−1 the inverse of the CDF of the standard Normal, N(0, 1),
I the identity matrix of size d.

The reason of the popularity behind the Gaussian Copula in the insurance
context is its only input R. Since the aggregation of risks in Solvency II is based
upon correlation matrices, this copula provides the easiest implementation for
an internal model. The other subtle reason is the fact that the use of this copula
usually implies an underestimation of the risk, and with that, a reduction in
the capital requirements of the company. In this way, companies are able to
appear less risky and more capitalised to the market.
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Figure 2.6: Bi-variate Gaussian copula with ρ=0.25 (left) and ρ = 0.75 (right)

Student’s T It is the Copula associated with the multivariate Student-t
distribution and has a matrix as a parameter too, its PDF is:

CStudent
R,v (u1, ..., ud) =

1

|R| 12
·

Γ(v+d
2

)

Γ(v
2
)
·

(
Γ(v

2
)

Γ(v+1
2

)

)d

·
(1 + 1

v
STR−1S)

v+d
2∏d

i=1(1 +
S2
i

v
)
v+1
2

where Si = T−1v (ui)T
−1
v is the inverse of the CDF of the univariate Student-t

distribution with v degrees of freedom. The v degrees of freedom and the
matrix parameter have a huge impact on the heaviness of the tails.

Recalling the moral hazard of companies, this copula has the same advantage
of the Gaussian one, but depends also on v that shapes the estimated risk
situation. The choice of v clearly has a significant impact, and it is easier for
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Figure 2.7: Bi-variate T-Student copula with ρ=0.5 and v = 1 (left) and v = 8 (right)

the insurer to prefer the Gaussian copula, which requires less inputs.

2.3.2 Archimedean Copula

Archimedean copulas are popular for being easy to build and for specifying
interesting non-linear correlation structures. A huge pitfall is that they are used
almost in bi-variate cases, since all the marginals involved in the Archimedean
copula are dependent with the same strength. For this reason this type of
copulas are called bi-variate copulas. But, this limitation has been solved
through the implementation of the so-called Vine Copula aggregation. Let us
investigate the Gumbel and Clayton copulas, which are very used in practice.

31



Chapter 2

Gumbel Copula Often useful for catastrophe risks, it is defined as:

C(u, v) = exp{−[(−lnu)θ + (−lnv)θ]1/θ}

where θ ∈ [1,∞) and the Generator of the Copula is given by: φθ(t) = (−lnt)θ

Figure 2.8: Bi-variate Gumbel copula with θ = 1.5 (left) and θ = 3 (right)

The shape of this copula underlies a particular correlation between both
the left and right tails of the random variables: it is more probable to observe
both the random variables performing well or bad at the same time. It makes
sense if we think about it in the catastrophe context: there are years where
there aren’t notable natural catastrophes around the world, and so, insurance
covers against this kind of risk will return a profit. Instead, in other years we
observe many significant catastrophes and many covers will suffer a huge loss.
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Clayton Copula The Clayton Copula (1978) CDF is defined as:

C(u, v) = max{[u−θ + v−θ − 1]−1/θ, 0}

where θ ∈ [−1, 0)∪ (0,∞) and the generator of the Copula is given by: φθ(t) =
1

θ
(t−θ − 1)

Figure 2.9: Bi-variate Clayton copula with θ = 0.5 (left) and θ = 1.5 (right)

This copula describes a stronger dependence between the left tails of the
distributions. So, in case we are considering as random variables the profit of
two lines of business, it is more probable to see both performing bad. This
point is crucial: when we consider as random variables the claim amounts of
two lines, the Clayton copula is not suitable since we would expect a correlation
between the right tails. The solution is to use the so-called Mirror Clayton,
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obtained easily as the survival function of a Clayton copula:

Cmirror(u, v) = 1− C(u, v)

Let’s see how a Clayton Copula is generated in a simple bi-variate example:

1. two independent uniform realizations u1, v2 are sampled;

2. in the case of a Clayton copula, the correlated marginal is computed as
u2 = [u−θ1 (v

−θ/1+θ
2 − 1) + 1]−1/θ;

3. the couple (u1, u2) is treated as the cumulative probabilities of the
marginal random variables (X̃1, X̃2). Therefore, we compute the corre-
sponding quantiles through the inverse operations F−1

X̃1
(u1) and F−1

X̃2
(u2);

4. the aggregate result is given by the sum F−1
X̃1

(u1) + F−1
X̃2

(u2).

Thanks to already built packages in many programming software (like R),
it is possible to draw multivariate samples from the chosen copula, and so, the
user is not obliged to know the formula specified at point 2. It is important to
note that we need to know the CDF (FX̃1

, FX̃2
, . . . ) of our marginals to have a

result expressed in monetary amounts (found in points 3 and 4). In case of a
frequency-severity approach, (FÑ , FZ̃) are estimated, but there isn’t a way to
obtain the resulting exact distribution of the aggregate claim amount FX̃ for
each line of business. The main approaches used to estimate it will be discussed
in the next chapter.

2.3.3 Vine Copula

Vine copulas are able to build flexible dependency structures using bi-variate
copulas. The copula aggregation is divided in blocks of bi-variate aggregations,
in such a way that each block can be characterized with different choice of copula
and parameters. Of course, as the dimension of the copula increases, the number
of parameters involved increases too, which could lead to overfitting issues and
long computational times. The order of aggregation is a very discussed topic
in literature because the outcome strongly depends on it. There are several
techniques to select the best order, like the Traveling Salesman Problem, the
Maximum Spanning Tree and Bayesian approaches.
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f(X1, . . . , Xd) =
d−1∏
j=1

d−j∏
i=1

c∗i,(i+j) ·
d∏

k=1

fk(Xk)

where

c∗i,(i+j) = Ci,(i+j)|(i+1),...,(i+j−1)(Fi(Xi|Xi+1, . . . , Xi+j−1), Fi+j(Xi+j|Xi+1, . . . , Xi+j−1)).

In a 3 dimensional case we have that one of the possible order of aggregation
can be decomposed as follows:

f(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)·

C12(F1(x1), F2(x2)) · C23(F2(x2), F3(x3))·

C13|2(F1|2(x1|x2), F3|2(x3|x2)) (2.4)

where the first row contains the marginals, the second the unconditional pairs
and the third the conditional pair.

The decomposition present in c∗i,(i+j) is not unique and it depends on the
order of aggregation. Bedford and Cooke [3] introduced a graphical vine
structure to visualize the order of pair copula. Vines organize the d(d− 1)/2

bi-variate copulas of a d−dimensional Pair-Copula Construction (PCC) in
d− 1 trees.

The most general vine is the Regular one, called R− vine.
V = (T1, . . . , Tn−1) is an R-vine of n elements if:

1. T1 is a tree with nodes N1 = {1, . . . , n} and a set of edges E1;

2. for i = 2, . . . , n− 1, Ti is a tree with nodes Ni = Ei−1 and edge Ei;

3. for i = 2, . . . , n− 1 and {a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2} it
must hold that the cardinality of (a ∩ b) = 1 (proximity condition).

To better understand how a Vine Copula can be structured, a 5-dimensional
example is provided, showing one of the possible configurations. Starting from
the tree T1, the aggregation develops as follows:

T1
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1

2

3 4

5

T2

1,2 1,3

1,5

3,4

T3

2,3|1 1,4|3 3,5|1

T4

2,4|1,3 4,5|1,3

Two types of R-vines are described in literature:

• Canonical (C-Vine);

• Drawable (D-Vine).

C-Vines The C-vines are characterized by a unique node that is connected
to all the others. The structure is star-shaped and in a 4-dimensional example
we have:

T1
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1

2 3

4

T2

1,2 1,4

1,3

T3

2,3|1 2,4|1

Note that, given the starting configuration of T1, there isn’t a unique way
in which the following trees can be structured. In fact, in T2, also the nodes
(1, 3) or (1, 4) could have been the central ones. While, given T2, T3 is the only
combination left. Therefore, in a general d-dimensional case, given T1, there
are 1

2
(d− 1)! number of possible C-vines combinations.

Note that the 3-dimensional case treated with equation (2.4) can be struc-
tured as a C-vine where x2 is the central node connected to both x1 and x3.
This scenario connects easily with the D-vines.

D-vines The D-vines are characterized by a linear structure. Unlike the
C-vine, once T1 is chosen, the following trees are uniquely defined. In fact, by
setting the starting sequence of nodes, there is only one way to aggregate.

A 4-dimensional case is provided:

T1

1 2 3 4
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T2

1,2 2,3 3,4

T3

1,3|2 2,4|3

In the 3-dimensional case treated with equation (2.4) the starting tree is
a path composed sequentially by x1, x2, x3. Trivially, in a 3-dimensional case,
there is no difference between a C-vine and D-vine.
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Methods to compute the
Aggregate loss distribution

Now that distributions have been explained in the previous chapter, a brief
review of methods to compute the aggregate loss distribution X̃ is presented.
Many alternatives are available, where each one has its pro and cons.

First of all, X̃ will be estimated in the collective risk model framework, and,
as mentioned in equation (1.5):

X̃ =
Ñ∑
i=1

Z̃i.

There are two important assumptions underlying this model, used both in
practice and literature:

1. Z̃i are independent and identical distributed;

2. Z̃ and Ñ are independent.

The first assumption tells us that all the claims are originated from very
similar contracts, in terms of risk covered and contract’s limitations. In practice
the insurer portfolio, even when referring to a single line of business, is composed
by a wide variety of contracts, due to different deductibles, limits and risk
exposure involved. Usually, one of the solution is to apply clustering techniques
to obtain smaller groups of contracts which are homogeneous. In this thesis
the argumentation will follow the first assumption.
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The second assumption is very important in the calculation and modelling
procedure: by assuming independence between frequency and severity, we are
able to easily compute X̃’s simulations and distributions with the approaches
in the following sections.

The mean and the variance of X̃ can be calculated through exact formulas
as follows:

E(X̃) = E(Ñ)E(Z̃)

σ2(X̃) = E(Ñ)σ2(Z̃) + σ2(Ñ)E(Z̃)2 (3.1)

Note that no assumptions on Ñ and Z̃ distributions is made.

If Ñ ∼ Poisson(n), the variance and the skewness index are equal to:

σ2(X̃) = nE(Z̃2)

γ(X̃) =
nE(Z̃3)

σ3(X̃)
=

E(Z̃3)

n1/2E(Z̃2)3/2
. (3.2)

In case we assume that Ñ ∼ Poisson(n · Q̃) the variance and the skewness
index can be calculated as:

σ2(X̃) = nE(Z̃2) + n2E(Z̃)2σ2(Q̃)

γ(X̃) =
nE(Z̃3) + 3n2E(Z̃)E(Z̃2)σ2(Q̃) + n3E(Z̃3)γ(Q̃)σ3(Q̃)

σ3(X̃)
. (3.3)

By setting the variance σ2(Q̃) and the skewness γ(Q̃) equal to zero, the
results are referred to the case of a pure Poisson(n).

The coefficient of variation CV (X̃) is equal to:

CV (X̃) =
σ(X̃)

E(X̃)
=

√
nE(Z̃2) + n2E(Z̃)2σ2(Q̃)

nE(Z̃)
(3.4)

In these formulas lies a fundamental concept regarding the difference between
assuming a pure Poisson or a Negative Binomial. The portfolio diversification
(an high value of the expected number of claims n) produces asymptotically
interesting results when we look to the relative indexes like CV (X̃) and γ(X̃):
with n→∞
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Poisson(·) n nQ̃

CV 0 σ(Q̃)

γ(X̃) 0 γ(Q̃)

Therefore, a big size insurance company could possibly diversify totally
its risk under the pure Poisson assumption. While, in the other case, no
matter the size of the portfolio, a non-diversified component will always remain.
The resulting distribution of X̃ is clearly more risky in case the frequency is
distributed according to a Negative Binomial.

3.1 Distribution fitting based on moments

The most straightforward method is to estimate directly the distribution of X̃
using the moments of Ñ and Z̃.

The simplest approach is to set possible distribution candidates for X̃ and
fitting the parameters for each in such way that the fitted moments are equal
to the ones described in the previous formulas.

Another solution is to use approximation formulas like the Normal Power
and Wilson-Hilferty. Those are based on transformation of Normal distribution
in such a way that the resulting distribution assumes the desired characteristics.

Normal Power The Normal Power formula is the following:

FX̃(x) ≈ Normal

(
− 3

γ(X̃)
+

√
9

γ2(X̃)
+ 1 +

6

γ(X̃
·
(
x− E(X̃)

σ(X̃)

))

based upon the assumption that the normalized realization can be approxi-
mated by a standard normal y such that

x− E(X̃)

σ(X̃)
≈ y +

1

6
γX̃(y2 − 1) if x > E(X̃).

This formula usually provides a good proxy in case γ(X̃) < 1, therefore, it
is not suitable to model heavy tail risks. The other problem is that Normal
Power can be used only for values greater than the mean.
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Wilson-Hilferty An alternative approximation, valid also for the left tail, is
the Wilson-Hilferty that determines the cumulative density function as

FX̃(x) ≈ Normal

((
γ(X̃)

6
− 6

γ(X̃)

)
+3

(
2

γ(X̃)

)2/3

·
(
x− E(X̃)

σ(X̃
+

2

γ(X̃)

)1/3
)
.

Usually this approximation returns better results compared to the Normal
Power. But, also in this case, as γ(X̃) increases, the formula loses the ability
to approximate adequately the distribution.

The version presented in this thesis are based only on the first three cumu-
lants (mean, variance and skewness)

3.2 Monte Carlo simulations

Known to be the most used method in practice and literature, Monte Carlo
simulations provide solid results with an easy implementation. The outcome of
this methodology is a simulated distribution of X̃, which approximates with
increasing accuracy the exact one as the number of simulations increases. It
is important to find an adequate balance between accuracy of the simulations
and the algorithm’s time demand. The steps to simulate X̃ distribution are
the following:

1. for the single simulation a value n is sampled from the distribution of Ñ ;

2. n realisations are sampled from the distribution of Z̃;

3. obtain X̃ =
∑n

i=1 Z̃i;

4. repeat the first three steps for the number of simulations desired;

A realistic estimation of Ñ and Z̃ is crucial in order to avoid biased results.
If this step is not performed correctly even a high number of simulations
will lead to misunderstand the real underlying risk, to which the company is
exposed.

An important reminder when using Monte Carlo simulation is to compare the
moments of simulated data with the exact one calculated through formulas (3.1).
In this way the user is able to verify quickly the accuracy of the simulations. An
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particular emphasis should be given to the skewness index γ, which ,in case Z̃ is
very skewed, requires a huge number of simulations to converge to the exact one.
An underestimation of γ usually means that the extreme events, the so-called
tail of the distribution, are not represented properly by the simulations. A
common shortcoming of simulation methodologies is that every run will return
a different result, and for this reason it may be dangerous to blindly give full
credibility to such results. Despite these problems, Monte Carlo simulations
are able to model the most difficult insurance and reinsurance scenarios.

It is worthy to acknowledge that the model proposed in this section may
be too much time consuming to deal with reinsurance treaties. In fact, every
time a new excess of loss treaty is tested, the whole model should re-run to cut
properly the single claims Z̃i.

An advanced extension of Monte Carlo simulations is described in detail
later in the thesis. Building the proper simulation environment is the stepping
stone to investigate reinsurance.

3.3 Panjer Algorithm

The Panjer algorithm is based on a recursive relationship between Ñ and
Z̃, where both are discrete random variables. The algorithm requires the
frequency to be modelled with a distribution that belongs to the (a,b,0) class
of distributors, which satisfy the following recursive property:

P (Ñ = n) = (a+
b

n
)P (Ñ = n− 1).

There are only three distributions in that class:

• Binomial(n,p), with a = −p
1−p and b = p(n+1)

1−p ;

• Poisson(λ) with a = 0 and b = λ;

• Negative Binomial(k,p) with a = (1− p) and b = (1− p)(k − 1).

Since Z̃ is usually modelled with a continuous distribution, its density
function should be discretised in such a way that its discrete realisations are
multiples of the so-called span h.
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The Panjer algorithm defines the probability mass function of X̃ as:

P (X̃ = x) =
1

1− aP (Z̃ = 0)

x∑
z=1

(a+
b · z
x

)P (Z̃ = z)P (X̃ = x− z) (3.5)

with the starting condition

P (X̃ = 0) = P (Ñ = 0).

and, because of the discrete Z̃, the domain of x = j · h, where j ∈ N

The dimension of h impacts on both the accuracy and the time required
by the algorithm: a tiny h would produce a discrete Z̃ with a small loss of
information, but the algorithm will require more time to run. The strength
of the algorithm is the ability to determine with accuracy the tail of the
distribution of X̃. Imagine using a span of 1000 euro to discretize Z̃: for low
values of Z it may appear a rough approximation, but for extreme claim events
the loss of information is almost nothing.

But, the algorithm can presents a numerical problem: in case P (Ñ = 0)

is so small that the computer can only represent it with a zero, the whole
calculation fails. This scenario, called numerical underflow, happens when
dealing with frequency component characterized by a high mean. It has been
found by Kaas et al. [18] that a Poisson(n) with n ∼ 727 generates underflow.
In the case of Ñ ∼ Poisson(n), the solution is to perform the recursion by
using Poisson( n

2s
) and applying convolutions s times on X̃. Instead, in case of

a negative binomial NB(k, p), the shrinking should be applied only to the size
parameter k. The use of convolutions increases the computational times.

Due to these reason, the Panjer algorithm’s application is often preferred to
study the risk transferred with a non-proportional treaty. In fact, this type of
contracts affects only the tail of the distribution of Z̃ and the expected number
of large claims is usually very low (less than 727). Furthermore, the user can set
a high value of h to cut computational times without losing much information.

Obviously the algorithm is hard to be applied in practice directly by the
reinsurer since usually only the insurer has the whole info to model in detail
the risk. In fact, without a proper estimation of Ñ and Z̃ the algorithm is not
suitable.
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Later on, it will be shown how the algorithm, compared to Monte Carlo
simulations, is able to cut computational times from hours to seconds even when
dealing with the risk of the direct insurer. Panjer algorithm provides a faster
and more precise alternative in risk modelling under certain circumstances.
The cons, with respect to Monte Carlo simulations, are the more difficult
implementation and the less flexibility when dealing with the presence of non-
proportional reinsurance with Aggregate Deductibles, Aggregate Limits and
reinstatements.
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SCR in Solvency II and Risk
Theory

Solvency II is a regulatory standard for European insurance and reinsurance
companies that went live on 1 January 2016. Its aim is to establish capital
requirements and risk management standards that properly describe the risk
faced. The purpose of this chapter is to present briefly the main features of
Solvency II that will be treated in the thesis. Describing the whole regulation
is avoided in order to obtain a more focused discourse.

The framework is composed by three main areas, called pillars :

• Pillar 1 defines the quantitative capital requirements (the amount of
financial resources needed by the (re)insurer to be considered solvent)
and the market-consistent valuation of assets and liabilities;

• Pillar 2 describes the qualitative supervisory review process, where the
regulators incentive the companies to perform a better internal control
and risk management;

• Pillar 3 introduces public disclosures requirements, which oblige companies
to publish annually a report on financial and solvency situation.

Regarding Pillar 1, Solvency II introduced two capital requirements indica-
tors, called respectively Solvency Capital Requirement (SCR) and Minimum
Capital Requirement MCR. The company’s own capital has to be greater than
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these two measures. The MCR is characterized by the following floor and cap:

25%SCR ≤MCR ≤ 45%SCR

In case the amount of resources fall below the SCR, a regulatory intervention
would be triggered, while, in case of a breach of the MCR, the company would
be declared insolvent and unable to continue its business.

The so-called Standard Formula (SF) of Solvency II for SCR calculation
is based on the Value-at-Risk with level of confidence 99.5% (VaR 99.5%)
with one-year time horizon. If an insurance company’s own funds are equal to
the SCR, the default occurs on average once every 200 years. From another
perspective, every year on average 1 over 200 insurers bankrupts. Of course, in
practice defaults are rarer to occur since companies’ own capital is much higher
then the SCR. And, as mentioned before, recovery plans must be applied in
case of infringement of the SCR.

Other than the standard formula, companies have the opportunity to
develop an internal VaR 99.5% calculation method, which must be approved
and validated by the supervisory authorities. There are three possibilities:

• Undertaking Specific Parameters (USP), where the company computes
its own parameters and substitutes the one provided by the Standard
Formula. The reason why the USP is made is because the parameters of
the SF may not be well representative of the risk profile of the company.
This procedure is not difficult to be approved since it doesn’t modify the
structure provided by the regulation;

• Internal Model (IM), where the company builds from scratch a calculation
procedure to determine its own capital requirements. The methodologies
involved may be very technical, and the approval from the supervisor
may take time due to the significant changes. The insurer is required
to demonstrate that the internal model plays a fundamental role in the
decision-making processes;

• Partial Internal Model, where the company uses an IM only for some risk
modules, and uses SF or USP for the remaining part.

The need of a rigorous process of validation and approval by the supervisor is

47



Chapter 4

driven by the fact that every company’s attempt is to reduce its own capital
requirement via application of USP or IM. In fact, the calibration of the SF’s
formulas advantages small size insurers and penalizes large insurers. Hence,
anti-selection occurs and the permission to apply the USP or IM is requested
by only those who receive a benefit from them. In particular, small insurance
companies are usually characterized by a low diversification benefit of the
portfolio and by a high relative variability of the losses, and the SF’s volatility
parameters may underestimate their riskiness.

4.1 Valuation of Assets and Liabilities

According to Article 75 and 76 of Solvency II Directive, assets and liabilities
shall be valued at fair value. The choice behind the use of the fair value
approach is to limit subjectivity. In particular:

• assets should be valued at the amount for which they could be exchanged
between knowledgeable willing parties in an arm’s length transaction;

• liabilities should be valued at the amount for which they could be trans-
ferred, or settled, between knowledgeable willing parties in an arm’s
length transaction.

In the insurance context, the most important liabilities are technical provi-
sions, which represent the current amount insurance and reinsurance undertak-
ings would have to pay if they were to transfer their insurance and reinsurance
obligations immediately to another insurance or reinsurance undertaking.

The technical provisions (TP) shall be calculated in a prudent and reliable
manner as it follows:

TP = BE +RM (4.1)

where, according to Article 77 of the directive:

• BE = Best Estimate, which shall be equal to expected present value of
future cash flows, using the relevant risk free interest rate term structure to
discount published monthly by EIOPA. The BE shall be calculated using
credible information and realistic assumptions, taking account of all the
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cash in-flows and out-flows required to settle the insurance and reinsurance
obligations. In formula, given the expected value of future cash flows
F1, F2, . . . , FT and the interest spot rates r(0, 1), r(0, 2), . . . , r(0, T ), we
have:

BE =
T∑
t=1

E(Ft)

(1 + r(0, t))t
(4.2)

with r(0, t) = 1 + i(0, t) + adj, where i is the risk free interest rate and
adj is an adjustment, usually applied to mitigate the effects of short term
market volatility.

• RM = Risk Margin, which is a buffer needed to ensure that the value of
technical provisions is equal to the amount that insurance and reinsurance
undertakings would be expected to require in order to take over and meet
the insurance and reinsurance obligations. RM is computed using the
cost of capital approach, that consists in the determination of the cost of
providing an amount of eligible own funds equal to the SCR necessary
to support the insurance and reinsurance obligations over the lifetime
thereof. The RM formula involves the present value of the projection of
the SCR until liabilities’ run-off, such that:

RM = CoC ·
T∑
t=0

SCRt

(1 + i(0, t+ 1))t+1
(4.3)

where CoC is the Cost of Capital rate, fixed at 6% by EIOPA, i(0, t+ 1)

is the risk free interest spot rate and the SCR is referred only to 4 risks:
underwriting, default, operational and material market risk.

An useful key indicator in Solvency II is the so-called Solvency Ratio (SR),
given by:

SR =
EOF

SCR
(4.4)

where EOF denotes the Eligible Own Funds, which are the amount of own
capital used to cover the SCR. The EOF includes only the Own funds that
satisfy a specific mechanism of tiers. The steps are represented briefly in Figure
(4.1). To simplify the computations, usually in risk theory the numerator of
equation (4.4) is set equal to the Excess of Assets over Liabilities.
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Figure 4.1

4.2 SCR Calculation

On the thesis’ computational side, the SCR will be calculated according to
three different approaches:

1. a SF approach using the risk structure and the parameters provided by
the directive;

2. a Quasi-USP approach using the risk structure provided by the directive
and ad-hoc parameters based on the characteristics of the insurer;

3. an IM approach, where the risk is adequately computed using risk theory
methodologies calibrated on the characteristics of the insurer. This model
refers partially to some Standard Formula’s assumptions to keep some
consistency with the previously described approaches.

Hence, the aim of the following sections is to describe all the elements needed
to fully understand the SCR computation under the Solvency II framework.

4.2.1 SCR in Solvency II

Coming back to the definition of SCR, it takes into account all quantifiable
risks. According to the first Pillar of Solvency II, the calculation of the SCR
is divided into the modules of Figure 4.2, which are then aggregated using
correlation matrices provided by the directive.
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Figure 4.2

The SCR is determined as:

SCR = BSCR + Adj + SCRop (4.5)

where

• BSCR = Basic Solvency Capital Requirement given by the combination
of the six risk modules (market, health, default, life, non-life and intangible
assets) present in the level below;

• SCRop = Solvency Capital Requirement for operational risk;

• Adj = Adjustment for the risk absorbing effect of technical provisions
and deferred taxes.
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In this step of the calculation, no diversification benefit is present by
summing the three components. Instead, for the BSCR calculation, the directive
provides correlation matrices in the standard formula and the insurer is able to
diversify the individual capital requirements belonging to the six risk modules
that compose the BSCR. The formula is the following:

BSCR =

√∑
ij

ρij · SCRi · SCRj + SCRintangible (4.6)

where

• i and j are respectively the index of rows and columns of the correlation
matrix presented in Figure (4.3);

• ρij is the correlation between the risk i and j;

• SCRi, SCRj are the capital requirements of the risk i and j;

• SCRintangible is the capital requirement for intangible asset risk.

Figure 4.3

In this thesis the main module considered is the Non-life, in particular the
premium risk sub-module. Hence, the following paragraphs will be focused
mainly on the topics of interest contained in this module.
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SCR Non-Life Underwriting Risk

The Non-life underwriting risk represents the risk coming from non-life insurance
contracts, belonging to both already existing business and new ones expected
to be written in the next 12 months.

As shown in Figure 4.2, the solvency capital requirement for Non-life
underwriting risk,denoted with SCRNL, is composed by 3 SCR:

• non-life premium and reserve NLpr;

• non-life lapse NLlapse, given by possible incorrect assumptions regarding
lapse and renewal options of non-life insurance contracts;

• non-life catastrophe NLCAT , due to the possible loss arising from insuffi-
cient pricing and reserving assumptions related to extreme events.

These three sub-modules’ SCR are aggregated as following:

SCRNL =

√∑
ij

CorrNLij ·NLi ·NLj (4.7)

using the correlation matrix depicted in Figure 4.4.

Figure 4.4

The sub-module that assumes a particular interest in the thesis is the
non-life premium risk module.

Standard Formula Non-Life Premium and Reserve Risk The calcula-
tion of the SCRpr for this risk is based on the concept of standard deviation,
which is defined as the multiplication between a volume V and a volatility factor
σ. The volatility factor should be seen as a coefficient of variation, and not
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as a standard deviation itself. This reasoning is implemented in the Standard
Formula as

SCRpr = 3 · σnl · Vnl. (4.8)

The choice to use a multiplier equal to 3 is connected to the definition of
Value-at-Risk: 3 ·σ(X) approximates the distance between the quantile at level
99.5 and the mean of the distribution. As mentioned before, 2.58 is used in
case of Normal distributed random variables. Therefore, the Standard Formula
assumes that premium and reserve risk is positively skewed.

Both Vnl and σnl are computed as the aggregation of premium and reserve
volumes and volatility factors of 12 segments listed in Figure (4.5). The
structure is the following:

Vnl =
12∑
s=1

Vs =
12∑
s=1

(Vprem + Vres)

σnl =
1

Vnl
·
√∑

s,t

CorrSs,t · σs · Vs · σt · Vt (4.9)

Figure 4.5
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The inputs required for the calculation of the volumes Vs of each segment s
are:

• PCOs is the Best estimate for claims outstanding net of recoverables
from reinsurance contracts and special purpose vehicles;

• Ps is the estimate of premiums to be earned by the undertaking during
the following 12 months;

• Plast,s is the earned premiums by the undertaking during the last 12
months;

• FPexisting,s is the expected present value of premiums to be earned by
the undertaking after the next 12 months for already existing contracts;

• FPfuture,s is the expected present value of premiums to be earned by
the undertaking for contracts that will be recognized in the following
12 months. Only the premiums earned after 12 months from the initial
recognition are considered.

The volume Vs is equal to the sum between the premium volume Vprem,s
and the reserve volume Vres,s, considering the geographical diversification DIVs
as

Vs = (Vprem,s + Vres,s) · (0.75 + 0.25 ·DIVs)

where

Vprem,s = max(Ps;Plast,s) + FPexisting,s + FPfuture,s

Vres,s = PCOs

DIVs =

∑
j(Vprem,j,s + Vres,j,s)

2∑
j(Vprem,s + Vres,s)2

where j denotes the geographical segments and (Vprem,j,s; Vres,j,s) the volumes
related only to the obligations situated in the geographical segment j.

DIVs is set to 1 for segments 6, 10, 11, 12. In case all the risks belong to
the same area, DIVs is trivially equal to 1 and Vs is equal to the simple sum
between Vprem,s and Vres,s.
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The volatility factor σs of the individual segment s is defined through the
aggregation of premium σprem,s and reserve σres,s:

σs =

√
(σprem,sVprem,s)2 + σprem,sσres,sVprem,sVres,s + (σres,sVres,s)2

Vprem,s + Vres,s
.

This formula can be seen as a risk aggregation with an underlying correlation
between premium and reserve risk equal to 0.5.

In Table (4.1) the values of Standard Formula’s σs are represented for each
segment s that compose the non-life underwriting risk. The NPlob factors are
applied to σprem of segments 1,4 and 5 to consider the risk-mitigating effect of
per risk excess of loss reinsurance in force for those segments. NPlob = 80% in
case the aforementioned reinsurance is present, 100% otherwise.

Note that a fixed 80% is a simplification that doesn’t take in account the
real amount of risk mitigation that the insurer benefits from the reinsurance
contract. In fact, under particular distributional assumptions of the severity
and frequency component, the actual reduction is very limited and the NP
factor overestimates the risk reduction. For example, choosing a Negative
Binomial for the frequency component strongly limits the mitigation benefit of
reinsurance.

An insurance undertaking through the USP can propose to the supervisor
its own σUSPprem,s and σUSPres,s for each segment calibrated ad-hoc on its portfolio.
According to how many years of historical experience its business has, the
resulting volatility factor used calculation is computed as a weighted average
between the Standard Formula’s one and the proposed one. Other than that,
the structure provided by the Standard Formula shall remain the same when
using USP.

Instead, in case proportional reinsurance like Quota Share is present, the
volume Vs decreases to α ·Vs, where α is the Quota Share’s retention coefficient
of the undertaking. In this way, proportional reinsurance aim is to influence
the volumes, and the Non-proportional’s aim is to reduce the volatility factors.
These considerations are very practical and realistic due to the structure of
such contracts.
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Table 4.1: Non-life premium and risk sub-module’s segments and σ

Segment σpremium σreserve

1. Motor vehicle liability insurance
and proportional reinsurance

10% ·NPlob 9%

2. Other motor insurance
and proportional reinsurance

8% 8%

3. MAT insurance
and proportional reinsurance

15% 11%

4. Fire insurance
and proportional reinsurance

8% ·NPlob 10%

5. 3rd-party liability insurance insurance
and proportional reinsurance

14% ·NPlob 11%

6. Credit insurance
and proportional reinsurance

12% 19%

7. Legal expenses insurance
and proportional reinsurance

7% 12%

8. Assistance insurance
and proportional reinsurance

9% 20%

9. Miscellaneous insurance
and proportional reinsurance

13% 20%

10. Np reinsurance (casualty) 17% 20%

11. Np reinsurance (MAT) 17% 20%

12. Np reins (prop) 17% 20%
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4.2.2 SCR in Risk Theory

In this section the considerations are referred mainly to the premium risk with
reference to both actuarial literature and Standard Formula’s structure.

In risk theory’s literature the capital requirement calculation relies on
the estimate of the distribution’s quantiles, without the approximation 3σV

provided by the Standard Formula.
The SCR is computed following the definition Value-at-Risk at level of

confidence 99.5%:

SCR = quantile0.995(X̃)− E(X̃) = quantile0.995(X̃)− P (4.10)

where P is the pure premium.
Under this notation, the formula is comparable with equation (4.8) of Stan-

dard Formula. Many authors proved that the multiplier 3 overestimates the risk
for big size insurers, that have a more diversified portfolio, and underestimates
for small size insurers.

But, according to risk theory, equation (4.10) doesn’t represent properly the
capital requirement for the generic risk X̃. In fact, the insurer, before depleting
its own capital, uses to cover the losses both the pure premium P and the
safety loading λ · P . Hence, the SCR assumes another definition, denoted as
follows with SCRRT :

SCRRT = quantile99.5%(X̃)− P (1 + λ). (4.11)

Trivially, SCRRT > SCR in case of positive loadings (λ > 0).
The SCRRT formulation gives a better emphasis to reinsurance scenarios:

when buying reinsurance, the direct insurer reduces the quantile, the expected
loss and the safety loading. Of course, the insurer agrees to buy the cover only
if the capital requirement decreases with it, that it is almost always true in
practice, except for reinsurance contracts with excessive loading λre · Pre. To
this purpose, SCRRT is able to capture a possible incoherence, while equation
(4.10) isn’t and it will always be lower when net of reinsurance. Other than that,
using the SCR formula according to Solvency II to diagnose the risk-profit
situation of the company is a suitable choice if also a profit indicator, like
Return on Equity (ROE), is taken in consideration.
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The ROE between time t− 1 and t computed in t− 1 is defined as:

ROE(t− 1, t) =
E(returnt)

equityt
=
E(Ũt − Ut−1)

Ut−1
(4.12)

where U is the own funds of the insurer. Of course, the equity is not equal to
the own funds, even if they have a similar definition. The ROE considered
here will be considered as an indicator in the Solvency II framework.

The own funds Ũ at the end of time t are a random variable that can be
defined as:

Ũt = Ut−1 +Bt − X̃t − Et (4.13)

where
Bt = Pt(1 + λ) + c ·Bt

and it is assumed that the expenses are deterministic and equal to the expense
loading, such that Et = c ·Bt.

Note that the formula of Ũt is a simplification that doesn’t consider taxes,
dividends, return of investment and inflation.

Therefore, the equation (4.12) can be rewritten as

ROE(t− 1, t) =
E(Bt − X̃t − Et)

Ut−1
=
E(Pt(1 + λ)− X̃t)

Ut−1
=
λ · P
Ut−1

(4.14)

The capital requirement can be computed also using the quantiles of Ũ ,
since Ũ can be considered as a reversed and shifted X̃, which is the only random
variable. In fact, by setting Ut−1 = 0, the capital requirement of equation (4.10)
is obtained as the following value-at-risk:

SCR = −quantile0.5%(Ũt) + λ · P (4.15)

since
Ũt = Pt(1 + λ)− X̃t

and

SCR = quantile99.5%(X̃t)− Pt = −quantile0.5%(−X̃t)− Pt =

= −quantile0.5%(−X̃t)−Pt−λPt+λPt = −quantile0.5%(Pt(1+λ)−X̃t)+λPt.
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The quantile at level 0.5% of Ũt is the yearly loss (or negative profit) in own
capital observed on average 1 year every 200 years. It is noticeable in equation
(4.15) that, according to Solvency II’s logic, the expected profit λ · P is not
used to cover potential losses. In fact, in this formulation, the SCR is still
calculated as the difference between the quantile and the mean of X̃, since
E(Ũt = λP ) and quantile0.5%(Ũt) measures the distance between the quantile
and zero.

It is easily possible to obtain a risk theory SCRRT of equation (4.11) as

SCR = −quantile0.5%(Ũt). (4.16)

In this case, in presence of a loss X̃t > Pt(1 + λ), before decreasing the own
funds, the loading λ · P is depleted.
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Pricing and optimization
principles

The definition of Optimal Reinsurance is a difficult task since it depends on the
choice of metrics, level of confidence and which constraints shall be satisfied at
company level. The most straightforward solution is adopting in the calculation
risk measures and level of confidence provided by Solvency II. Note that the
optimization treated here is from the point of view of the direct insurer, and
not of the reinsurer.

The main difficulty when dealing with optimal reinsurance is the fact that,
in order to evaluate the efficiency of a particular reinsurance structure, the user
shall be able to compute both the mitigation effects and the overall price of
reinsurance. Usually, the reinsurance premiums are not available in advance for
many contracts and the solution is their estimation through the use of pricing
principles or pricing curves. On the other side, the risk mitigation of extreme
events is based on the chosen loss model, which is just a simplification of the
real world.

Through the concept of efficient frontier, a set of optimal contracts can be
determined. Usually the frontier is defined using a profit and a risk indicator. A
further step can be taken to pass from a 2-dimensional indicator (set of optimal
reinsurance structures) to a 1-dimensional one, and obtain subsequently a single
optimal treaty that maximize/minimize such indicator.
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5.1 Efficient Frontier

The starting point to define an efficient frontier is the concept of Pareto efficiency
related to reinsurance programs:

• if A and B cost the same premium, but A reduces more risk than B, then
A � B

• if A and B mitigate the same amount of risk, but A costs less than B,
then A � B

In the case where A doesn’t dominate B, the two reinsurance structures are
not comparable: if A mitigates more risk but requires a higher premium than
B, then it is not possible to affirm which structure is objectively better. The
set of programs that are not strictly dominated by any other program is the
efficient frontier.

Once understood this notion, a measure to quantify the amount of risk
reduction is needed. VaR provides an useful indicator under the level of
confidence chosen by the company, since it can be easily linked to Solvency
II capital requirement. The Tail VaR is a valid alternative to consider more
deeply the underlying risk after the chosen quantile.

The other ingredient to build the efficient frontier is the reinsurance premium,
which can be extrapolated from pricing curves or pricing principles. In this
thesis the approach is based on the computations through pricing principles, like
Proportional Hazard and Standard Deviation principle, that will be discussed
adequately in the next sections. It should be always kept in mind that the
uncertainty connected to reinsurance pricing influences the frontier.

Several measures can be compared in a 2 dimensional plot to find an efficient
frontier, and each combination leads to different results. For example, Parodi
[23] proposes the trade-off between reinsurance premium and V aR, which is a
straight-forward approach. A good alternative to the use of the premium is
the profit ceded to the reinsurer, where we neglect the expected mitigated loss.
Why?

• A treaty characterized by a high premium and a tiny safety loading
has the advantage of transferring a considerable amount of risk without
losing too much profit. Choosing the ceded profit rather than the ceded
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premium is a good way to keep more focus on key performance indexes.
The Quota Share reinsurance is an example of such contract;

• Excess of Loss contracts are usually characterized by relative small pure
premiums and high safety loadings since they deal with more volatile and
infrequent risks. Despite the small premium, such contract can return
significant benefit in terms of reduction of V aR, and therefore, considering
only the ceded profit as comparison metric with other contracts may be
a more suitable choice.

The same reasoning can be applied to the choice of a risk measure: the V aR
itself can be decomposed in expected and unexpected loss. If two treaties cost
the same and provide the same V aR, it doesn’t mean that both return the same
unexpected loss (or SCR under a level of confidence of 99.5%). Therefore, since
the selection of the SCR is a very important factor, neglecting the expected
loss also in the risk measure can lead to an interesting alternative optimal
frontier.

5.1.1 Total Cost of Risk

The main problem connected to the efficient frontier is the fact that, since
all the programs that compose it are not comparable, an optimal reinsurance
doesn’t objectively exist. Therefore, the introduction of other metrics is needed
to rank this set of contracts and determine the best option.

An interesting measure is the Total Cost of Risk (denoted with TC), which,
from the point of view of an insurer that buys reinsurance, is defined as:

TC = E(X̃ in) + CoC · (V aR99,5%(X̃ in)− E(X̃ in)) + P re (5.1)

where

• E(X̃ in) is the expected loss of the direct insurer net of reinsurance;

• CoC is the cost of capital rate;

• (V aR99,5%(X̃ in)− E(X̃ in)) is the SCR under Solvency II framework;

• P re is the reinsurance premium.
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The goal of this optimization is to minimize the total cost through reinsur-
ance. An approach is to apply such minimization to the programs that lie on
the frontier. An insurer without reinsurance is characterized by higher expected
losses and SCR, but zero reinsurance premiums. In literature a reinsurance
program is efficient if:

P re < ∆(E(X̃ in)) + CoC ·∆(SCR)

where ∆(·) indicates the reduction from gross to net of reinsurance. If
the inequality holds, the reinsurance is able to create value for the direct
insurer according to the Total Cost measure. Note that it’s possible that such
reinsurance contract may not exist at all, since in some scenario the reinsurance
can only increase TC. This possible result doesn’t mean that the reinsurance
is useless, but that the TC may not be an adequate metric to evaluate the
effectiveness of the treaty.

The definition of TC is not written on stone, and one can decide to modify
the V aR99,5% with another risk measure and another confidence level.

It is interesting to note that the profit of the insurer is somehow considered
in the formula: if the reinsurer is applying positive safety loading P re decreases
the insurer’s profit. In fact, the minimization of the total cost can be written
as:

TC − E(X̃gross) = E(X̃ in)− E(X̃gross) + CoC · SCR + P re =

E(X̃re) + CoC · SCR + P re = E(X̃re) + CoC · SCR + E(X̃re) · (1 + λre) =

λre · E(X̃re) + CoC · SCR (5.2)

where the term λre · E(X̃re) is the profit ceded to the reinsurer. The
minimization of the total cost can be expressed as the maximization of the
Economic Value Added (EV A) as follows:
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EV A = Profit− CoC · SCR =

= λtotal · E(X̃gross)− λre · E(X̃re)− CoC · SCR =

= (1 + λtotal) · E(X̃gross)− TC

The limitation provided by the total cost approach is that the variability of the
loss around the mean is neglected. In fact, the SCR alone can only describe the
extreme events, without giving enough emphasis to the volatility of the results.
Also, with this approach the SCR becomes a variable itself that depends on
the optimization, while in practice it is chosen in advance according to the risk
appetite of the company.

For these reasons, an alternative approach is proposed in the next section.

5.1.2 Constrained Reinsurance Optimization

The aim of the proposed approach is the definition of an optimization criteria
that takes into account and connects the most crucial performance indexes
and the most realistic assumptions altogether. First of all, a clear distinction
should be made between the indicators that we wish to optimize and indicators
that must be fixed a priori:

• as mentioned before, the SCR is usually a target of the company that
must be fulfilled through reinsurance. Therefore considering it as a
parameter to be optimized may be inappropriate from the practical point
of view;

• Companies fix their profit target with the use of many indicators: the
ROE is one of them. The idea is to fix a certain level of profit under
which the reinsurance shouldn’t go. In this way the optimization will
deal only with the reinsurance structures that satisfy the constraint, and
subsequently the opportune risk-profit trade-off will be selected;

• the volatility is a good example of indicator to be minimized in order
to obtain a good reinsurance structure. Of course, since the standard
deviation is proportional to the volume of the business, a relative index
like the Coefficient of Variation CoV is preferred;
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• the presence of Non-proportional reinsurance may be driven by the
existence in Solvency II of the NP reduction factor, which decreases
by 20% the volatility factor for MTPL, GTPL and Fire lobs. In fact,
even if the application of an Excess of Loss for one of these lobs may be
inefficient, an insurer under Standard Formula would likely prefer to gain
the benefits of the NP factor;

• when dealing with Quota Share contracts, the insurer may decide to
retain at least a percentage s of its business, and avoid considering the
contracts that transfer more than s%;

• a delicate point is the criteria for splitting the layer of a Non-proportional
reinsurance in order to diversify the risk transfer among more parties. In
practice this component is mainly driven by the market relation between
the insurer and the reinsurer. An estimate of the additional costs due
to the split of the layer may be incorporated inside the optimization to
diagnose the benefits and the drawbacks of such decision.

5.2 Pricing Reinsurance

What does it make a reinsurance contract worth buying? The biggest driver
is its usefulness and how it can help the insurance company to achieve the
adequate risk appetite. The other obvious driver is the price: even if the
contract is very suitable to reach the management goals in terms of risk, a too
high reinsurance loading would push down the expected profit of the company.
In the results presented in this thesis, a huge variety of reinsurance contracts
will be compared and, for this purpose, a well-functioning pricing principle is
needed.

This topic should always be treated with white gloves, since there is often
a significant gap between academic theory and practice. Several components
are taken into account to build the price of a reinsurance treaty, and the main
ones are:

• the expected losses E(X̃re);

• the uncertainty of X̃re;
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• charges for reinsurer’s expenses and profits;

• costs for the brokerage.

A premium principle π is a function that takes as argument a random
variable X̃ and returns the loaded premium. In general, a loaded premium can
be expressed as:

π(X̃re) = E(X̃re)(1 + λ) = P (1 + λ) (5.3)

where P re is the reinsurance pure premium and λP re the safety loading.
Expressing the loaded premium as a percentage λ of the pure premium is a

good way to communicate clearly the impact of the safety loading component.
Under this framework, the difference between the various premium principles
is the methodology used to compute λ.

In both the insurance and reinsurance context, there are several reasons
behind the presence of the safety loading:

• the safety loading represents the expected profit of the contract, which is
needed to accomplish company’s growth goals.

• in the expected utility framework the pure premium is sufficient only for
a risk neutral insurer/reinsurer. Since both insured and insurer/reinsurer
are risk averse, the safety loading is required to perform the transfer of
risk;

• according to the ruin theory, if no safety loading is present, the ruin will
occur with certainty;

Since a strong economic component influences the price, it isn’t a easy task
for the direct insurer to forecast with accuracy how much a reinsurance plan
will cost. Obviously, if only few treaties are slightly modified from one year to
another, the plan’s premiums are easier to predict. Usually, only reinsurers and
reinsurance brokers have at disposal consistent data to build fitting price curves.
This type of information has a significant relevance in the decision-making
process of an insurance company, because knowing in advance the reinsurance
price allows the entity to compute realistic risk and profit indicators, that

67



Chapter 5

describe in depth the economic situation. This type of information is the key
to perform a good reinsurance optimization.

A crucial information used in practice to price reinsurance contracts is the
portfolio’s structure of the reinsurer: many pricing procedures are based on
the allocation of capital in the various line of business. To fulfil management
goals, the reinsurer applied a suitable premium, that depends on how the new
contract diversifies in the current portfolio.

It is important to note that issues in pricing reinsurance are mainly regarding
non-proportional reinsurance since the uncertainty of the risk is high, and the
loading made by the reinsurer may vary according to the risk appetite and
market conditions. For example, catastrophe reinsurance’s price rises in a
significant way after the occurrence of a relevant natural catastrophe. For
simplicity, this type of price uncertainty won’t be considered in the calculations.

In absence of this data, other analytical approaches can be applied in the
attempt to approximate the complicate price making process. Every method
will have a common uncertainty for the user: the loading component λ depends
on a parameter, which can be highly subjective in few approaches. Therefore,
even if the calculation rule is set, the choice of the parameter drives the result.

The following pricing principles can be used for both insurance and rein-
surance contracts. In practice, these principles are not realistic for insurance
premiums, since the market competition on prices is very relevant in the pricing
process.

Usually in literature, when non-proportional reinsurance premiums are
computed, the expenses are not considered in the calculations. Therefore, from
now on, the non-proportional reinsurance tariff premium B will be expressed as

B = π(X̃)

5.2.1 Expected Value Principle

Known to be the most straight-forward premium principle, it is given by

π(X̃re) = P re(1 + λ).

The choice of λ is very critical because no information about the variability
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of X̃ is considered. Thus, the safety loading λP assumes only a mere economic
meaning. Given the fact that in the thesis the same premium principle will
be applied to many contracts, if λ is fixed and equal for every tested case, the
safety loading would be insufficient for contracts covering only the most extreme
scenarios. In fact, excess of loss contracts with a very high deductible D are
characterized by a low expected value and a high volatility of claims. The total
lack of flexibility of this pricing principle towards the reinsurance parameter’s
changes is a huge downfall when applied to non-proportional reinsurance.

This type of approach is more reasonable in the traditional insurance context,
where the pricing is more based on competitive market strategies.

As mentioned before, the safety loading as percentage of the pure premium
gives a clear idea of its size. For this reason, when numerical results will be
presented in the next chapters under other premium principles, the safety
loading will be expressed in the form λP .

5.2.2 Standard Deviation Principle

According to this principle, the reinsurance premium π(Z̃re
i ) for the i − th

single contract is proportional to the standard deviation of the risk linked to
the contract, such as:

π(Z̃re
i ) = E(Z̃i

re
) + βσ(Z̃i

re
) (5.4)

where β is a parameter chosen by the user. Note that, the aggregate premium
paid for the reinsurance treaty is given by:

π(X̃re) =
N∑
i=1

π(Z̃re
i ) (5.5)

where N is the number of policies in the cedant’s portfolio.
Under the assumption that Z̃re

i are independent and identical distributed,
we have:

π(X̃re) =
N∑
i=1

π(Z̃re) = Nπ(Z̃re)

In literature, this approach is applied at portfolio level, where, instead of
considering the single claim Z̃re to price, the aggregate claim amount X̃re is
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used:
π(X̃re) = E(X̃re) + βσ(X̃re) (5.6)

Obviously, the parameter β assumes a lower value in comparison to the
formula 5.4.

When the standard deviation principle is applied using Z̃re, we are not
considering any diversification benefit of the portfolio. But, is it necessarily
a bad thing? We have to remember that, when risks are transferred from
the direct insurer to the reinsurer, the latter’s portfolio may be already well
diversified by other contracts signed with other companies. For this reason, it
may not be coherent to consider the diversification of the standalone portfolio
when pricing the treaty.

In both cases, the standard deviation principle has some drawbacks. The
most important for our application is that the standard deviation measures the
volatility of both left and right tail of the claims distribution. This fact may
create incoherence in the reinsurance context because of particular distribution
found in non-proportional treaties. In fact, for high deductibles D, both Z̃re and
X̃re are at the same time continuous (over R+) and discrete (in 0). Moreover,
in case a limit L is present, the distribution of X̃re becomes "spiky", due to Z̃re

being discrete also in L. The standard deviation may not be the best indicator
to describe this peculiar behaviour.

This premium principle can create some difficulties in case of reinstatements:
the risk is composed also by the stochasticity of the reinstatement premiums,
which depend on the loaded initial premium.

Therefore, the loaded premium π(P̃L
AD) is itself a random variable. Recalling

the notation of equation (1.20), it is determined by solving the following equation
([26]):

E(P̃L
AD(1 + R̃)− X̃re) = β · σ(P̃L

AD(1 + R̃)− X̃re) (5.7)

which can be rewritten as

(P̃L
AD)2 ·

[
E(1 + R̃)2 − β2σ2(1 + R̃)

]
+

2P̃L
AD ·

[
β2Cov(1+ R̃, X̃re)−E(1+ R̃)E(X̃re)

]
+

[
E(X̃re)2−β2σ2(X̃re)

]
= 0

where
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• R̃ = 1
L

∑K
k=1(ckE(r̃k−1)) is the reinstatement cost as percentage of the

initial premium P̃L
AD;

• the terms in parenthesis can be seen respectively as a, b and c of second
order equation, which can be solved with respect to P̃L

AD.

The main problem is that, under the standard deviation principle, the
system may not have any solution. This fact may become a significant limitation
when this type of contract is studied. But, if the solution exists, this pricing
principle provides interesting results. In fact, the standard deviation principle
is subadditive:

σ(X1 +X2) ≤ σ(X1) + σ(X2). (5.8)

which comes handy when splitting layers into smaller sub-layers.
Imagine we are in front of two scenarios:

1. the scope is to price two consecutive layers for a non proportional rein-
surance;

2. the scope is to price the combined layers altogether;

Due to the inequality, using the standard deviation premium principle and
the same parameter β, the sum of the loaded premiums of case 1 is greater than
the loaded premium of case 2. From an economic point of view, it means that
it is more convenient to choose only one reinsurer instead of two to transfer
a risk. At the same time, when two or more reinsurers are involved, the
counterparty default risk is reduced. Solvency II framework takes into account
this diversification and reduces the capital requirement when the reinsured risk
is split among more entities.

5.2.3 Variance Principle

Similar to the previous case, the variance premium principle is defined as:

π(Z̃re
i ) = E(Z̃i

re
) + βσ2(Z̃i

re
). (5.9)

Due to the variance being in a larger scale than the standard deviation,
the parameter β is often very small. For this reason, the variance premium
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principle is very unstable to price reinsurance contracts, which are characterized
by risks with a significant variance.

The variance holds the opposite relation with respect to the standard
deviation:

σ2(X̃1 + X̃2) ≥ σ2(X̃1) + σ2(X̃2). (5.10)

Hence, it means that if a layer is split in infinite parts, the safety loading
tends to zero. This property is usually not desired, especially when pricing
consecutive layers.

5.2.4 PH transform

The Proportional-Hazard transform is an interesting pricing principle proposed
by Wang [29]. It recalls the stop-loss transformation of equation (1.8) and
introduces an exogenous index ρ ≥ 1, such that:

π(X̃re) =

∫ ∞
0

(1− FX̃re(x))1/ρ dx. (5.11)

Trivially, with ρ = 1 the stop-loss transformation is obtained.

The result of this formula can be seen as a risk-adjusted premium based on
the exact shape and heaviness of the distribution tail. Knowing the cumulative
distribution function FX̃re(x)) is crucial, and in practice it can be estimated
through the use of the methodologies explained in the previous chapter. The
user could use simulation to estimate this element, or, way better, use the
Panjer algorithm. As discussed before, the Panjer algorithm is particularly used
in reinsurance scenarios due to its properties. All we need is the distribution of
Ñ and Z̃ to obtain the discrete FX̃re(x)). The use of simulations might be a
good choice when considering risk structures that are not easy to implement
through Panjer algorithm. A good example is the pricing of an Umbrella cover,
where the lobs covered are correlated according to a copula structure.

In case there is a strong uncertainty around the estimated distributions of
frequency and severity, due to the lack of historical data, a good idea would be
to use a higher value of ρ to compensate.

The strength of this pricing principle is that, in case contractual limitation
of the Excess of Loss are present (limit, deductible, aggregate limit, aggregate

72



Pricing and optimization principles

deductible and reinstatements), it is able to consider properly the underlying
risk once the cumulative distribution function is estimated. Unlike the standard
deviation and variance principles, the PH transform overcomes these difficulties
and returns concrete risk-based results.

In case of reinstatements, by recalling equation (1.24),since r̃ is comonotonic,
Mata [20] proposes to use the PH-transform as follows:

π(XL
AD) =

π(X̃AL
AD)

(1 + 1
L

∑K
k=1 ckπ(r̃k−1))

(5.12)

Like the standard deviation principle, the PH-transform is subadditive.
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A reinsurance simulation model

In this chapter we will set up everything we need to perform the comparison
between different reinsurance treaties. To do so, a frequency-severity model is
implemented, with some additional features in order to overcome difficulties
that appear when dealing with the reinsurance world. The whole topic will be
explained also with computational programming tips to give a full overview to
the reader, that is important to create a bridge between theory and calculations.
The reference programming tool is R.

6.1 Building the simulation’s environment

The choice of not using real data for the analysis has been made, and it is
important to specify the underlying reasons: a well-functioning reinsurance tool
must be comprehensive of the whole business model of the insurance company
to achieve reasonable results. Therefore, in case a frequency-severity approach
is chosen, it is crucial to estimate properly the risk distributions (of Ñ and Z̃)
and the dependency structure. Curve fitting is a very delicate task, and, since
it is very easy to model wrongly the risk, the reinsurance model would probably
lead to unreliable results. The main focus of this thesis is the investigation
of reinsurance applied in different contexts, and, the use of real data would
shift the whole attention from the main topic to issues regarding fitting of
parameters and distributions.

For these reasons it is better to skip the fitting procedure, and propose
scenarios where we assume that the risk has already been modelled correctly.
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The case study considers a fictitious insurer that operates in only three
lines of business:

• Motor Own Damage (MOD), where the severity distribution is character-
ized by a small mean and volatility;

• General Third Party Liability (GTPL), known to be a "long tail" business
(where both the expected value and standard deviation are significantly
high);

• Motor Third Party Liability (MTPL), that can be seen in the middle
between the previous two lines of business.

In practise, due to market demand, the biggest share of insurance portfolios is
dedicated to MTPL business, followed by MOD, and ultimately by GTPL. This
fact is taken into account in the choice of the respective frequency parameters.

Since only premium risk will be considered in this thesis, it is important to
mention that the results presented are not fully representative of the insurer’s
situation. Obviously this choice was made to simplify the topic and to avoid to
over complicate the approach. In case, the implementation of additional risks
in this model is still feasible within the Solvency II framework.

Let’s check out the general direction taken for the calculation, the problems
that arise and the solutions applied.

All the procedures are made to determine the distribution of the aggregate
claim amount X̃ of the company in the year. Since in our scenario this fictional
company has insurance risks originated by three different lines of business, X̃
is given by:

X̃ = X̃mtpl + X̃gtpl + X̃mod

Therefore, it is needed to estimate the X̃ for each LoB and associate a proper
dependence structure through copula. Different types of copula will be treated
to remark how much this choice is delicate. As explained in the previous
chapter, in order to effectively use a copula aggregation, the distributions of
the marginals X̃mtpl, X̃gtpl, X̃mod must be estimated. A good way to estimate
them is to use simulations, such that:
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1. for the single simulation a value n is sampled from the distribution of
ÑLoB;

2. n realisations are sampled from the distribution of Z̃LoB;

3. obtain X̃LoB =
∑n

i=1 Z̃i,LoB;

4. repeat the first three steps for the number of simulations desired;

5. repeat the steps above for each line of business.

The procedure seems really feasible explained in this way, but we are not
considering the reinsurance: if a Excess of Loss treaty is applied, the single
claim cost realisations Zi,LoB of step 2 are affected by the generic Layer operator.
Then, on step 3 we would have X̃LoB =

∑n
i=1 Layer(Z̃i,LoB). Imagine how long

it would be to repeat this simulation procedure for each possible configuration
of an Excess of Loss treaty for each LoB! The obvious solution to this issue
is to keep saved the same simulations and apply the desired Layer operators
when needed. But here arises a problem from the computational point of view:
storing every single claim Zi,LoB for each simulation takes too much computer
memory. For those who didn’t know, if the stored data is too much heavy, even
simple computations will become slow.

One of the main goals in the architecture of this model is an adequate data
structure. This point is crucial: since this model is based on simulations, if our
attempt is to study the different effects of many reinsurance covers, we may
change the parameters involved in the contracts many times. The solution is
to generate less simulations and store information in a smarter way, instead of
doing more simulations due to a lacking data structure.

Since the two main contracts applied in this thesis are the Quota Share and
variants of the Excess of Loss, a smart solution would be to consider that:

• Quota share can be applied equivalently to X̃LoB, instead of Z̃i,LoB.
Therefore, for this contract we don’t need to store any single claim;

• Excess of Loss affects only those claims ZLoB > D, where D is the
deductible.
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Hence, if we assume for example that the set of Excess of Loss treaties used in
the thesis have at least D > threshold, we would need to store for individually
only those claims greater than the threshold, and the remaining small claims
as a single aggregate value. In this way, we may pass from storing thousands
of values for each simulation, to a small number like 10.

For those interested in the practical point of view, this storing process can
be achieved easily through the use of lists. Lists are objects which contain
elements of different types like numbers, strings, vectors and another list inside
it. We are interested especially in using a list containing lists.

The setup is the following:

Xj,LoB is the aggregate claim amount value provided by the j-th simulation;

Zi,j,LoB is the i− th single claim amount value provided by the j-th simulation;

j = 1, 2, . . . , J where J is the total number of simulations;

i = 1, 2, . . . , I where I is the total number of single claims generated in the
simulation and depends on the sampling from the frequency distribution

Each LoB’s simulations will be stored in a separated list. The j-th element
of each of these lists is a list itself, containing info on Xj,LoB. It is composed
by two components:

1. a vector containing all the single claims Zi,j,LoB > threshold

2. a number representing the sum of of all the other claims Zi,j,LoB ≤
threshold

In this way all the small single claims are compressed in only one number,
and we are able to spend way less computer memory. Xj,LoB is obtained by
summing the two components. Behind this structure lies a wonderful feature: if
an Excess of Loss treaty is present, the corresponding Layer operator is applied
to all the numbers contained in the first component, and then by summing the
two components we obtain Xj,LoB.

With this data structure we have the chance to retrieve the simulated
distribution of X̃LoB for every Deductible D > threshold.
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The general approach used in practise by actuaries is very similar to the
one described here, but with few simplifications. The single claim cost Z̃ is
studied in two different components:

• large claims, which are those claims with value higher than a chosen
threshold. The approach is to describe them with a very skewed distribu-
tion and simulate them one by one with a frequency-severity approach;

• attritional claims, which are the remaining small amounts. They are often
simulated directly using an aggregate distribution X̃attritional. Hence, it
happens that the distribution of attritional claims is fitted on just few
yearly observations, and therefore, the fit may be lacking of accuracy. In
general, attritional claims are studied as a residual part.

The main issues that may appear in this kind of framework are linked to the
possible underestimation of risk coming from attritional claims. In fact, since
these kind of claims are usually not affected by any non-proportional reinsurance
treaty, it can happen that an unexpected huge number of small claims occurs
in the year, and the reinsurance plan becomes almost useless. Therefore,
one possible risk in this "attritional-large" framework is to overestimate the
protection provided by non-proportional reinsurance over the covered portfolio.

6.2 Model parameterization

The parameters involved in the calculation are based on the Italian insurance
market. The information are provided by ANIA’s statistical appendix and
publications.

To compute the safety loading coefficient λ and the expense coefficient c, a
weighted average of the last 5 years has been performed in the computation of
the Combined Ratio CR and Expense Ratio ER, such that:

CR =

∑5
i=1Bt−i · CRt−i∑5

i=1Bt−i

ER =

∑5
i=1Bt−i · ERt−i∑5

i=1Bt−i
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where t is the current year, of which the CR and ER has not been observed
yet. The CR in the calculation is not comprehensive of the run-off since the
focus is set on the premium risk, and not the reserve risk.

The ER is defined as E
B
, where E are the expenses, assumed deterministic.

By definition ER is equal to the expense coefficient c, since by model assumption
we have c ·B = E.

The Loss Ratio LR is equal to the difference CR− ER or equivalently by
X
B
. In this case, the safety loading coefficient λ that it’s present in the model is

referred to the pure premium P = B · 1−c
1+λ

, and therefore not equal to (1−CR),
which is proportional to B. The following equation should be solved:

λ · P = (1− CR) ·B

Then
λ = (1− CR) · B

P
=

1− CR
LR

.

For the estimation of σ(Q̃), the standard deviation of the Loss Ratios of the
last 15 years has been considered. Assuming that the Italian insurance market
is enough diversified, and recalling equation 3.4 and its asymptotic properties,
we have that:

lim
n→∞

σ(L̃R) = lim
n→∞

σ(
X̃

B
) = lim

n→∞
σ(
X̃

P
) · P
B

= lim
n→∞

σ(Q̃) · P
B

and, therefore,

σ(Q̃) = σ(L̃R) · B
P

= σ(L̃R) · 1 + λ

1− c

In terms of tariff premiums B, this insurer represents the 10− th biggest
Italian insurer for each lob. Therefore, given the distribution of premiums
around the market, we are in front of a medium-sized insurer that operates in
three lobs only.

As mentioned before, the MTPL lob is the most present in the portfolio,
but at the same time, due to high competitiveness in the market, the safety
loading coefficient λ assumes only 1, 2%. Even if MTPL composes the 63, 2%

of the tariff premiums B, the resulting profit is very limited with respect to
the other lobs.
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Table 6.1: Parameters for each line of business

MTPL GTPL MOD

E(Z̃) 4.500 6.000 1.500

CoV (Z̃) 6 10 2

Policy limit 10.000.000 10.000.000 1.000.000

E(Ñ) 50.000 10.000 30.000

σ(Q̃) 6,83% 12,37% 11,27%

λ 1,2% 6,7% 13,8%

E(Profit) 2.700.000 4.020.000 6.210.000

c 21.2% 32.3% 30.4%

B 288.959.391 94.564.254 73.577.586

% B 63,2% 16,1% 20,7%

The GTPL is characterized by the higher E(Z̃) and variability, and at the
same time, it’s the least diversified due to low number of claims.

From a risk perspective, the λMOD is too high considering that the coefficient
of variation CoV of the single claim Z̃ is the lowest observed.

The overall safety loading coefficient λtotal = 3, 92%, where

λtotal =
λMTPLPMTPL + λGTPLPGTPL + λMODPMOD

PMTPL + PGTPL + PMOD

.

It is interesting to observe how risk theory literature and market’s supply
and demand clash each other, leading to a situation where the profit of MOD

often supports the underwriting result of the other lobs inadequately priced.

The policy limit has been introduced for each lob to avoid encountering
unreasonable results within the simulations. In fact, in practice, the single
claim is capped to the limit specified in the contract, which changes across the
market. The limit has been fixed in such a way that it is representative of the
market and, at the same time, doesn’t cut off the whole behaviour of the tail.
Building a reinsurance treaty will be easier under a single claim cost Z̃ with a
limited domain.

Now we have everything we need to start the Monte Carlo simulations for
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each lob as explained in the previous paragraph, in order to keep track of large
claims. The densities of X̃ distributions for the three lobs are presented in
Figure (6.1).

Figure 6.1

As expected, the MTPL is far from the other two lobs due to the dominance
in terms of dimension. One should not be tricked graphically to think that
MTPL is more risky also in relative terms. The main characteristics of the
three distributions are presented:

MTPL GTPL MOD

E(X̃) 224.853.164 59.755.974 44.991.474

σ(X̃) 16.366.551 8.880.263 5.119.400

CoV (X̃) 7,28% 14,86% 11,38%

γ(X̃) 0,158 0,373 0,229

P (X̃ < P (1 + λ)) 57,89% 70,34% 88,51%

V aR99, 5% 44.229.873 25.781.117 14.232.375

TV aR99% 46.154.191 26.935.695 14.813.923

Table 6.2: simulation’s summary

The most interesting results presented in the table are:
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• CoV is lower for MTPL due to a lower σ(Q̃). Therefore, in relative terms,
the MTPL is less variable with respect to the other lobs;

• the probability of observing a profit in the lob is too low in the MTPL
case and too high inMOD case. Instead, GTPL is priced coherently to
the underlying risk;

• the Value-at-Risk for MTPL is the highest due to the higher standard
deviation; even if near in mean, GTPL requires a significant greater
capital requirement than MOD.

What’s left now is the aggregation of these simulations in such a way that
the underlying correlation is present.

6.3 Copula Aggregation

Coming back to our framework, the set (Xj,Mtpl, Xj,Gtpl, Xj,Mod) is uncorrelated.
The copula aggregation is what is needed to create correlated sets of aggregate
claims amount. But here a huge problem arises again: we would lose information
in the attempt of applying a copula. Let’s investigate what it is happening.

As explained in the previous chapters, the output of J copula simulations
in this scenario would be a matrix with J rows and 3 columns. Each column
represents a line of business and each row a triad of correlated simulations.
Each cell of this matrix contains a number between 0 and 1, that can be seen
as a cumulative probability.

Table 6.3: Copula simulation example

Simulation j MTPL GTPL MOD

1 e1,MTPL e1,GTPL e1,MOD

2 e2,MTPL e2,GTPL e2,MOD

3 e3,MTPL e3,GTPL e3,MOD

. . . . . . . . . . . .

J eJ,MTPL eJ,GTPL eJ,MOD
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Table 6.4: Inverse CDF

Simulation j MTPL GTPL MOD

1 F−1MTPL(e1,MTPL) F−1GTPL(e1,GTPL) F−1MOD(e1,MOD)

2 F−1MTPL(e2,MTPL) F−1GTPL(e2,GTPL) F−1MOD(e2,MOD)

3 F−1MTPL(e3,MTPL) F−1GTPL(e3,GTPL) F−1MOD(e3,MOD)

. . . . . . . . . . . .

J F−1MTPL(eJ,MTPL) F−1GTPL(eJ,GTPL) F−1MOD(eJ,MOD)

The next step is to apply to the generic element ej,LoB the inverse of the
cumulative distribution function F−1LoB(ej,LoB) of the respective LoB to obtain
the associated quantile.

Now, this table is representing values in the scale of measure of X̃. Note
that those who are interested in determining the capital requirements gross
of reinsurance would be fine with this situation, because at this step they
would have everything they need to proceed. The problems arise in the case
reinsurance is treated: we had just lost simulation data about the structure of
the aggregate claim amount. In particular, we are not able to retrieve in any
way information about the large losses that lie behind each F−1LoB(ej,LoB).

Solution 1: One straightforward solution to the retrieve the lost information
is the following:

1. build the simulated cumulative distributions function for each lob with
the desired combination of Excess of Loss treaties;

2. simulate from the copula as in table (6.3);

3. use the distributions obtained at step 1 to apply the inverse operation
like in table (6.4).

This solution has too many flaws that must be discussed.

• First, this approach is not flexible in terms of computing times, since the
procedure would be repeated from step 1 for every possible combination
of non-proportional reinsurance. Not the best option if we want to study
a large number of contracts.
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• Second, non-linear correlation is assumed between gross of reinsurance
X̃, and the application of Non-proportional reinsurance affects such
correlation. For example, assume that the correlation is described by a
Gumbel Copula, which emphasises dependency in both left and right tail
of the marginals. If the direct insurer decides to apply non-proportional
reinsurance to each lob of its business, then the correlation between the
claims net of reinsurance would be reduced, since the right tails are
now partially protected. This fact is crucial for step 2 of the previous
procedure: even if the dependency structure gross of reinsurance is
assumed to be known, it is not possible to determine the new dependency
after the application of non proportional reinsurance. Supposing that the
correlation doesn’t change, the actuary would overestimate the risk, or on
another hand, would underestimate the benefits of the reinsurance plan.

Solution 2: Another approach is proposed since more suitable. The trick is
to use at the fullest the simulation information stored in that particular list
discussed before. Remember that, since this is a simulation approach, a bias will
always be present and the results obtained should be treated as approximations
of the scenario proposed. As the number of simulations increases, both the
accuracy of this proxy and the time required by the machine increase.

The method involves a particular sorting of the elements contained in the
lists of every lob of the company. As mentioned before, by summing the vector
and the attritional value contained in each element, a simulated value of X is
obtained. The concept is the following: reorder the simulated values X in all
the three lists in such a way that the desired dependency structure is generated
between the lists.

How could we perform such permutation?

The simulated cumulative distribution function of X̃MTPL, X̃GTPL, X̃MOD is
determined through the sum previously described. Then, we can associate each
quantile to the simulated output of the Copula, which is composed by correlated
Uniform(0, 1). Obviously, the copula results are expressed with more decimal
numbers than the simulated CDF. Therefore, each value simulated by the
copula is rounded until there are the same decimal numbers for both copula
and CDF. For the sake of accuracy, it is also important to avoid replications
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inside each column of the copula (Table 6.3), which happens after the rounding
up. It can also happen to obtain few zeros, which are definitively a problem
since F−1LoB(0) is not associated to any element of our lists.

A fast way to avoid the rounding up problems is the following:

• first thing, it is required that the length J of each list and of copula
simulations is the same;

• the values of the copula are ranked by column. In this way each column
contains rank(ej,Lob) with support 1, 2, . . . , J ;

• each simulated X is ranked too for each list. The mathematical support
of the rank is the same of the previous step due to equal length J ;

• each cell of the copula is substituted with the element (vector of large
claims + attritional aggregate) which have the same rank.

At the end of this approach the user will obtain 3 reordered lists that are
dependent according to the chosen dependency structure. The question is:
which dependency structure?

The choice of using 3 lines of business is not casual: often in literature,
when a copula aggregation is made, only 2 marginals are involved. The reason
lies in the fact that, when more than 2 marginals are aggregated, Archimedean
copulas can be used only under the assumption that the dependence has the
same strength between all the marginals. Therefore, it is way easier to study a
bi-variate case.

Keeping in mind that, according to Solvency II delegated acts, the correlation
between the lobs is the one shown in Table 6.5, applying Archimedean copulas
would be a difficult task. At this point Vine copulas play their role: we can
extend any bi-variate copula to the 3-dimensional case.

6.3.1 Gaussian Copula

The Gaussian Copula is very easy to build in this tri-variate framework since
we can simulate directly from it correlated uniforms that satisfy the correlation
matrix shown before. This feature is one of the main reasons of its popularity.

But this copula isn’t suitable to model tail dependency, which is the most
common type of correlation present in financial and insurance risks. Due to its
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Table 6.5: Correlation matrix

MTPL GTPL MOD

MTPL 1 0, 5 0, 5

GTPL 0, 5 1 0, 25

MOD 0, 5 0, 25 1

simplicity, it was used back in 2007-2009 to model the credit risk in the banking
sector. Many experts attribute part of the faults of the subprime mortgage
crisis to this risks’ underestimation. Obviously, there were many factors that
contributed to that unfortunate event, but it is important to give adequate
emphasis to this basic concept: underestimation of risks leads to distorted
results, which will be used to make biased decisions at company’s level.

Despite a possible underestimation of risk, the Gaussian copula is a good
benchmark to compare the results obtained with more complicated Vine copula
aggregations.

Adopting the correlation matrix of Solvency II, the empirical correlation
between the uniform marginal of the copula are:

MTPL GTPL MOD

MTPL 1 0, 483 0, 483

GTPL 0, 483 1 0, 239

MOD 0, 483 0, 239 1

It’s important to note that the fact that the resulting correlation matrix is
different from the one given as input is not a simulation error: in the definition
of a Gaussian copula the Solvency II matrix is transformed through the so-called
Cholesky decomposition. Therefore, the resulting correlations are not biased
as it may seem.

A question that is interesting to analyze in the context of copula aggregations
is the volatility of the results. Often, both in practice and literature, no
diagnostic is performed to evaluate the variability of copula simulations. How
much does the quantile move from one simulation to the other? In these
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paragraphs an answer will be provided and, consequently, the most appropriate
copula simulation will be chosen to proceed in the comparison of the results.

The quantile at level 99, 5% of X̃ = X̃MTPL + X̃GTPL + X̃MOD is plotted
for each Gaussian copula simulation:

The results are presented in the following table:

min 5% mean 95% max

397.232.735 397.612.293 398.151.002 398.648.319 398.993.345

The percentage difference from the mean with level of confidence (5%; 95%)

is equal to (−0, 135%; +0, 125%) and in absolute value (−538.709; +497.316).
The numbers confirm that the Gaussian copula simulations return stable results
in relative terms, but it is always better to select a "central" simulation to
obtain an unbiased capital requirement.

For stability purposes, the median simulation is selected and, recalling
formula (4.10):

SCR = X̃99,5% − E(X̃) = 398.003.981− 329.600.612 = 68.403.369

Note that the absolute interval of simulation results shown before, when com-
pared to the V aR99,5%, is equal in percentage to the interval (−0, 788%; +0, 727%).
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6.3.2 Vine Copula

Since the Vine Copula is composed by bi-variate copula, the order of aggregation
is the main topic to be discussed. First of all, it is assumed that the lobs are
correlated according to mirror Clayton copulas with a dependence measure
comparable with the one provided by Solvency II. More precisely, the goal is to
make the mirror Clayton copulas comparable with the Gaussian copula used
in the previous paragraph. Under Gaussian copula, the Kendall τ is equal
to 33, 33% when Spearman ρ = 50%, and equal to 16, 09% when ρ = 25%.
The following relation connects the parameter θ of a Clayton Copula with the
corresponding τ :

θ =
2 · τ
1− τ

.

Hence, we obtain respectively θ = 1 and θ = 0.3834.
Since we are in a 3-dimensional scenario, the use of a C-Vine or D-Vine

copula won’t make any difference. All the possible starting structures of the
Vine can be represented as:

MTPL GTPL MOD
ρ = 0, 5 ρ = 0, 25

MTPL MOD GTPL
ρ = 0, 5 ρ = 0, 25

where the first and the second are equivalent in terms of underlying correla-
tion. Therefore, the choice is restricted to only two aggregation structures.

Let’s test empirically, according to each aggregation structure, how strong
the correlations are between the vine copula’s marginals.

1. If, as shown in the first structure, the first step is composed by the aggre-
gation of the couples (MTPL,GTPL) and (GTPL,MOD), the resulting
correlation matrix is:

which is very similar to the Gaussian one, except for the correlation
between MTPL and MOD. Since MOD is short tailed, the overestimation
is very low.
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MTPL GTPL MOD

MTPL 1 0, 478 0, 523

GTPL 0, 478 1 0, 237

MOD 0, 523 0, 237 1

min 5% mean 95% max

406.718.483 407.165.576 407.649.081 408.125.925 408.517.815

The results are presented in the following table:

The median simulation returns SCR = 407.565.442 − 329.600.612 =

77.964.830

2. Similarly, if the second structure is applied: the correlations, except for

MTPL GTPL MOD

MTPL 1 0, 523 0, 478

GTPL 0, 523 1 0, 237

MOD 0, 478 0, 237 1

89



Chapter 6

simulation error, are the same, but with GTPL and MOD switched. In
this case the correlation between MTPL and GTPL is higher, which is
not recommended due to risk overestimation.

min 5% mean 95% max

409.029.100 409.463.085 409.934.218 410.395.067 410.784.235

with SCR = 409.932.204− 329.600.612 = 80.331.592

3. The last case, instead, shows how a wrong aggregation order can create
an unwanted correlation:

MTPL GTPL MOD

MTPL 1 0, 478 0, 478

GTPL 0, 478 1 0, 444

MOD 0, 478 0, 444 1

In fact, the correlation of 25% between GTPL and MOD is overestimated
in a significant manner. For this reason this aggregation structure is not
considered.

90



A reinsurance simulation model

min 5% mean 95% max

406.797.927 407.223.835 407.733.197 408.236.392 408.721.328

with SCR = 407.732.206− 329.600.612 = 78.131.595

In conclusion, the first of the three orders is adopted for the vine copula
aggregation since it seems to be the more comparable with the Gaussian copula
case. In Figure (6.2) the correlation of the chosen vine copula is shown from
the graphical point of view.

6.3.3 Clayton Copula

For comparison sake, a mirror Clayton copula will be simulated with underlying
correlation ρ = 50% between all the lobs. Therefore, by recalling the previous
results, the parameter θ of the tri-variate mirror Clayton is equal to 1.

The resulting correlation matrix is the following:
where the value 0, 478 is the same encountered in the previous tables.
As confirmed by the results, this type of mirror Clayton is characterized by

higher quantiles and capital requirement:
with SCR = 409.974.772− 329.600.612 = 80.374.160
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Figure 6.2: Results under Vine copula using mirror Clayton copulas. Histograms are
represented on the diagonal, scatterplots on the upper triangle and rank-scatterplot
on the lower triangle

MTPL GTPL MOD

MTPL 1 0, 478 0, 478

GTPL 0, 478 1 0, 478

MOD 0, 478 0, 478 1
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min 5% mean 95% max

409.175.924 409.514.831 410.035.277 410.529.311 410.825.955

Note that the VaR is very near to the vine copula’s second scenario, where
the correlation between MTPL and GTPL is strong enough (= 0, 523) to
counterbalance the lower correlation (0, 237) between GTPL and MOD.

6.4 Gross SCR

In this section the capital requirement obtained with the different copula
assumptions will be compared with the ones obtained under Solvency II ap-
proaches. First of all, the SCR in case of ρ = 0 and ρ = 1 are provided, to give
a rough idea about a floor (neglecting negative correlations) and a cap :

ρ = 0 ρ = 1

51.808.138 84.229.034

Recalling formula (4.8), the distance between the quantile 99, 5% and the
mean can be approximated as 3 times the standard deviation of X̃. This
concept is now tested by comparing the actual distance between quantile and
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mean with 3σSV , where σS = σ(X̃)
V

is derived from the simulated distribution
and V is set equal to the Best Estimate:

Copula simulation 3σSV σS k

Gaussian 68.403.369 75.080.469 7,58% 2,73

Vine 77.964.830 76.005.350 7,68% 3,08

Full Clayton 80.374.160 77.091.111 7,79% 3,12

The table above shows how the approximation provided by Solvency II
fits well only the Vine copula case. In fact, the multiplier k of the formula
kσSV , which returns a SCR equal to the simulated one, is more near to 3 with
the Vine. Instead, the SCR in the Gaussian copula case is overestimated by
such formula, since multiplier k = 2, 73 underlines that the distribution in the
Gaussian case is more symmetric, and k = 3 would overestimate the skewness.

Another interesting comparison is the application of the Standard Formula
using both the volatility factors (SF approach) provided by the regulation and
the ones of the distributions (semi-USP approach). The underlying formula is
3σV , where σ is computed with formula (4.9), and, by assuming that only the
Premium risk is present, the SCR is equal to:

USP SF

75.106.699 88.735.619

Given that the Volumes V and volatility factors σ are:

lob V σUSP σSF

MTPL 225.000.000 7, 28% 10%

GTPL 60.000.000 14, 86% 14%

MOD 45.000.000 11, 38% 8%

It is interesting to note two things about the results:

• the SCR under semi-USP approach is very similar to the one obtained
with 3σV in the Gaussian copula case;
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• the SCR under Standard Formula is the higher observed till now, since
σSF for MTPL is significantly higher than the observed one. The SCR is
even higher than the fully correlated case.

6.5 Panjer Backtesting

Here we are, all the lines of business have been simulated and, through the vine
copula, we achieved the desired correlation. Now it’s time to reinsure! Before
setting the goals to reach through the reinsurance optimization, it is important
to build all the tools needed. What’s left to do is a stable pricing function that
it is able to return to the user a reliable result. In the previous chapter two
pricing principles were particularly useful for our purpouses:

• the Standard Deviation pricing principle;

• the Proportional Hazard pricing principle:

They both hinder particular properties and drawbacks, but they both share
subadditivity, which comes very handy when dealing with reinsurance layering.

One can choose to build a pricing function in two ways: the rough and
the accurate one. The first one is achieved simply by using the simulations
to derive the result, while, with the second approach, the actuary can rely
on other techniques, like Panjer algorithm, to avoid incorporating too much
simulation noise in the calculations. For example, with regard to the standard
deviation principle, one can use the standard deviation of the simulated loss
transferred to the reinsurer to extract the corresponding loaded premium. But
here comes the problem, are we sure that the simulations describe properly such
long tailed risk, even when computing the price of extreme layers? Because it
is fundamental to remember that an Excess of Loss deals with extreme events,
and both risk assessment and pricing procedures should have a rigorous study
behind.

As explained in the previous chapters, the Panjer algorithm is able to
compute the aggregate claim amount X̃, given the discrete distribution of the
single claim Z̃ and of the frequency Ñ belonging to (a, b, 0) family. Given a
good discretization of Z̃, the outcome is very interesting to access with accuracy
the shape of very skewed distributions. In the reinsurance literature, the Panjer

95



Chapter 6

algorithm is literally praised since simulations usually fail where such technique
succeeds: an extremely skewed Z̃ and a low mean Ñ may require millions of
simulations to adequately describe the resulting X̃. In our scenario, all the
lobs are light-medium tailed, and we shouldn’t suffer any significant loss in
accuracy when using simulations.

We can use the Panjer algorithm to backtest the precision of the simulations
and determine if the "rough" approach would be a good approximation.

Figure 6.3: Simulation results (black dots) and Panjer output (blue line)

In Figure (6.3) the standard deviation, skewness, activation probability of
the layer are compared between the simulations and the Panjer output for the
MTPL line of business. All those characteristics refer to X̃re, where the XoL
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Layer is always structured until the policy limit PL (assumed to be equal to
10.000.000 for MTPL), such that:

X̃re =
Ñ∑
i=1

LayerD,PL−D(Z̃i) (6.1)

The results obtained through simulations are extremely coincident with the
one extracted from the Panjer algorithm, also in terms of skewness, which is a
very delicate statistics to retrieve. Therefore, when layer operators are applied
on these simulations, the results are solid and stable.

The 4th graph in Figure (6.3) is a QQ-plot, with D = 1.000.000, and it
shows how the simulations have been able to properly describe also the tail
behaviour of the ceded risk. As long the points lie on the blue line, we are
sure that the simulation process is adequately precise. We can clearly say that
100.000 simulations are enough to achieve a precise estimation of the risk. Of
course, given a higher PL, this stability may not hold and a higher number of
simulation might be required.

As in the previous case, Figure (6.4) shows the comparison between the
GTPL simulations and the Panjer algorithm. The results are again very
satisfying, also because this lob is the most volatile among the three proposed
in the thesis. Comparing the skewness of GTPL with the MTPL one, it is
possible to note that the latter is higher when we deal with Layer with high
deductible. It may seem counter-intuitive since GTPL is characterized by more
skewed and volatile Z̃. But, actually, we should take into account how much
extreme would it be to observe a huge ceded claim for both lines. In fact,
GTPL is on a higher scale of measure and extreme layers for MTPL might not
be as much extreme for GTPL.

Of course, since light tailed, also the MOD is described with precision
through simulations. For the same reason as before, note in Figure (6.5), how
the skewness of X̃re explodes when the deductible increases. This is due to the
fact that it is almost impossible to observe a large claim in this lob. Also the 3rd

graph confirms that the activation probability of the layer is very low compared
to the MTPL and GTPL case. Therefore, due to low activation probability
and low risk mitigation, it is clear that an Excess of Loss reinsurance would
be almost useless when applied to this lob. Therefore, the considerations on
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Figure 6.4: Simulation results (black dots) and Panjer output (red line)

non-proportional reinsurance will be limited to the other 2 lobs from now on.
The QQ-plot of Figure (6.5) is displayed with D = 100.000 due to its lower
scale.

Now that the accuracy of the simulations has been backtested, we can
proceed studying the premium principles. Since the Panjer algorithm returns
more precise and smoothed estimation of the distribution, it will be preferred
for the computation of the safety loadings from now on. Of course, as shown
before, premium principle calculations based on the simulations would be a
good proxy in this scenario.

Following the reasoning of Equation (6.1) the safety loadings, expressed as
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Figure 6.5: Simulation results (black dots) and Panjer output (green line)

percentage of the pure premium P = E(X̃re), are shown in Figure (6.6).

The graph on the left shows that the safety loading for MTPL increases
almost linearly with the increase of the deductible. Instead, the GTPL is
characterized by a slightly concave behaviour. It is also interesting to see
that the loading for MTPL is higher in relative terms to the GTPL one when
applying layers with a high attachment point. As described before, this fact is
due to MTPL being less heavy tailed, and therefore the ceded losses for such
layers are less likely to appear.
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Figure 6.6: Reinsurance loading with Standard Deviation principle for different β

Figure 6.7: Mean and Coefficient of Variation of an Excess of Loss contract

As shown on the left graph in Figure (6.7), the mean of MTPL decreases
faster then the GTPL one. Remember that the MTPL is characterized in our
scenario by a way higher frequency component and represents the 63, 2% of the
portfolio against the 20, 7% of GTPL. Therefore, MTPL starts the line from a
higher point.

On the right we can see that in fact the Coefficient of Variation of MTPL
increases more steeply than GTPL. The safety loading under standard deviation
premium principle is equal to β · CoV when expressed as percentage of the
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mean.

Figure 6.8: Reinsurance loading with Proportional Hazard for different ρ

In Figure (6.8) the different loadings according to Proportional Hazard
principle are shown. In this case, the functions for both the lobs are concave.
The PH pricing principle relies on the cumulative distribution function of the
underlying risk, which is the exact output of Panjer algorithm. For this reason
practitioners usually connect this premium principle with such algorithm.
The choice between using the PH or Standard deviation principle to price
reinsurance may depend on how they price the most extreme layers and how
the subadditivity holds when a layer is split.

In Figure (6.9) the two pricing principles are compared on both the lobs
using different parameters. It’s interesting to note that empirically the two
methods return the same price for layers with low deductible when

1 + β ≈ ρ.

At the same time, when we deal with layers with high attachment point, the
more concavity that characterizes the PH principle tends to create a significant
gap between lines of the same color. This means that the user might choose a
weighted mean of the two methods to give the desired relevance to layers with
high D. The calibration of a reinsurance pricing curve is an interesting topic
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Figure 6.9: Reinsurance loading for both Standard Deviation and Proportional Hazard

worth to be further analyzed.
An important question at this point is: how can we determine which

parameter and pricing principle could be a good choice to insert into the
reinsurance optimization?

To have a vague idea of a realistic parameter, we can actually do compute
in reverse which parameters the direct insurer could have used to price its own
lines of business according to each principle. In a second step we can assume
that the reinsurer might price its risk according to a similar risk aversion and
economic competitiveness in the market.

In order to do so with Panjer, the distribution of gross aggregate claims X̃
of the insurer should be computed. Note that we might face underflow when
dealing with MTPL, since its frequency has E(Ñ) = 50.000, and therefore,
P (Ñ = 0) is approximated to 0 by the machine. Hence we will need to divide
the size parameter of the Negative Binomial by 2n and then convolve the process
2n times. In this scenario n = 1 is enough to solve the underflow. The other
two lobs are small enough to not return any underflow problem.

When computing the parameter βlob of Standard Deviation principle from
the point of view of the direct insurer, we have:

Plob · λlob = βlob · σ(X̃lob) =⇒ βlob = λlob
Plob

σ(X̃lob)
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and, for each lob the outcome is:

MTPL GTPL MOD

P 225.000.000 60.000.000 45.000.000

σ(X̃) 16.366.551 8.880.263 5.119.400

λ 1,2% 6,7% 13,8%

β 16,5% 45,3% 121,3%

Note that β is extremely high for MOD and very low for MTPL due to
respectively low and high competitiveness in the insurance market. Recalling
Table (6.2), GTPL have a reasonable probability of observing a profit in the
year (= 70, 34%) and the safety loading applied by the direct insurer seems
coherent with the underlying risk. Therefore, βGTPL may be a good benchmark
to calibrate the pricing principle.

It is possible to compute β also on portfolio level (βtot), but keep in mind
that MOD probably doesn’t need any Excess of Loss treaty. Also, MOD’s
safety loading is extremely high compared to the underlying risk, and therefore,
it will shift up the loading criteria. Since the direct insurer would probably
avoid to transfer MOD to the reinsurer, such βtot can be interpreted as the
relative target profitability of the reinsurer, which is in line with the insurer’s
one. The obvious consequence is that the price of Excess of Loss treaties for
MTPL and GTPL is raised to take in consideration the absence of MOD’s
profitability into the reinsurance portfolio.

Therefore, using the selected vine copula simulation of the previous section,
we can aggregate the lobs and derive the standard deviation through simulation
or Panjer. The result is the following:

βtot = λtot
P

σ(X̃)
= 3, 92%

106(225 + 60 + 45)

25.335.116
= 51, 06%

The same can be applied to Proportional Hazard principle, where the goal
is to find the ρ that satisfies the following equation:

Plob · λlob =

∫ ∞
0

(1− FX̃lob(x))1/ρ dx
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Through a solver algorithm the following parameters have been determined
for each lob and in total after vine copula aggregation:

MTPL GTPL MOD Total

ρ 1,19 1,54 2,83 1,60

As before, GTPL is in the middle between the other two lobs. For MTPL
the rule 1 + β ≈ ρ holds quite well when comparing the two pricing principles.
Note that the rule holds empirically for Deductible D in an approximate range
of (500.000; 4.000.000), but in this case we are analyzing trivially the case
D = 0, where the whole portfolio of the insurer is hypothetically ceded.

Since an Excess of Loss applied to MOD would cover against extremely
rare losses, both the parameter β and ρ assume huge values. For this reason
it might be a good idea to avoid considering XoL contracts on such lob. The
actuary can decide to include such contract in the optimization algorithm, but
it would be almost useless and it would cost in computing times. As a general
rule, leave out everything unnecessary is the best choice to manage only feasible
combinations of reinsurance that the actuary may consider worth to compare.

Seen the previous results, the choice of the parameters for each method are
the following:

MTPL GTPL

β 0,2 0,45

ρ 1,2 1,45

We can now start to list some feasible assumptions for the reinsurance
optimization and build on them an algorithm that returns all the possible
reinsurance combinations.
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Optimal Reinsurance

In the previous sections, all the needed elements have been explained to under-
stand the chosen parametrization and successfully build on it the simulation
environment, together with the subsequent aggregation between lines of business.
Now that all the pieces come together, we have in our hands the distribution
of the aggregate claim amount X̃ gross of reinsurance. It’s time to determine
the optimal reinsurance.

To perform the reinsurance optimization on the simulations, a huge number
of possible reinsurance treaties has to be tested and compared. One can decide
to optimize all the results with regard to the single line of business or the whole
business. The path treated in this thesis is the second one, since dealing with a
standalone lob might take to results that are not optimal on an aggregate basis,
which is the thing that matters the most. A method to reduce the dimension
of all the possible programs must be defined to focus the attention on the most
efficient.

As a first step, it is important to compute some profitability and risk
indexes gross of reinsurance, to set up some constraints for the optimization.
Assuming that the own capital U of the company is equal to the 20% of the
tariff premiums B of the year, we have:

U = 20% · 457.101.231 = 91.420.246

and therefore, if the results obtained through Vine Clayton aggregation are
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considered, the Solvency Ratio SRis:

SR =
U

SCR
=

91.420.246

77.964.830
= 117, 26%.

Given the parametrization of the lobs on the italian market, the expected
profit in the year is equal to

E(Profit) =
∑
lob

λlob · Plob = λtot ·
∑
lob

Plob = 3, 92% · 330.000.000 = 12.936.000

and, subsequently, the expected Return on Equity ROE is

E(ROE) =
E(Profit)

U
=

12.936.000

91.420.246
= 14, 15%

.
From the graphical point of view is possible to observe the different quan-

tiles of ROE distribution, showing a high volatility of results and significant
probability to perform either greatly and poorly in the year.

Figure 7.1: the horizontal dotted line represents ROE = 0 and the vertical one the
corresponding percentile
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Since the SCR is a risk measure that quantifies extreme risk, it is worth to
consider the Coefficient of Variation CoV to give also emphasis to the volatility
around the mean. Recalling the previous results:

CoV =
σ(X̃)

E(X̃)
= 7, 69%.

Let us also take into account the most important quantiles of the Combined
Ratio CR. Under the hypothesis that expenses E are deterministic and equal
to the expense loading c ·B:

CR =
X̃ + E

B
=
X̃

B
+ c = L̃R + c

Note that Figures (7.1) and (7.2) show the same graph but mirrored and
on another scale of measure.

Figure 7.2: the horizontal dotted line represents CR = 100% and the vertical one the
corresponding percentile

Now some assumptions are made on feasible goals that the insurance
company may want to achieve through reinsurance:
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• the target Solvency Ratio under Vine Copula aggregation is between
150% and 170%;

• the expected ROE should not fall below the 10%;

• applying an Excess of Loss reinsurance to both MTPL and GTPL is
required in order to benefit from the NP factor provided by Solvency II;

• Quota Share and Excess of Loss contracts will be mixed in order to define
the population of treaties. The Excess of Loss is applied first, and then
the Quota Share is applied with a cost proportional to the tariff premiums
net of the cost of the Excess of Loss;

• for the selection of all the possible Quota Share, a step of 5% is applied
to discretize such contract and deal with realistic percentages, that are
likely to be negotiated between insurer and reinsurer;

• for the selection of all possible Excess of Loss, we won’t consider subse-
quent layers and the presence of possible reinstatements, aggregate limits
and aggregate deductibles. The choice has been made in order to reduce
the computational times, since otherwise there would be millions and
millions of combinations of treaties. In a second step the layer’s split and
use of reinstatement is analyzed;

• the deductible D is defined in the range (500.000; 2.000.000) with a step
of 250.000. The reason behind is that, given the previous assumption,
there is only one layer per lob, and we don’t want the Layer to overfit the
simulations by protecting extreme events only at a low price. Therefore,
the deductible’s domain is such to determine a good attachment point
for the treaty;

• the limit L have been discretized with a 2 millions step in such a way to
study how far should the layer go;

The reason to set up such assumptions is mainly to reduce execution times
to a manageable amount. In order to have a wider view on the results, the
simulated treaties will have at least a Solvency Ratio equal to 145% and a
ROE = 8, 5% at least.

108



Optimal Reinsurance

Since the attachment point of the Excess of Loss is low, there isn’t a
significant difference in pricing with standard deviation principle or proportional
hazard when β ≈ 1 + ρ, as shown in Figure (6.9). The standard deviation
principle will be used from now on to price Excess of Loss treaties. Instead, when
pricing Quota Share, we will assume that the reinsurer requires an additional
compensation by setting the reinsurance commission loading crelob = 95%clob for
each lob.

Let us investigate different optimizations: the main difference between them
is the choice of which variable to use on the x and y axes of the plot. What
we aim for is to find reinsurance programs with interesting trade-off between
profit and risk under the aforementioned constraints.

7.1 Total Cost Optimization

The aim of this optimization is to minimize the Total Cost TC of the ceding
insurer, that recalling 5.2 is equal to minimizing the following term:

λre · E(X̃re) + CoC · SCR

that are respectively the ceded profit to the reinsurer and the cost of capital of
holding that amount of SCR. From now on, we will talk about "Total Cost"
when referring to this term.

The cost of capital rate CoC is assumed to be equal to 6%, like the one
present in Solvency II. Hence, gross of reinsurance we have:

0 + 6% · 77.964.830 = 4.677.890

Parodi [23] proposes to use as axes in the plot the reinsurance premium
and the Value at Risk. As shown in Figure (7.3), the reinsurance premium and
the Value at Risk are dependent in an almost linear way. The main reason
behind such result is given by the fact that the reinsurance pricing under
standard deviation principle is a risk based approach, and therefore, the price is
proportional to the ceded risk. This linearity is not desired in the optimization
context since there isn’t a clear convex efficient frontier on which we can extract
the best programs.
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Figure 7.3: the gray points represent all the possible reinsurance programs and the
black points the programs that satisfy the constraints

Be careful that this result implies that a frontier approach is not adequate
for these two axes. The main problem of the chosen metrics is the fact that the
reinsurance premium doesn’t catch how much profit the direct insurer is ceding
to the reinsurer, and the Value at Risk doesn’t quantify the underlying SCR.

Therefore, we can try to minimize the Total Cost and see which contract is
suggested:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.500.000 6.000.000 75% 100% 750.000 6.000.000 100%

Note that the application of excess of loss treaties has been avoided to
MOD since it is almost useless and slows down computations. The following
plot shows a closer look to the previous one, where only the black dots are
considered. The efficient frontier that minimize both premium and Value at
Risk is signaled in red, and the program that minimize the total cost is the
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blue point.

Figure 7.4: The red dots represent the efficient frontier and the blue dot the program
that minimize the Total Cost

Due to the thin shape of the programs, the concept of frontier may appear
not so coherent. But through it we can reduce the amount of programs by
roughly 5 times, which is not negligible.

The main indicators of the direct insurer after the application of the program
are:

CoV Solvency Ratio E(ROE) TC

7,46% 150,59% 10,68% 6.817.467

With respect to the gross of reinsurance case, the CoV has been reduced.
Note that the Total Cost is not improved passing from gross to net of reinsurance.
Why? The main reason lies in the choice of using a Negative Binomial for the
frequency component of each lob: due to its asymptotic behaviours, the excess
of loss treaties’ effectiveness is limited because the risk of observing a huge
number of small losses is still present.
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The trade-off between ceded profit and SCR reduction is such that any
reinsurance will lead to an increase of the Total Cost under the imposed
constraints. It is not a coincidence that the Solvency Ratio constraint has been
met in its lower bound (= 150%). In fact, given the aforementioned trade-off,
TC is minimized under constraint when the Solvency Ratio is at its lowest, in
our case 150%.

But the result is even more complex: it is easily noticeable that the TC
formulation can advantage Quota Share contracts applied to MTPL, since the
ceded profit would be low and the SCR would be minimized by a significant
amount. But, at the same time, such contracts are characterized by a high
premium due to the predominant volume of MTPL over the total. Because
of the choice of the x and y axes, these Quota Share are excluded when the
efficient frontier is considered. Therefore, the optimal contract under these
conditions is the result of complex trade-offs and it doesn’t represent an obvious
minimization of the Total Cost.

Another interesting alternative is to use the SCR (or equivalently the
Solvency Ratio) instead of the Value at Risk. In this way the frontier would
minimize the trade-off a more useful indicator.

As shown in Figure (7.5), we are in front of a non-linear frontier by changing
the Value at Risk with the Solvency Ratio, which doesn’t include the mean of
retained losses in the numerator. The application of the frontier reduces the
number of programs by 40 times.

The chosen program is defined as:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

2.000.000 6.000.000 75% 100% 500.000 8.000.000 100%

With the following characteristics:

CoV Solvency Ratio E(ROE) TC

7,39% 152,89% 10,47% 6.945.862

With respect to the one seen before, this program reduces more the CoV
and increase by a small amount the Solvency Ratio at cost of a small amount
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Figure 7.5: The red dots represent the efficient frontier and the blue dot the program
that minimize the Total Cost

of expected ROE. It’s hard to tell which one is better, but we can observe
that this program covers more the GTPL, which is the most risky lob in the
portfolio. Of course, since the frontier is composed by just few programs, it is
not surprising to see a higher TC.

But why does this program in particular achieve the lowest TC over the
frontier? The reason is clearer from a graphical point of view: the optimal
program is the furthest from the lower right corner of the figure. In fact, if we
aim for a convex efficient frontier, such program would be one of the first to
be cut out of the selection. Hence, the Total Cost optimization and concepts
of efficient frontier clash each other when dealing with Solvency ratio and
reinsurance premiums as metrics.

7.2 Convex Frontier Optimization

As seen in Figure (7.5), the efficient frontier can be fuzzy and composed by
non-continuous linear segments. This is given by the fact that:

1. many constraints on the feasible programs have been set in both terms of
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structure and targets. Passing from an unconstrained to a constrained
structure reduces significantly the dimension of the selection, and it may
create gaps;

2. only Quota Share, Excess of Loss and a combination of the two have
been simulated. Note that, even given these limited dimensions, the
computation of the combinations is time consuming;

3. to build the program simulation algorithm, both Excess of Loss and
Quota Share have been discretized. The idea behind is that, using a
discretization with minimum loss of information, the shape would be way
more completed and convex;

4. only 3 lines of business are considered. Increasing the number of lobs
would provide a smoother frontier because the possible gaps would be
filled.

Regarding the first point, the insurance company decides carefully its own goals
in terms of profitability and riskiness. Therefore, studying only the programs
that may be used in the practical context is the main goal. On the second
point, Quota Share and Excess of Loss are the most used reinsurance contracts
used in practice, and the results can provide useful insights. The third point
is justified by the standard practice: it is unusual to observe a Quota Share
where the parameter α is not a multiple of 5%.

But, does this frontier’s non-convexity help in the selection of a optimal
program? The answer is yes, since in many cases we can build a convex frontier
and reduce once more the number of programs considered. To give an idea, a
convex frontier has been built in Figure (7.6) on the basis of Figure (7.5).

In this way, the convex frontier is a subset of the non-convex one, which is
a subset itself of the whole set of constrained programs.

The reason why the convexity is a desired property is the following: from a
graphical point of view, when we move from a program on the convex frontier
to another one, the best trade-off is achieved by moving on the next program
that lie on convex frontier. Following this reasoning, it is possible to cancel out
from the selection all the programs that don’t lie on the convex frontier.

The optimal programs that lie on the convex frontier of Figure (7.6), ordered
by Solvency ratio, are described in the following tables.
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Figure 7.6: The orange line connects the programs that lie on the convex frontier
(blue), leaving out the previous non-convex efficient frontier (red).

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

750.000 6.000.000 85% 100% 500.000 9.500.000 90%

750.000 9.250.000 85% 100% 500.000 9.500.000 90%

500.000 4.000.000 85% 100% 500.000 8.000.000 90%

1.250.000 6.000.000 70% 100% 500.000 8.000.000 100%

2.000.000 4.000.000 60% 100% 750.000 4.000.000 100%

CoV Solvency Ratio E(ROE)

7,23% 150,02% 10,06%

7,23% 150,11% 10,02%

7,23% 151,25% 10,01%

7,40% 160,14% 10,01%

7,66% 164,54% 10,01%
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We can extrapolate interesting information from these results:

• the first two programs are almost identical, except for LMTPL, and are
almost overlapped from the graphical point of view. If their profit and risk
indexes are compared, it is possible to note that there isn’t a significant
improvement of the Solvency ratio when covering the last extreme segment
of MTPL;

• compared to the 2nd program, the 3rd one is able to achieve a +1% of
Solvency ratio in exchange of a really small amount of ROE, and the
meanwhile perform the same CoV ;

• the last 3 programs show with constant profitability a trade-off between
CoV and Solvency ratio;

• the ROE constraint has been met in its lower bound, and there aren’t
optimal contracts with a expected ROE that distances significantly the
10%.

Usually the frontier is composed by 10 or less programs. One step further is
to reduce such dimension by applying the tangent line to the frontier. The slope
of the tangent line can be derived by connecting the first and the last point
of the convex frontier. The aim is to derive which programs are characterized
by interesting trade-offs, and not to blindly select the tangent one. Care
and judgement are always needed in every step of the optimization, and the
fully automation of the process is not suggested, since the mere mathematical
optimization may be misleading in certain situations.

In this scenario the tangent contract is the 4th one, which presents an
interesting trade-off between CoV and Solvency ratio. As described before, the
3rd program almost dominates the first two, and their presence in the convex
frontier might indicate that the reinsurance premium is not a coherent choice
for the y-axis, since it doesn’t clearly explain how much profit the company is
ceding to the reinsurer.

Therefore, the optimizations presented in the next sections are based on
the following three metrics:

• ROE as profit measure;
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• Solvency Ratio as risk measure for extreme quantiles;

• CoV as risk measure for general volatility of the process.

For each optimization two out of three metrics will be chosen for the graphical
representation. The resulting efficient frontier will be composed by programs
that satisfy the constraint of the remaining metric.

7.2.1 ROE and SCR optimization under volatility con-

straint

With this optimization the Solvency Ratio and the ROE will be used on the
x-axis and y-axis respectively. As usual, the programs will be filtered by
the constraints SR ≥ 150% and CoVnet ≤ CoVgross and ROE ≥ 10%. The
advantage of this optimization is that you don’t need to be an actuary to
comprehend immediately the results, since the axes are assigned to very clear
metrics. In comparison, the CoV might require an additional effort to be fully
understood.

On the left of Figure (7.7), the subset of programs is displayed in black. On
the right graph a close up of the selection is represented, where the efficient
frontier is red and the 3 programs that lie on the convex frontier are in blue.

Figure 7.7
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The 3 optimal programs in order of Solvency ratio are:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

2.000.000 6.000.000 70% 100% 1.500.000 4.000.000 100%

2.000.000 4.000.000 65% 100% 1.250.000 4.000.000 100%

2.000.000 4.000.000 60% 100% 750.000 4.000.000 100%

With the following characteristics:

CoV Solvency Ratio E(ROE)

7,65% 150,08% 10,91%

7,67% 155,86% 10,55%

7,66% 164,54% 10,01%

The results are very interesting and show some peculiarities:

• in each program the CoV is really near to the one gross of reinsurance,
which is equal to 7, 69%. Therefore the constraint has been satisfied in its
upper bound, and the resulting programs maximize the trade-off between
Solvency ratio and ROE without any significant reduction of CoV ;

• all the programs rely heavily on the Quota Share of MTPL to adjust the
Solvency ratio. The reason behind is that ceding such lob creates more
equilibrium and a better risk allocation in the portfolio;

• In conjunction with the Quota Share, the Excess of Loss’ layer of GTPL
shifts towards more frequent risks to provide more coverage;

• the convex frontier is almost linear, even if the efficient frontier isn’t;

• there is no explicit optimum with Solvency ratio = 160% because of the
huge gap between the second and the third program;

Due to the low use of Non-proportional reinsurance and the wide use of
proportional reinsurance to drive the result, this optimization share some
similarities with the idea of optimal capital allocation. In fact, due to the
portfolio structure of the insurer, this optimization attempts to reduce the
MTPL volume over the total, and establish a better equilibrium between lobs.
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7.2.2 Risk optimization under profit constraint

With this approach both the risk measures (Solvency Ratio and CoV) are
represented on the axes, while the ROE constraint is used as a filter on the
resulting graph. The aim is to optimize the trade-off between the general
volatility and the tail heaviness under the desired profit constraint.

Figure 7.8

Looking at the left plot of Figure (7.8), the shape of the programs is
interesting since it is composed by multiple oblique lines. Such phenomenon
is given by the fact that there is a trade-off between SCR and CoV and, to
reduce the computational times, all the programs returned by the simulation
algorithm are subject to the constraint ROE ≥ 8, 5%. Therefore, also the grey
points in the plot are subject to a profit constraint and show this behavior.
The subset under ROE ≥ 10% assumes a spikier shape, which can be observed
more precisely on the right of Figure (7.8).

As before, the efficient frontier is determined in red and, subsequently, the
convex frontier is built. Note that, due to the particular shape of the subset,
the efficient frontier is composed by few programs, and the use of the convexity
reduces the number of selected programs by a small amount. The way the plot
is structured makes the selection of optimal programs really clear and stable.

The optimal programs, ordered by Solvency ratio, are:
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DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

750.000 9.250.000 85% 100% 500.000 9.500.000 90%

500.000 4.000.000 85% 100% 500.000 8.000.000 90%

750.000 9.250.000 75% 100% 500.000 9.500.000 100%

1.250.000 6.000.000 70% 100% 500.000 8.000.000 100%

2.000.000 4.000.000 60% 100% 750.000 4.000.000 100%

With the following characteristics:

CoV Solvency Ratio E(ROE)

7,23% 150,11% 10,02%

7,23% 151,25% 10,01%

7,31% 156,21% 10,02%

7,40% 160,14% 10,01%

7,66% 164,54% 10,01%

It is worthy to note that:

• the profit constraint has been meet in its lower bound, with ROE just
slightly higher than 10%. In fact, the optimal trade-off between the two
risk measures comes at the cost of reducing the expected profit;

• the 1st program is almost dominated by the 2nd. The CoV = 7, 22% can
be seen as the minimum value achievable under the Solvency ratio and
the ROE constraints. If compared to the gross case (CoV = 7, 69%), the
maximum reduction in relative terms is roughly equal to 6, 1%, which
is way far from the 20% assumed by Solvency’s Standard Formula NP
factor;

• the 5th program appeared also in the previous optimization, since it meets
the upper bound of CoV constraint and it is characterized by the highest
Solvency ratio among the subset of programs.

The 4th program is the tangent one. The reason behind this result is justified
by several drivers. The program relies on a solid protection with an Excess of
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Loss on GTPL and doesn’t use any Quota Share on such lob to avoid sharing
profit. At the same time it combines on MTPL a 70% Quota Share with an
Excess of Loss that doesn’t cover extreme losses after 7.250.000, due to their low
occurrence. Hence, we see a balanced trade-off between the single reinsurance
contracts that compose such program in order to reach the desired goals.

It is possible to note in Figure (7.8) that there is another program (in red),
located really close to the 4th one of the convex frontier. Such program is
really similar, but with DMTPL = 1.500.000 and LGTPL = 9.500.000. Therefore,
pushing the GTPL limit to the cap limit and reducing MTPL’s protection is
slightly inefficient in terms of SCR-CoV trade-off, but it can be considered as a
valid alternative.

7.2.3 Cov-Profit Optimization under SCR constraint

Imagine the insurer has a precise SCR goal to reach through reinsurance.
Which programs are able to achieve at least the profitability constraint, while
at the same time reducing the volatility of the result? This type of optimization
gives an answer to this question by using ROE and CoV as axes and SCR
as filter in the graph. In this section different SCR targets will be analyzed
and the respective optimum will be determined. In Figure (7.9) the imposed

Figure 7.9: Optimization with Solvency ratio ≥ 150%
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constraint on Solvency ratio is as usual equal to 150%. On the right, efficient
and convex frontiers have been found, and, to avoid overwhelming the reader
with too many programs, only the tangent one is provided:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.000.000 8.000.000 80% 100% 500.000 8.000.000 100%

With the following characteristics:

CoV Solvency Ratio E(ROE)

7,32% 150,01% 10,55%

The most close program to the tangent one shares its structure, except for
having LMTPL = 6.000.000 and LGTPL = 9.500.000. Hence, the only difference
is choosing which lob to cover more and which less with Excess of Loss. As
expected, all the programs that lie on the convex frontier have a Solvency Ratio
≈ 150%, and the constraint is met in its lower bound.

Figure 7.10: Optimization with Solvency ratio ≥ 155%

Changing the Solvency ratio constraint from 150% to 155%, the bold points
of Figure (7.10) are reduced in number, and a new frontier is determined.
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Looking at the right graph, the tangent program almost shares its first
place with another program in terms of tangency. Therefore, both programs
are shown below:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.000.000 8.000.000 75% 100% 500.000 8.000.000 100%

2.000.000 4.000.000 70% 100% 500.000 4.000.000 100%

CoV Solvency Ratio E(ROE)

7,35% 155,02% 10,22%

7,51% 155,44% 10,48%

To reach the SCR ≥ 155% constraint, the two programs choose two different
paths:

1. the first protects more the extreme events relying on more Excess of Loss;

2. the second suggests to buy more Quota Share on MTPL and spend less
on Non-proportional treaties for both MTPL and GTPL.

It is difficult to assess which one is better, but we can note that the first is
identical to the tangent program with SR = 150%, except for αMTPL = 75% in-
stead of 70%. Supposed that the tail heaviness might have been underestimated
or it is uncertain due to lack of robust statistics, the best choice is to prefer
the first program over the second to protect the insurer by this kind of risk.
The danger of choosing the second contract is to blindly follow a higher profit
without issuing any question about the reliability of distributional assumptions.

This is a good example of why the automation of the whole optimization
process is not a good idea: critical thought and judgement should always be
present when deciding whether the tangent program might be the best for the
company.

Shifting now the constraint to SR ≥ 160%, the number of remaining
programs is reduced significantly. As depicted in Figure (7.11), the convex
frontier is now linear and composed by only two programs:
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Figure 7.11: Optimization with Solvency ratio ≥ 160%

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.250.000 6.000.000 70% 100% 500.000 8.000.000 100%

2.000.000 4.000.000 65% 100% 500.000 4.000.000 100%

CoV Solvency Ratio E(ROE)

7,40% 160,14% 10,01%

7,55% 161,15% 10,16%

The results are interesting because it is the 3rd time we meet the 1st program
on the tangent of convex frontiers. In fact, this program is characterized by an
interesting trade-off between CoV and SCR, while satisfying ROE constraint
in its lower bound. On the other hand, the 2nd program recalls the one observed
with Solvency Ratio ≥ 155%.

Since there are too few programs to compare given the current conditions,
a good idea is to study what happens when the ROE constraint is less bind-
ing. The question is the following: is the 1st program the tangent one when
limitations change?

For this purpose, the case with ROE ≥ 9% is proposed:
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Figure 7.12: Optimization with Solvency ratio ≥ 160%, but with profit constraint
ROE ≥ 9% instead of 10%

The plot on the left of Figure (7.12) is the same of Figure (7.11), but
with the vertical blue line shifted to the left. Now that way more programs
are present, a proper convex frontier is determined and confirms that the 1st

program is the tangent one. It almost shares the tangency with its slightly
alternative structure that we met before:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.250.000 6.000.000 70% 100% 500.000 9.500.000 100%

CoV Solvency Ratio E(ROE)

7,39% 160,35% 9,94%

Recalling the fact that the tails of the distribution might be underestimated
in the fitting procedure, this program provides an useful alternative.

It is better to not go further with Solvency Ratio constraints, since SCR ≥
165% would include zero programs under ROE ≥ 10%.
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7.3 Can reinstatements improve reinsurance?

Summarizing all the results obtained, the most recurring program that appeared
in the reinsurance optimizations is:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.250.000 6.000.000 70% 100% 500.000 8.000.000 100%

CoV Solvency Ratio E(ROE)

7,40% 160,14% 10,01%

All the Excess of Loss treaties have an unlimited Aggregate Limit AL,
which is not always true in practice. Usually, AL is a multiple of the limit
L, and sometimes reinstatements are present. Assuming that the reinsurer is
not willing to sell treaties with unlimited AL, we can re-structure the program
with:

AL = 2 · L

for both MTPL and GTPL. But, since GTPL is characterized by a long tail,
ALGTPL = 2 · 8 = 16 is not high enough to provide a risk mitigation similar to
unlimited AL case. In fact, the resulting program would have Solvency ratio
equal to 158, 04%.

To have something comparable, the intuition is to increase LGTPL in order
to have an aggregate limit that comprehends almost all the risk. From now on
the following alternative treaty will be considered:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.250.000 6.000.000 70% 100% 500.000 9.500.000 100%

which have been proved to be on the convex frontier when the profitability
constraint is ROE ≥ 9% instead of 10%. The characteristics of the program
under the 2 different AL assumptions are:
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AL CoV Solvency Ratio E(ROE)

∞ 7,39% 160,35% 9,94%

2L 7,40% 159,73% 9,97%

We can see that the trade-off between Solvency ratio and expected ROE is
not very convenient when passing from the unlimited scenario to the limited
one. But, at least the 2nd program is easier to find in the reinsurance market.

Now that we have layers with a finite AL, it is possible to study if the
application of reinstatements on such layers can provide some beneficial effects
to the direct insurer. As explained in the previous chapters, when dealing with
paid reinstatements, the reinsurance premium is divided in two components:

• a deterministic premium, which is paid at the start of the contract;

• a stochastic premium, which is paid in case a loss hits the layer and the
remaining AL decreases.

The advantage of such reinsurance clause is that, in case a small amount of
losses occurs in the year, the premium paid is lower with respect to the case
with free reinstatements (when there isn’t any stochastic component in the
premium). The stochastic premium is proportional to the percentage of layer
to be reinstated and to a coefficient ck, which in practice is equal to 50% or
100%.

On the other side, due to the fact that now also the premium is a random
variable, the SCR and the CoV increase.

An algorithm is built to test all the possible splits of the aforementioned
layers for both MTPL and GTPL, and for each of the resulting layers all the
possible combinations of reinstatement (with ck = 0%, 50% and 100%) will be
analyzed. In addition, also different scenario with AL = L or 2L are inserted
inside in case of no reinstatements. In this way, starting from one program we
can extrapolate a massive amount of alternatives, and check where they lie in
the various optimizations. We’ll call this set of programs as layered programs.

In the following paragraph we will repeat the optimizations by comparing
the previous efficient and convex frontier with the new alternatives to see if
any new program is able to perform better.
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Solvency Ratio and ROE optimization On the left of Figure (7.13) the
optimization is represented for the overall programs as already seen in the
previous sections. On the right the efficient and convex frontiers are compared
to the set of layered programs depicted in green. As usual the constraints
applied are Solvency ratio ≥ 150%, ROE ≥ 10% and CoVnet ≤ CoVgross.

Figure 7.13

On the right plot we can see that no layered program lies on the convex
frontier, and therefore, under this choice of axes, the layering procedure returns
only sub-optimal programs. It means that using Excess of Loss contracts with
AL =∞ is the best choice in terms of ROE and Solvency ratio trade-off. The
result of course depends on the property of the standard deviation pricing
principle, which is characterized by a significant sub-additivity. In fact, due to
this property two consequent layers cost more than an unique layer. Modifying
the pricing assumptions might generate a layered program that is more efficient
than the current programs on the convex frontier.

As seen before, the convex frontier is composed by programs that meet the
CoV constraint in its upper bound. By setting a more binding constraint, the
convex frontier would shift to the left and we might be able to observe that
some layered programs are able to perform better than the tangent programs.
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Solvency Ratio and CoV optimization As before, the optimization made
in the previous section is shown on the left of Figure (7.14), while on the right
the layered programs in green are displayed in comparison with the frontiers.

Figure 7.14

Since all the layered programs are derived from the same starting program,
they are expressed as an extension of it under this choice of axes. In fact, the
aim of the layering is to increase the profitability in exchange of increasing
the risk due to lower protection. From the graphical point of view it is clear
that every layered program is worsening both Solvency ratio and CoV . But,
recalling that all the programs on the convex frontier meet the ROE constraint
in its lower bound, the comparison between them and the layered programs
is unfair since the latter are characterized by equal or higher profitability by
definition. It is possible to increase the desired profit to investigate where the
layered programs are located.

In Figure (7.15) the constraint ROE ≥ 10, 5% has been set, and a new
convex frontier has been defined. Few programs (green) are now located under
the tangent line, which is a sign that the layering procedure can improve
reinsurance. Of course the improvement is measured in terms of trade-off
between increased profit and decreased protection.

On the right plot, the light-green dot represents the best layered program
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in terms of distance from the convex frontier.

Figure 7.15

To have a context for the results, the tangent program (blue) is shown:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.250.000 4.000.000 75% 100% 500.000 6.000.000 100%

CoV Solvency Ratio E(ROE)

7,40% 152,60% 10,50%

While the best layered program achieves the following results:

CoV Solvency Ratio E(ROE)

7,51% 155,37% 10,51%

Note that both the tangent and the best layered program meet the ROE
constraint in its lower bound, and making the profit constraint even more
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binding would exclude both of them. The difference between the two is given
by a trade-off between CoV and Solvency ratio.

Recalling that the best layered program is based on:

DMTPL LMTPL αMTPL αMOD DGTPL LGTPL αGTPL

1.250.000 6.000.000 70% 100% 500.000 9.500.000 100%

it is defined by the following additional characteristics (L and AL are in
millions):

MTPL GTPL

1st Layer 2nd Layer 1st Layer 2nd Layer

L AL c L AL c L AL c L AL c

6 6 0% - - - 9,5 19 100% - - -

The best layered program doesn’t rely on the split of the layer for both MTPL
and GTPL due to the subadditivity of the pricing principle. Instead, it decreases
ALMTPL from 12 to 6 millions and buys 1 paid reinstatement to GTPL, leaving
untouched ALGTPL. The choice behind the reduction of ALMTPL is that the
probability of observing a reinsurance loss X̃re

MTPL > 6.000.000 is roughly 5%

and the price of buying ALMTPL = 12.000.000 is not particularly convenient.
On the other side, ALGTPL = 19.0000.000 is needed since the lob is long tail.

The presence of the reinstatement needs few numbers to be justified:

• if c = 0 the reinstatement is free, the reinsurance premium is fully
deterministic and equal to 6.776.850;

• if c = 100% the reinstatement is paid and the initial deterministic premium
is equal to 4.174.960. Due to the stochastic component, the insurer can
pay at maximum 8.349.920 (2 times the initial premium since c = 100%)
in case X̃re

GTPL ≥ 9.500.000;

• the paid reinstatement is more convenient than the free one only when
X̃re
GTPL ≤ 9.500.000 · 4.174.960

6.776.850
= 5.920.400, where the corresponding prob-

ability is equal roughly to 67, 90%.
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ROE and CoV optimization Now we will deal with the last optimization,
where the target Solvency ratio must be set in advance to extrapolate the
results. First of all, in Figure (7.16) the constraint Solvency ratio ≥ 150% is
set.

Figure 7.16

On the right plot we can see that all the layered programs are not even
slightly near to the efficient frontier. The reason behind is that the starting op-
timal program have Solvency ratio = 160%, and the layering procedure doesn’t
reduce it to the lower bound 150%. Therefore, this target is inappropriate to
compare the new set of programs with the old ones.

It is interesting to note that, if the chosen starting program achieved a
lower Solvency ratio, through the layering procedure we would have observed
some layered programs comparable under the this target. Of course, choosing a
initial program on the convex frontier is suggested in order to obtain interesting
layered outcomes.

It is important to underline that in this section we are only testing if layering
can improve reinsurance, and not defining the best layered program among all
the possible initial programs, since we are currently considering only a single
initial program.

In Figure (7.17) the Solvency ratio target is set to 155%.
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Figure 7.17

On the right plot, the light green dot represents the best layered program
in terms of tangency. It is exactly the program found in the Solvency ratio
and CoV optimization under ROE ≥ 10, 5%. It is a good new that under two
different optimizations the results are the same.

What if the insurer is willing to rely on splitting the same reinsurance layer
among two different reinsurer? The following program is characterized by the
split of MTPL layer, while still being under the tangency line:

MTPL GTPL

1st Layer 2nd Layer 1st Layer 2nd Layer

L AL c L AL c L AL c L AL c

2 4 0% 4 8 100% 9,5 19 100% - - -

CoV Solvency Ratio E(ROE)

7,53% 155,08% 10,51%

Compared to the best layered program, it performs really similar to it in
terms of CoV and expected ROE, but achieves a Solvency ratio of 155, 08%
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instead of 155, 37%. Therefore, it is almost dominated by the best layered
program. To remain a good reinsurance scheme in terms of tangency, the
GTPL layer should not be split, since the current reinstatement strategy is
solid. Instead, the MTPL new split features an interesting reasoning:

• the first layer relies on the free reinstatements since, having a low attach-
ment point, is will be hit by claims with high probability, and feature a
stochastic premium wouldn’t be convenient;

• instead, the second layer features one paid reinstatement since it covers
only the most extreme claims, and the probability of full deterioration of
such layer is low.

Since the starting program has a Solvency ratio = 159, 73% and the layering
procedure can only decrease it, no layered program is present when dealing
with the threshold 160% Solvency ratio.
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Conclusions

In this thesis an optimal reinsurance simulation model has been implemented
and explained in detail. The calibration of the lines of business has been based
on the Italian insurance market to attribute more pragmatism to the results.

The reinsurance optimization has been quantified on profit and risk measures
to investigate at best the insurer’s economic situation. Through the comparison
of different optimization criteria, one reinsurance scheme in particular has
emerged from the wide set of simulated programs. The dimension of the latter
has been drastically reduced by using the concepts of convex frontier and
tangent program. The more constraints are set, the more the convex frontier is
able to delete possible program candidates.

Exploring the benefits of the reinstatements’ presence in the optimal program
has highlighted that such clause, under adequate reinsurance design and pricing
assumptions, is able to improve the risk return trade-off of the insurer.

Since insurance companies already have a reinsurance program, the proposed
methodology can be extended to improve the current scheme without any drastic
change from year to year: the set of possible reinsurance programs can be
defined by applying small shocks to the parameters of the current reinsurance
contracts. Analyzing the resulting programs under the adequate optimization
procedures can suggest which modifications are more relevant to restructure
the program. Ironically, this alternative version of the algorithm requires
significantly lower computational time with respect to the one introduced in
this thesis, and it can be easily implemented to fit the insurance companies’
needs.
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